IFT 615 – Intelligence artificielle

Réseaux bayésiens dynamiques

Hugo Larochelle

Département d'informatique

Université de Sherbrooke

http://www.dmi.usherb.ca/~larocheh/cours/ift615.html

Sujets couverts

- C'est quoi un réseau bayésien dynamique (RBD)?
- Exemple d'inférence simple dans un RBD
- Cas particuliers des modèles de Markov cachés

Réseaux bayésiens dynamiques (RBD)

- Comment modéliser des situations dynamiques?
 - les changements dynamiques peuvent être vus comme une séquence d'états, chaque état représentant la situation à un instant t donné
 - \bullet X_t : ensemble des **variables non observables (cachées)** décrivant l'état au temps t
 - \bullet E_t : ensembles de **variables observées** (*evidence*) au temps t
- Le terme dynamique réfère au dynamisme du système qu'on veut modéliser et la structure du réseau

Représentation dans un RBD

Problème:

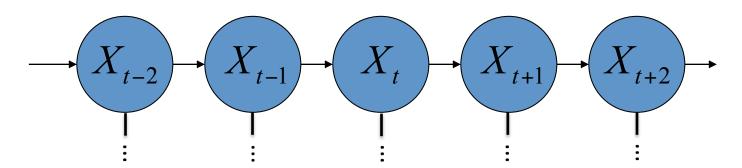
- → il faudrait spécifier un nombre infini de tables de probabilités conditionnelles,
 c.-à-d. une pour chaque variable, dans chaque état (chaque temps t)
- chaque table pourrait impliquer un nombre infini de parents

Solution:

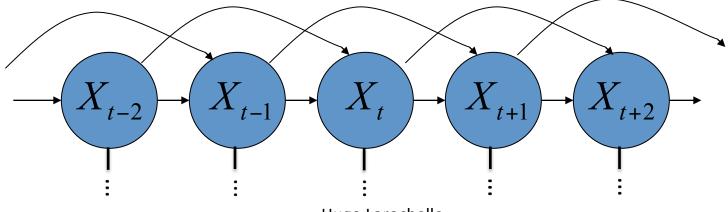
- 1. supposer que les changements dynamiques sont causés par un **processus stationnaire** les probabilités ne changent pas dans le temps: $P(X_t \mid Parent(X_t))$ **est la même** pour tous les t
- supposer que les changements dynamiques sont causés par un processus markovien – l'état courant dépend seulement d'un nombre fini d'états précédents
 - » ex.: processus markoviens du premier ordre:
 - $P(X_t \mid X_{0:t-1}) = P(X_t \mid X_{t-1})$ modèle pour les transitions
- 3. supposer que l'observation dépend uniquement de l'état courant
 - $P(E_t \mid X_{0:t}, E_{0:t-1}) = P(E_t \mid X_t)$ modèle pour les observations/capteurs

Illustration d'un RDB

 Réseau bayesien dynamique (RBD) du premier ordre avec une seule variable X, répliquées dans les différents états pour modéliser la dynamique du système:



RBD du second ordre:

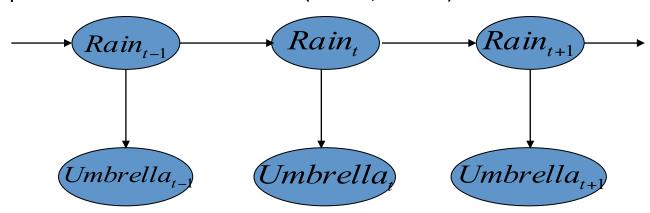


IFT615

Hugo Larochelle

Exemple

- « Un gardien de sécurité passe un mois dans un édifice sous-terrain, sans sortir. Chaque jour, son directeur arrive avec ou sans parapluie. Le gardien veut inférer la possibilité qu'il ait plu ou non en fonction des séquences d' observation du parapluie. »
- Modélisation:
 - ♦ Variables: $X_t = \{R_t\}$ (pour « Rain ») et $E_t = \{U_t\}$ (pour « Umbrella »).
 - Dépendances entre les variables (c-.à-d., le RBD):



lacktriangle Modèle des transitions: $\mathbf{P}(R_t \mid R_{t-1})$. Modèle d'observation: $\mathbf{P}(U_t \mid R_t)$

RBD

- Comment rendre un RBD plus précis?
 - augmenter l'ordre du modèle markovien
 - » ex.: $Rain_t$ aurait comme parents, non seulement $Rain_{t-1}$ mais aussi $Rain_{t-2}$ pour un processus markovien du second ordre
 - » ceci donnerait des prédictions plus précises
 - augmenter le nombre de variables d'états
 - » par exemple on pourrait ajouter:
 - une variable Season_t pour tenir compte des statistiques historiques sur les temps de pluie selon les saisons
 - des variables $Temperature_t$, $Humidity_t$ and $Pressure_t$ pour tenir compte de la physique des conditions de pluie
 - permettre des interactions directes entre la variables d'observation
 - » on pourrait avoir plutôt $P(E_t \mid X_{0:t}, E_{0:t-1}) = P(E_t \mid X_t, E_{t-1})$
 - » ça peut rendre l'inférence encore plus complexe

Types d'inférence dans un RBD

- Filtrage (filtering): calcul de l'état de croyance (belief state), c.-à-d. la distribution a posteriori de la variable cachée la plus récente
 - \bullet **P**($X_t | e_{1:t}$)
- Prédiction: calculer la distribution a posteriori sur un état futur
 - **◆ P**($X_{t+k} | e_{1:t}$) où k > 0
- Lissage (smoothing): calculer la distribution a posteriori sur un état passé
 - ightharpoonup **P**($X_k | e_{1:t}$) où $0 \le k < t$
- Explication la plus plausible: trouver la séquence d'états cachés qui explique le mieux les observations
 - → argmax $P(x_{1:t}|e_{1:t})$ = argmax $P(x_{1:t},e_{1:t})$ / $P(e_{1:t})$ = argmax $P(x_{1:t},e_{1:t})$ $X_{1:t}$
- En plus, on pourrait vouloir faire de l'apprentissage: trouver les tables de probabilités conditionnelles telles que nos données observées sont le plus vraisemblable possible (à voir plus tard dans le cours)

Filtrage avec RBD

 Calculer l'état de croyance (belief state) – c-.à-d., la distribution de probabilité a posteriori de l'état courant, étant données les observations jusque là:

$$P(X_t \mid e_{1:t})$$

- Un agent intelligent a besoin du filtrage pour maintenir à jour son état courant
 - ceci est nécessaire pour prendre des décisions rationnelles (déterminer l'action appropriée étant donné l'état courant)

Filtrage avec RBD

- Étant donnés les résultats du filtrage jusqu'au temps t, on peut facilement calculer le filtrage au temps t+1 à partir des nouvelles observations e_{t+1}
- En appliquant la règle de Bayes et l'hypothèse markovienne, nous arrivons à:

$$P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$$
 (détails page 572 du manuel de référence)

$$= \alpha P(e_{t+1} \mid X_{t+1}) \sum_{x_t} P(X_{t+1} \mid x_t) P(x_t \mid e_{1:t})$$

α: constante de normalisation

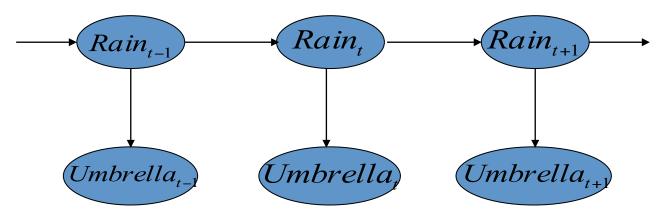
probabilité de la nouvelle observation (disponible dans la table des probabilités)

prédiction du prochain état en se basant sur notre état de croyance au temps *t*

Exemple de l'agent de sécurité

RBD:

- \diamond une distribution de **probabilité a priori P**(R_o), par exemple <0.5, 0.5>
- \diamond un **modèle des transition P**($R_t | R_{t-1}$)
- \bullet un **modèle d'observation P**($U_t | R_t$)

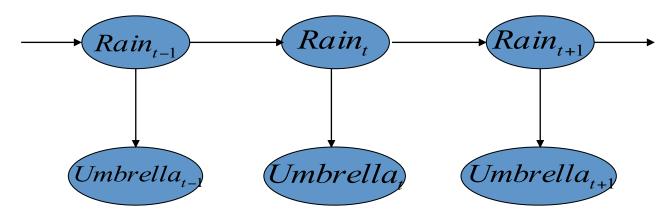


R _{t-1}	$P(r_{t} R_{t-1})$
Т	0.7
F	0.3
R _t	$P(u_t R_t)$

R_t	$P(u_t R_t)$	
Т	0.9	
F	0.2	

- **Jour 1**: le parapluie apparait, $(U_1 = true \text{ ou } u_1)$
 - le filtrage de t=0 à t=1 est: $P(R_1 \mid u_1) = \alpha P(u_1 \mid R_1) P(R_1)$

Exemple de l'agent de sécurité



- **Jour 2**: le parapluie apparait de nouveau, c.-à-d., U_2 =true
 - ♦ le filtrage de *t*=1 à *t*=2 est:

$$\mathbf{P}(R_2 \mid u_1, u_2) = \alpha P(u_2 \mid R_2) \mathbf{P}(R_2 \mid u_1)$$

= $\alpha P(u_2 \mid R_2) \sum_{r_1} \mathbf{P}(R_2 \mid r_1) P(r_1 \mid u_1)$

Chaînes de Markov

- Une chaîne de Markov (de premier ordre) est un cas particulier de RBD avec une seule variable aléatoire discrète S_t dans l'état au temps t
- Le domaine de S_t est souvent un symbole (ex.: un caractère, un mot, etc.)
- Une distribution a priori (initiale) de probabilités sur les symboles (états) est spécifiée $P(S_1)$
- Une matrice de transition contenant les probabilités conditionnelles $P(S_{t+1} \mid S_t)$

Illustration

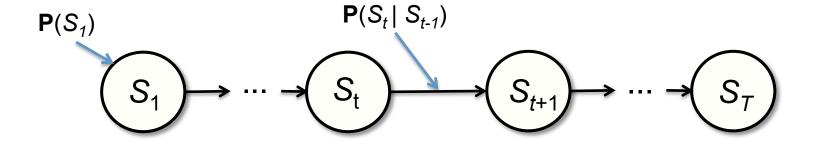
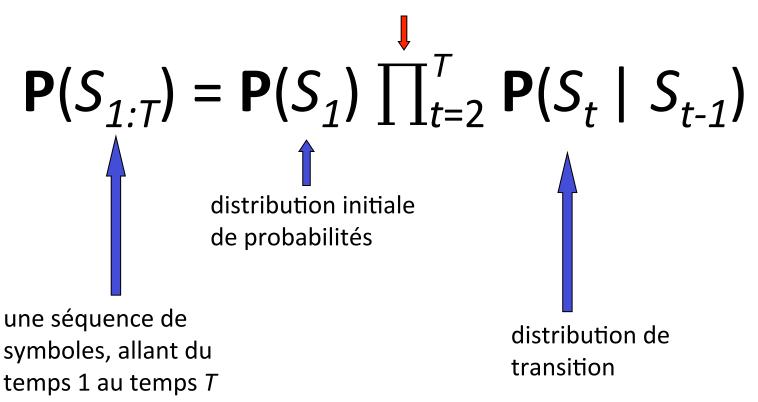


Illustration dans le cas d'une chaîne finie

Probabilité de générer une chaîne

produit des probabilités, une pour chaque terme de la séquence



Visualisation d'une chaîne de Markov

Représentation matricielle

Symbole actuel

 a
 b
 c

 a
 .7
 .3
 0

 Prochain symbole
 b
 .2
 .7
 .5

 c
 .1
 0
 .5

Représentation graphique

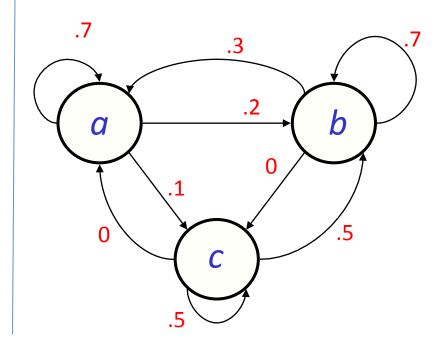


Illustration dans le cas d'une chaîne infinie (flux de symboles)

Exemple de chaîne: ccbbbbaaaaabaabacbabaaa

Apprendre la table des probabilités conditionnelles

 Observer plusieurs chaînes et définir les probabilités conditionnelles en fonction des fréquences d'occurrence des symboles

$$P(B=b \mid a) = \frac{\sum_{\substack{\text{chaînes} \\ \text{chaînes}}} freq(a,b)}{\sum_{\substack{\text{chaînes} \\ \text{chaînes}}} freq(a)}$$

Pour éviter les problèmes avec zéro occurrences, on utilise plutôt:

$$P(B=b \mid A=a) = \frac{1 + \sum_{\substack{\text{chaînes} \\ \text{Nb. symboles}}} \text{freq}(a,b)}{\text{Nb. symboles} + \sum_{\substack{\text{chaînes} \\ \text{chaînes}}} \text{freq}(a)}$$

Modèle de Markov caché

- Dans une modèle de Markov caché (hidden Markov model ou HMM):
 - il y a des variables cachées H_t et des variables d'observation S_t, toutes les deux discrètes
 - la chaîne de Markov est sur les variables cachées H_t
 - le symbole émis (observé) $S_t = s_t$ dépend uniquement de la variable cachée actuelle H_t

Illustration

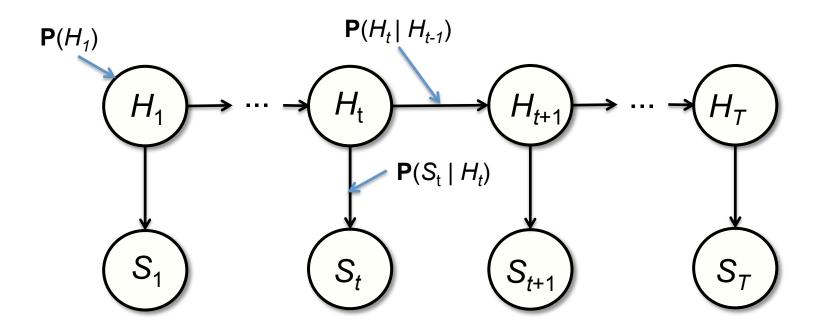
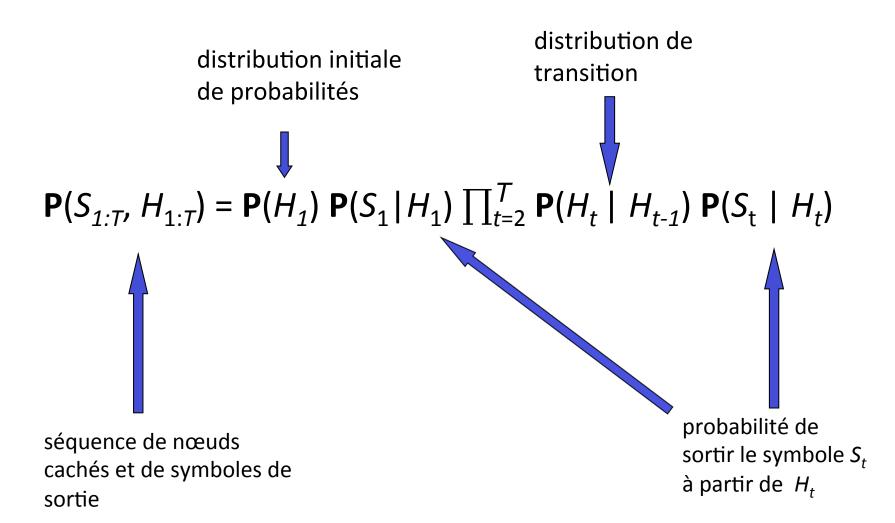


Illustration dans le cas d'une chaîne finie

Probabilité de générer une séquence cachée et une séquence visible



Simuler d'un HMM

- Il est facile de générer des observations d'un HMM
 - \diamond échantillonner une valeur initiale $H_1 = h_1$ de $P(H_1)$
 - pour t = 2 jusqu'à T, répéter les deux échantillonnage suivants:
 - » utiliser les probabilités de transition de l'état caché courant pour obtenir un échantillon h_t , sachant l'état caché précédent: $\mathbf{P}(H_t \mid H_{t-1} = h_{t-1})$
 - » utiliser les probabilités de sortie de la variable d'observation étant donné l'état caché courant, pour obtenir le symbole d'observation (émission) s_t : $P(S_t \mid H_t = h_t)$
- On peut aussi générer la séquence des états cachés d'abord et ensuite générer les observations
 - les variables cachées dépendent uniquement des variables cachées précédentes
 - chaque émission ne dépendra pas des autres émissions

Illustration

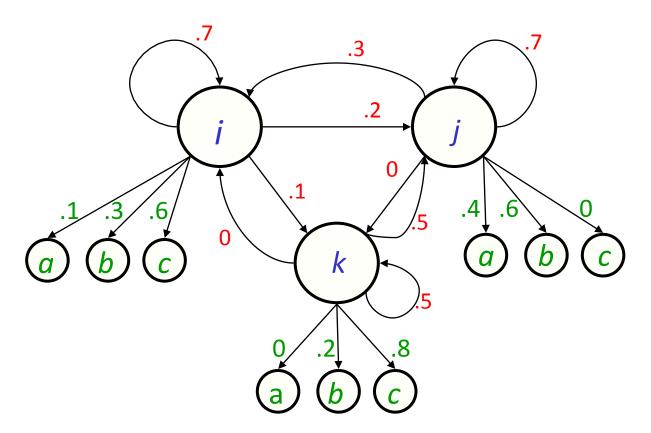


Illustration dans le cas d'une **chaîne infinie**, avec visualisation des valeurs de la variable cachée et la variable d'observation

Chaque **nœud caché** (valeur possible *h* de *H*) a un vecteur de **probabilités de transitions** et un **vecteur de probabilités de sorties (observations)**

Probabilité de générer une séquence visible

- La même séquence de sortie peut être produite par plusieurs séquences cachées différentes
- En fait, il y a un nombre exponentiel de séquences cachées possibles
- Un calcul naïf est donc très inefficace

$$\mathbf{P}(S_{1:T}) = \sum_{h_{1:T}} P(H_{1:T} = h_{1:T}) \ \mathbf{P}(S_{1:T} \mid H_{1:T} = h_{1:T})$$

- Une façon plus efficace de calculer la probabilité d'une séquence observée $s_{1:T}$
- Idée: utiliser la programmation dynamique
 - on définit $\alpha(i,t) = P(S_{1:t} = s_{1:t}, H_t = i)$
 - on note la récursion

$$\begin{split} \alpha(\mathsf{i},\mathsf{t}+1) &= P(S_{1:\mathsf{t}+1} = s_{1:\mathsf{t}+1}, \ \mathsf{H}_{t+1} = i) \\ &= \sum_{j} P(S_{1:\mathsf{t}+1} = s_{1:\mathsf{t}+1}, \ \mathsf{H}_{\mathsf{t}} = j, \ \mathsf{H}_{t+1} = i) \\ &= P(S_{t+1} = s_{t+1} | \ \mathsf{H}_{\mathsf{t}+1} = i) \sum_{j} P(\underline{H}_{t+1} = i | \ \mathsf{H}_{\mathsf{t}} = j) \ P(S_{1:\mathsf{t}} = s_{1:\mathsf{t}}, \ \mathsf{H}_{\mathsf{t}} = j) \\ &= P(S_{t+1} = s_{t+1} | \ \mathsf{H}_{\mathsf{t}+1} = i) \sum_{j} P(H_{t+1} = i | \ \mathsf{H}_{\mathsf{t}} = j) \ \alpha(\mathsf{j},\mathsf{t}) \end{split}$$

on a les valeurs initiales

$$\alpha(i,1) = P(S_1 = s_1, H_1 = i) = P(S_1 = s_1 | H_1 = i) P(H_1 = i) \forall i$$

• Une fois le tableau α calculé, on obtient facilement:

$$P(S_{1:T} = s_{1:T}) = \sum_{i} P(S_{1:T} = s_{1:T}, H_T = j) = \sum_{i} \alpha(j,T)$$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	i t	1	2	3	4
:(i,t)	0				
ð	1				

• initialisation: $\alpha(i,1) = P(S_1 = s_1, H_1 = i) = P(S_1 = s_1 | H_1 = i) P(H_1 = i)$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
ι(i,t)	0	0.45			
ō	1				

• initialisation: $\alpha(0,1) = P(S_1=0 \mid H_1=0) P(H_1=0) = 0.9 \times 0.5 = 0.45$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
α(i,t)	0	0.45			
0	1	0.1			

• initialisation: $\alpha(1,1) = P(S_1=0 \mid H_1=1) P(H_1=1) = 0.2 \times 0.5 = 0.1$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	j	1	2	3	4
(i,t)	0	0.45	}		
ð	1	0.1	$\stackrel{\frown}{\longrightarrow}$		

• récursion (t=1): $\alpha(i,t+1) = P(S_{t+1} = s_{t+1} | H_{t+1} = i) \sum_{i} P(H_{t+1} = i | H_t = j) \alpha(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
t(i,t)	0	0.45	\rightarrow		
0	1	0.1			

• récursion: $\alpha(0,2) = P(S_2 = 1 | H_2 = 0) (P(H_2 = 0 | H_1 = 0) \alpha(0,1) + P(H_2 = 0 | H_1 = 1) \alpha(1,1))$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

,	i t	1	2	3	4
α(i,t)	0	0.45	0.0175		
ð	1	0.1			

 \bullet récursion: $\alpha(0,2) = 0.1 (0.3 \times 0.45 + 0.4 \times 0.1) = 0.0175$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

,	i t	1	2	3	4
t(i,t)	0	0.45	0.0175		
8	1	0.1_	\rightarrow		

• récursion: $\alpha(1,2) = P(S_2 = 1 | H_2 = 1)$ ($P(H_2 = 1 | H_1 = 0)$ $\alpha(0,1) + P(H_2 = 1 | H_1 = 1)$ $\alpha(1,1)$)

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
α(i,t)	0	0.45	0.0175		
0	1	0.1	0.3		

• récursion: $\alpha(1,2) = 0.8 (0.7 \times 0.45 + 0.6 \times 0.1) = 0.3$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	i t	1	2	3	4
t(i,t)	0	0.45	0.0175	\Rightarrow	
ð	1	0.1	0.3		

• récursion (t=2): $\alpha(i,t+1) = P(S_{t+1} = s_{t+1} | H_{t+1} = i) \sum_{i} P(H_{t+1} = i | H_{t} = j) \alpha(j,t)$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
ι(i,t)	0	0.45	0.0175	0.112725	
ð	1	0.1	0.3		

 \bullet récursion: $\alpha(0,3) = 0.9 (0.3 \times 0.0175 + 0.4 \times 0.3) = 0.112725$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	i t	1	2	3	4
α(i,t)	0	0.45	0.0175	0.112725	0.04427
0	1	0.1	0.3	0.03845	0.02039

on continue d'appliquer la récursion jusqu'à la fin (t=4)...

Filtrage dans un HMM

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

	i t	1	2	3	4
α(i,t)	0	0.45	0.0175	0.112725	0.04427
8	1	0.1	0.3	0.03845	0.02039

on peut calculer les probabilités de filtrage

$$P(H_4 = 0 \mid S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0) = P(H_4 = 0, S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0)$$

$$\sum_{i} P(H_4 = i, S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0)$$

$$= \alpha(0,4) / (\alpha(0,4) + \alpha(1,4))$$

$$= 0.04427 / (0.04427 + 0.02039)$$

$$\approx 0.6847$$

$$P(H_4 = 1 \mid S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0) = 0.02039 / (0.04427 + 0.02039)$$

 ≈ 0.3153

- Le calcul des α(i,t) donne un balayage de gauche à droite
- On peut faire la même chose, mais de droite à gauche
 - on définit $\beta(i,t) = P(S_{t+1:T} = S_{t+1:T} \mid H_t = i)$
 - on note la récursion

$$\begin{split} \beta(i,t-1) &= P(S_{t:T} = s_{t:T} \mid H_{t-1} = i) \\ &= \sum_{j} P(S_{t:T} = s_{t:T}, H_{t} = j \mid H_{t-1} = i) \\ &= \sum_{j} P(S_{t} = s_{t} \mid H_{t} = j) P(H_{t} = j \mid H_{t-1} = i) P(S_{t+1:T} = s_{t+1:T} \mid H_{t} = j) \\ &= \sum_{j} P(S_{t} = s_{t} \mid H_{t} = j) P(H_{t} = j \mid H_{t-1} = i) \beta(j,t) \end{split}$$

- on a les valeurs initiales $\beta(i,T) = 1 \forall i$
- Une fois le tableau β calculé, on obtient facilement:

$$P(S_{1:T} = s_{1:T}) = \sum_{j} P(S_{1:T} = s_{1:T}, H_1 = j)$$

$$= \sum_{j} P(S_{2:T} = s_{2:T} | H_1 = j) P(S_1 = s_1 | H_1 = j) P(H_1 = j)$$

$$= \sum_{j} \beta(j,1) P(S_1 = s_1 | H_1 = j) P(H_1 = j)$$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

•	j	1	2	3	4
(i,t)	0				
Ð	1				

initialisation: β(i,4) = 1

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
(i,t)	0				1
β	1				1

• initialisation: $\beta(i,4) = 1$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

,	i t	1	. 2	3	4
(i,t)	0			€	1
B	1			K	1

• récursion (t=4): $\beta(i,t-1) = \sum_{i} P(S_t = s_t | H_t = j) P(H_t = j | H_{t-1} = i) \beta(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion
$$\beta(0,3) = P(S_4=0 | H_4=0) P(H_4=0 | H_3=0) \beta(0,4) + P(S_4=0 | H_4=1) P(H_4=1 | H_3=0) \beta(1,4)$$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
β(i,t)	0			0.41	1
മ	1				1

• récursion $\beta(0,3) = 0.9 \times 0.3 \times 1 + 0.2 \times 0.7 \times 1 = 0.41$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1 = 0$, $S_2 = 1$, $S_3 = 0$, $S_4 = 0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion
$$\beta(1,3) = P(S_4=0 | H_4=0) P(H_4=0 | H_3=1) \beta(0,4) + P(S_4=0 | H_4=1) P(H_4=1 | H_3=1) \beta(1,4)$$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
β(i,t)	0			0.41	1
В	1			0.48	1

 \bullet récursion $\beta(1,3) = 0.9 \times 0.4 \times 1 + 0.2 \times 0.6 \times 1 = 0.48$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
β(i,t)	0		*	0.41	1
മ	1		K	0.48	1

• récursion (t=3): $\beta(i,t-1) = \sum_{i} P(S_t = s_t | H_t = j) P(H_t = j | H_{t-1} = i) \beta(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion
$$\beta(0,2) = P(S_3=0 | H_3=0) P(H_3=0 | H_2=0) \beta(0,3) + P(S_3=0 | H_3=1) P(H_3=1 | H_2=0) \beta(1,3)$$
Hugo Larochelle

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	i t	1	2	3	4
β(i,t)	0		0.1779	0.41	1
6	1			0.48	1

 \bullet récursion $\beta(0,2) = 0.9 \times 0.3 \times 0.41 + 0.2 \times 0.7 \times 0.48 = 0.1779$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	i t	1	2	3	4
β(i,t)	0	0.120249	0.1779	0.41	1
8	1	0.105612	0.2052	0.48	1

on continue d'appliquer la récursion jusqu'au début (t=1)...

Lissage avec un HMM

 Les tables α(i,t) et β(i,t) peuvent également être utilisées pour faire du lissage

$$P(H_k = i \mid S_{1:T} = S_{1:T}) = \Upsilon P(H_k = i, S_{1:k} = S_{1:k}, S_{k+1:T} = S_{k+1:T})$$
 (Υ est la normalisation)

$$= \Upsilon P(H_k = i, S_{1:k} = S_{1:k}) P(S_{k+1:T} = S_{k+1:T} \mid H_k = i)$$

$$= \Upsilon \alpha(i,k) \beta(i,k)$$

On peut également faire du lissage sur deux variables cachées adjacentes

$$P(H_k = i, H_{k+1} = j \mid S_{1:T} = S_{1:T}) = \Upsilon' P(H_k = i, H_{k+1} = j, S_{1:k} = S_{1:k}, S_{k+1:T} = S_{k+1:T})$$

$$= \Upsilon' P(H_k = i, S_{1:k} = S_{1:k}) P(H_{k+1} = j \mid H_k = i) P(S_{k+1} = S_{k+1} \mid H_{k+1} = j)$$

$$P(S_{k+2:T} = S_{k+2:T} \mid H_{k+1} = j)$$

$$= \Upsilon' α(i,k) β(j,k+1) P(H_{k+1} = j \mid H_k = i) P(S_{k+1} = S_{k+1} \mid H_{k+1} = j)$$

 À noter que Υ correspond à une somme sur i seulement, tandis que Υ' est une somme sur i et j

Lissage avec un HMM

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

	i t	•••	2	•••
α(i,t)	0	•••	0.0175	•••
0	1		0.3	

	i t	•••	2	•••
β(i,t)	0	•••	0.1779	•••
œ.	1	•••	0.2052	•••

on peut calculer les probabilités de lissage au temps t=2

$$P(H_2 = 0 \mid S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0) = \frac{\alpha(0,2) \beta(0,2)}{\sum_i \alpha(i,2) \beta(i,2)}$$

$$= \alpha(0,2) \beta(0,2) / (\alpha(0,2) \beta(0,2) + \alpha(1,2) \beta(1,2))$$

$$= 0.0175 \times 0.1779 / (0.0175 \times 0.1779 + 0.3 \times 0.2052)$$

$$P(H_2 = 1 \mid S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0)$$

= 0.3 x 0.2052 / (0.0175 x 0.1779 + 0.3 x 0.2052)
 ≈ 0.95186

- $\alpha(i,t)$ peut être utilisé pour inférer la distribution de prédiction $P(H_{t+k}|s_{1:t})$
- On utilise également un programme dynamique
 - on définit $\pi(i,k) = P(H_{t+k} = i | S_{1:t} = s_{1:t})$
 - on note la récursion

$$\begin{split} \pi(\mathsf{i},\mathsf{k}+1) &= P(H_{t+k+1} = i \,|\, S_{1:t} = s_{1:t}) \\ &= \sum_{s} \sum_{j} P(H_{t+k+1} = i,\, H_{t+k} = j,\, S_{t+k} = s \,|\, S_{1:t} = s_{1:t}) \\ &= \sum_{s} \sum_{j} P(S_{t+k} = s \,|\, H_{t+k} = j)\, P(H_{t+k+1} = i \,|\, H_{t+k} = j)\, P(H_{t+k} = j \,|\, S_{1:t} = s_{1:t}) \\ &= \sum_{j} P(H_{t+k+1} = i \,|\, H_{t+k} = j)\, P(H_{t+k} = j \,|\, S_{1:t} = s_{1:t})\, \sum_{s} P(S_{t+k} = s \,|\, H_{t+k} = j) \\ &= \sum_{i} P(H_{t+k+1} = i \,|\, H_{t+k} = j)\, \pi(\mathsf{j},\mathsf{k}) \end{split}$$

on a les valeurs initiales

$$\pi(i,0) = P(H_t = i \mid s_{1:t}) = \alpha(i,t) / \sum_i \alpha(j,t) \quad \forall i$$

• On pourrait également faire une prédiction de S_{t+k}

$$P(S_{t+k} = s | S_{1:t} = s_{1:t}) = \sum_{j} P(S_{t+k} = s | H_{t+k} = j) P(H_{t+k} = j | S_{1:t} = s_{1:t})$$

$$= \sum_{j} P(S_{t+k} = s | H_{t+k} = j) \pi(j,k)$$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

•	j t	•••	4		j k	0	1	2
t(i,t)	0	•••	0.04427	(j,k)	0			
ō	1	•••	0.02039	F	1	→		

• initialisation: $\pi(i,0) = \alpha(i,t) / \sum_i \alpha(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	t	•••	4
α(i,t)	0	•••	0.04427
O	1	•••	0.02039

•	i k	0	1	2
τ(i,k)	0			
F	1			

• initialisation: $\pi(0,0) = \alpha(0,4) / (\alpha(0,4) + \alpha(1,4))$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i	•••	4
α(i,t)	0	•••	0.04427
ō	1		0.02039

	i k	0	1	2
τ(i,k)	0	0.68466		
F	1			

 \bullet initialisation: $\pi(0,0) = 0.04427 / (0.04427 + 0.02039) = 0.68466$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
ō	1		0.02039

	i k	0	1	2
π(i,k)	0	0.68466		
F	1	0.31534		

 \bullet initialisation: $\pi(1,0) = 0.02039 / (0.04427 + 0.02039) = 0.31534$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
0	1		0.02039

	i k	0	1	2
c(i,k)	0	0.68466		
F	1	0.31534		

• récursion (k=0): $\pi(i,k+1) = \sum_{j} P(H_{t+k+1} = i | H_{t+k} = j) \pi(j,k)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
0	1		0.02039

•	j k	0	1	2
τ(i,k)	0	0.68466		
F	1	0.31534		

• récursion (k=0): $\pi(0, 1) = P(H_5 = 0 | H_4 = 0) \pi(0,0) + P(H_5 = 0 | H_4 = 1) \pi(1,0)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i	•••	4
α(i,t)	0	•••	0.04427
O	1	•••	0.02039

	i k	0	1	2
π(i,k)	0	0.68466	0.33154	
F	1	0.31534		

• récursion (k=0): $\pi(0, 1) = 0.3 \times 0.68466 + 0.4 \times 0.31534 = 0.33154$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
0	1		0.02039

	i k	0	1 2	
τ(i,k)	0	0.68466 0.3	33154	
F	1	0.31534	>	

• récursion (k=0): $\pi(1, 1) = P(H_5 = 1 | H_4 = 0) \pi(0,0) + P(H_5 = 1 | H_4 = 1) \pi(1,0)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	8.0

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
ō	1		0.02039

	i k	0	1	2
π(i,k)	0	0.68466	0.33154	
F	1	0.31534	0.66846	

• récursion (k=0): $\pi(0, 1) = 0.7 \times 0.68466 + 0.6 \times 0.31534 = 0.66846$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
7	1		0.02039

	i k	0	1	2
π(i,k)	0	0.68466	0.33154	0.36685
F	1	0.31534	0.66846	0.63315

on continue d'appliquer la récursion jusqu'à la fin (k=2)...

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Distribution d'émission

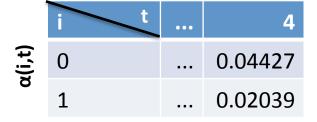
	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5



	i k	0	1	2
π(i,k)	0	0.68466	0.33154	0.36685
F	1	0.31534	0.66846	0.63315

$$\bullet$$
 $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0) = \pi(0,2) = 0.36685$

- On peut également éviter une énumération exponentielle
 - exemple avec T=3 $\max_{h^*_{1:3}} P(h^*_1) P(s_1|h^*_1) P(h^*_2|h^*_1) P(s_2|h^*_2) P(h^*_3|h^*_2) P(s_3|h^*_3)$ $= \max_{h^*_{3}} P(s_3|h^*_3) \max_{h^*_{2}} P(s_2|h^*_2) P(h^*_3|h^*_2) \max_{h^*_{1}} P(h^*_2|h^*_1) P(h^*_1) P(s_1|h^*_1)$
- Solution: programmation dynamique, avec un max au lieu de la somme
 - on définit $\alpha^*(i,t) = P(S_{1:t} = S_{1:t}, H_{1:t-1} = h^*_{1:t-1}, H_t = i)$
 - on note la récursion

$$\alpha^*(i,t+1) = \max_{j} P(S_{1:t+1} = S_{1:t+1}, H_{1:t-1} = h^*_{1:t-1}, H_t = j, H_{t+1} = i)$$

$$= \max_{j} P(S_{t+1} = S_{t+1} \mid H_{t+1} = i) P(H_{t+1} = i \mid H_t = j) P(S_{1:t} = S_{1:t}, H_{1:t-1} = h^*_{1:t-1}, H_t = j)$$

$$= P(S_{t+1} = S_{t+1} \mid H_{t+1} = i) \max_{j} P(H_{t+1} = i \mid H_t = j) \alpha^*(j,t)$$

- on a les valeurs initiales: $\alpha^*(i,1) = P(S_1 = s_1 | H_1 = i) P(H_1 = i) \forall i$
- On a alors que $P(S_{1:T} = S_{1:T}, H_{1:T} = h^*_{1:T}) = \max_{j} \alpha^*(j,T)$
- On retrouve $h^*_{1:T}$ à partir de tous les argmax_i

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

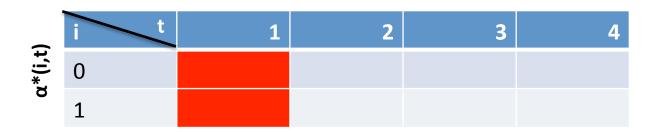
	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5



• initialisation: $\alpha^*(i,1) = P(S_1 = s_1, H_1 = i) = P(S_1 = s_1 | H_1 = i) P(H_1 = i)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45			
ō	1				

• initialisation: $\alpha^*(0,1) = P(S_1=0) H_1 = 0 P(H_1=0) = 0.9 \times 0.5 = 0.45$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45			
ō	1	0.1			

• initialisation: $\alpha^*(1,1) = P(S_1=0 \mid H_1=1) P(H_1=1) = 0.2 \times 0.5 = 0.1$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	j	1	2	3	4
*(i,t	0	0.45	\Rightarrow		
8	1	0.1	\rightarrow		

• récursion (t=1): $\alpha^*(i,t+1) = P(S_{t+1} = S_{t+1} \mid H_{t+1} = i) \max_j P(H_{t+1} = i \mid H_t = j) \alpha^*(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	j	1	2	3	4
(i,t)	0	0.45	\rightarrow		
ō	1	0.1			

• récursion: $\alpha^*(0,2) = P(S_2=1|H_2=0) \max\{P(H_2=0|H_1=0) \alpha^*(0,1), P(H_2=0|H_1=1) \alpha^*(1,1)\}$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45	0.0135		
ō	1	0.1			

• récursion: $\alpha^*(0,2) = 0.1 \text{ max} \{ 0.3 \times 0.45, 0.4 \times 0.1 \} = 0.0135$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
:*(i,t)	0	0.45	0 .0135		
8	1	0.1_	\rightarrow		

• récursion: $\alpha^*(1,2) = P(S_2=1|H_2=1) \max\{P(H_2=1|H_1=0) \alpha^*(0,1), P(H_2=1|H_1=1) \alpha^*(1,1)\}$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

_	i t	1	2	3	4
(i,t)	0	0.45	0.0135		
ð	1	0.1	0.252		

• récursion: $\alpha^*(1,2) = 0.8 \text{ max} \{ 0.7 \times 0.45, 0.6 \times 0.1 \} = 0.252$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45	0 .0135	\Rightarrow	
σ	1	0.1	0.252		

• récursion (t=2): $\alpha^*(i,t+1) = P(S_{t+1} = S_{t+1} \mid H_{t+1} = i) \max_i P(H_{t+1} = i \mid H_t = j) \alpha^*(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45	0.0135	0.09072	
ō	1	0.1	0.252		

• récursion: $\alpha^*(0,3) = 0.9 \text{ max} \{ 0.3 \times 0.0135, 0.4 \times 0.252 \} = 0.09072$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45	0.0135	0.09072	0.02449
0	1	0.1	0.252	0.03024	0.01270

on continue d'appliquer la récursion jusqu'à la fin (t=4)...

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

.	į	1	2	3	4
.*(i,t	0	0.45	0.0135	0.09072	0.02449
8	1	0.1	0.252	0.03024	0.01270

on trouve le maximum à la dernière colonne...

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45	0.0135	0.09072	0.02449
0	1	0.1	0.252	0.03024	0.01270

... puis on retrouve le chemin associé aux maxima précédents

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Distribution d'émission

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Distribution de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	i t		1	2		3		4
$\alpha^*(i,t)$	0		0.45	0.0135	0.090	72	0.02	2449
8	1		0.1	0.252	0.030	24	0.0	1270
		H_1	=0	H ₂ =1	$H_3 = 0$		H_4	_i =0

ce chemin nous donne la séquence des H_t la plus probable

Au delà du HMM

- Filtre de Kalman: cas où les variables d'observation et cachées ne sont pas discrètes mais sont plutôt réelles
 - voir livre de référence, section 15.4
- État caché avec structure complexe: cas où il n'est pas possible de faire une sommation exacte sur toutes les configurations de l'état caché
 - on doit alors approximer l'inférence
 - ◆ filtre particulaire (particle filter): inférence approximative basée sur l'échantillonnage, où on maintien une population stochastique de configurations (particules) de l'état caché
 - → à chaque temps t, on met à jour notre population de particules en tenant compte des nouvelles observations
 - voir livre de référence, section 15.5.3

Application: reconnaissance vocale

- La reconnaissance vocale est difficile:
 - bruit ambiant ou introduit par la digitalisation
 - variations dans la prononciation
 - différents mots ont la même prononciation
- Problème: Quelle est la séquence de mots la plus vraisemblable étant donné un signal sonore ?
- Réponse: Choisir la séquence de mots la plus probable a posteriori
 - argmax P(mots | signal) = argmax α P(mots, signal) mots

Modèle acoustique et modèle du langage

- En utilisant la règle de Bayes
 - $ightharpoonup P(mots \mid signal) = \alpha P(signal \mid mots) P(mots)$
- On peut donc décomposer le problème en deux:
 - ◆ P(Signal | Mots): modèle acoustique
 - P(Mots): modèle de langage (plus de détails à venir dans le cours...)
- Chaîne cachée: les mots
- Chaîne observée: le signal

Phones et phonèmes

- Des travaux dans le domaine de phonologie ont montré que toutes les langues humaines sont basées sur un sous-ensemble d'environ 100 sons, appelés phones, communs à toutes les langues
- Les phones découlent de l'articulation des lèvres, des dents, de la langue, des cordes vocales et du flux de l'air
- Intuitivement, un phone est un son qui correspond à une seule consonne ou une seule voyelle
- Mais c'est plus subtil! Des combinaisons de consonnes comme « th » ou « ng » en anglais ont chacun leur phone
- Un phonème est la plus petite unité de son distinctive que l'on puisse isoler par segmentation dans un mot
- Un phonème sera associé à un ou plusieurs phones qui peuvent être interchangés sans changer la compréhension d'un mot
 - phonème /k/: phones [k] (« cat », « kit ») et [kh] (« school », « skill »)

Phones: exemple

Phones pour l'anglais américain:

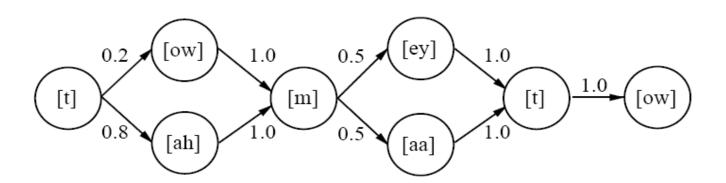
[iy]	b <u>ea</u> t	[b]	<u>b</u> et	[p]	${f p}$ et
[ih]	b <u>i</u> t	[ch]	$\underline{\mathbf{Ch}}$ et	[r]	${f r}$ at
[ey]	b <u>e</u> t	[d]	${f d}$ ebt	[s]	<u>s</u> et
[ao]	bought	[hh]	<u>h</u> at	[th]	${f th}$ ick
[ow]	b <u>oa</u> t	[hv]	${f h}$ igh	[dh]	${f th}$ at
[er]	B <u>er</u> t	[1]	<u>l</u> et	[w]	$\underline{\mathbf{w}}$ et
[ix]	ros <u>e</u> s	[ng]	$si\mathbf{\underline{ng}}$	[en]	$butt\underline{\mathbf{on}}$
:	÷	:	÷	:	i

Modèle acoustique

- Rappel:
 - → $P(Mots \mid Signal) = α P(Signal \mid Mots) P(Mots)$
 - » **P**(Signal | Mots): modèle acoustique
 - » P(Mots): modèle de langage
- L'existence des phones permet de diviser le modèle acoustique en deux autres parties:
 - modèle de prononciation: spécifie, pour chaque mot, une distribution de probabilités sur une séquence de phones
 - » par exemple, « ceiling » est parfois prononcé [s iy l ih ng], ou [s iy l ix ng], ou encore [s iy l en]
 - » le phone est une variable cachée, le signal est la variable observée
 - ♦ **modèle phonique**: le modèle phonique $P(e_t|x_t)$ donne la probabilité que le signal échantillonné soit observé au temps t si le phone est x_t

Exemple de modèle de prononciation

- Modèle de prononciation
 - → P([towmeytow] | « tomato») = P([towmaatow] | « tomato») = 0.1
 - → P([tahmeytow]| « tomato») = P([tahmaatow]| « tomato») = 0.4
- Les transitions sont spécifiées manuellement
- Les probabilités sont apprises



Applications

- Reconnaissance vocale
 - CMU Sphinx (publique):
 http://cmusphinx.sourceforge.net/html/download.php
 - Dragon Naturally Speaking (commercial)
 - IBM ViaVoice (commercial)
- Reconnaissance de caractères
 - variables observées: pixels d'une image
 - variables cachées: mots écrits
- Suivi d'objets dans une vidéo (object tracking)
 - variables observées: pixels d'une image, dans le frame t
 - variables cachées: la position x_t,y_t de l'objet dans le *frame*