
IFT725 - Assignment #1

Marc-Alexandre Côté
Département d’informatique

Université de Sherbrooke
Sherbrooke, Québec, Canada

marc-alexandre.cote@usherbrooke.ca

Abstract

This version of the report was edited by Hugo Larochelle.

1 Introduction

This report summarizes the work done to accomplish the assignment #1 of the course IFT725. The
main goal was to understand how multi-layer neural network works. To do so, we had to code one
from a given template. The methods we needed to implement (or complete) were: initialize, fprop,
bprop, training loss, update, use and test. The forward propagation, the backward propagation and
the training objective are the main parts of this model. This neural network was used in context of a
multiclassification problem. The model will be fully detailed in section 2.

Moreover, we were given two scripts to help us debug and test our implementation. The first one
is run verify gradients.py, which checks if the function bprop worked as it should given the imple-
mentation of fprop and indirectly the function training loss. The second script is run nnet.py, which
helps us test different configurations for the hyper-parameters used by the neural network.

Once the implementation done, we were asked to provide some results for different configurations of
hyper-parameters. Those results show the impact of hyper-parameters on classification error rates.
They also report the progression of both the classification error and the average regularized negative
log-likelihood for a specific configuration. Finally, the classification error on the test set with a 95%
confidence interval for the best configuration based on the classification error of the validation set is
given. Those results will be presented in details in section 3.

2 Description of the approach

This section mathematically describes a multi-layer neural network and the learning algorithm used
to train it: stochastic gradient. There is five subsections. The first three describes different parts of
the model: forward propagation (Section 2.1), the training objective (Section 2.2) and backpropaga-
tion (Section 2.3). The fourth subsection explains the stochastic gradient in the context of a neural
network (Section 2.4). The fifth details hyper-parameters used by the model 2.5.

But first, a brief reminder of what a neural network model is. The neural network can be seen
as an artificial brain’s neural network where there are neurons that are connected with each other
using axons. Here, in this model1, neurons are represented in layers h(k) where a neuron can only
communicate with neurons of the layer above h(k+1) it. Usually the first layer h(0) is called the
input, the last layer h(K) is the output and the rest of them are called hidden layers. It is important
to note that layers can have different number of neurons. Another thing borrowed from neurology are
the axons. In this model, they are represented as matrices W(k) containing the weights of all links

1In equations bold symbols represent a vector/matrix or function returning a vector/matrix.

1

between neurons of adjacent layers. For example, W(0) will be a matrix of dimension |h(1)|×|h(0)|,
where |x| is the cardinality of the vector x. Because they assure communications between layers, the
last matrix of weights is W(K−1). The last element required by this model is the neuron bias b(k).
The bias represents the threshold needed for a neuron to fire, meaning to propagate its information
to neurons of the above layer. There is a biases vector per layer except for the first one since it is the
input, so b(K−1) is the last vector of biases.

Also, we will call Θ the set of all parameters θ(k) = {W(k); b(k)}.

2.1 Forward Propagation

In the context of classification, the forward propagation is the process of calculating the output
f(x; Θ) given an input x using a neural network model. Initially, the input layer, which is h(0) = x,
will propagate the information to the first layer using the weighted axones linking these two layers
W(0) and the biases of the first hidden layer b(0). In subsequent layers, a neuron will propagate
its information with respect to its activation. So, the summation of all incoming information of a
neuron is passed to a function called the activation function g(·) before the neuron fires to the above
layer.

Usually the activation function is nonlinear and can vary from a layer to another. Three activation
functions were implemented for this assignment. The first one is the tanh activation function (1)
which ”squashes” the neuron’s input between -1 and 1. The second one is the sigmoid activation
function (2) which ”squashes” neuron’s input between 0 and 1. The last one is used for multi-class
classification and is called the softmax (3). It gives the probability of having the class c given the
input x: f(x)c = p(y = c|x).

g(x) = tanh(x) =

[
exp(2x1)− 1

exp(2x1) + 1
· · · exp(2xC)− 1

exp(2xC) + 1

]
(1)

g(x) = sigm(x) =

[
1

1 + exp(x1)
· · · 1

1 + exp(xC)

]
(2)

g(x) = softmax(x) =

[
exp(x1)∑
c exp(xc)

· · · exp(xC)∑
c exp(xc)

]
(3)

Overall, the general propagation formulas are given as follow:

a(k+1) = b(k) + W(k) h(k) (4)

h(k+1) = g
(
a(k+1)

)
, (5)

where k ∈ [0,K) and h(0) = x and f(x) = h(K). Here, a(k) represent a neuron before activation
and h(k) after the activation.

In the context of this assignment, the activation function g(·) for the hidden layers is either tanh(·)
or sigm(·) depending on an hyper-parameter. But, the activation function for the ouput layer is the
softmax(·).

After applying the forward propagation given an input x, the class y chosen by the model is the one
represented by the output neuron which has the highest activation: y = argmax(f(x)).

2.2 Training Objective

The training objective, also called the loss function, is a function l(f(x), y) that represents some
cost associated with the model’s predicted conditional distribution f(x)c = p(y = c|x) for the
class, compared to the observed (true) class or target y. In this assignment, the loss function used
was the regularized negative log-likelihood:

2

l(f(x), y) = −e(y)T ln f(x) + λ1Ω1(Θ) + λ2Ω2(Θ) (6)
= − ln f(x)y + λ1Ω1(Θ) + λ2Ω2(Θ) (7)

where Ω1(Θ),Ω2(Θ) represent respectively the `1 and `2 regularization and are defined by:

Ω1(Θ) =
∑
θ∈Θ

‖θ‖1 Ω2(Θ) =
∑
θ∈Θ

‖θ‖22

The goal when training a neural network is to minimize that loss function (6). We used the stochastic
gradient descent (see section 2.4), which requires the gradient of the function to minimize w.r.t. each
parameters in Θ. Computing them can be done using the chain rule technique. Here are the general
formulas of the gradients needed by the backward propagation (Section 2.3):

∇h(k) − ln f(x)y = W(k)T (∇a(k+1) − ln f(x)y) (8)

∇a(k) − ln f(x)y = (∇h(k) − ln f(x)y)� ġ(a(k)) (9)

∇W(k) − ln f(x)y = (∇a(k) − ln f(x)y) h(k−1)T + λ1sign(W(k)) + λ22W(k) (10)
∇b(k) − ln f(x)y = (∇a(k) − ln f(x)y) (11)

Where � is the element-wise product. From that, we can easily compute the gradient of the loss
function w.r.t. the output layer K:

∇h(K) − ln f(x)y =
−e(y)

f(x)y
(12)

∇a(K) − ln f(x)y = −(e(y)− f(x)y) (13)

The derivative of g(·) are:

ġ(x) = tanh′(x) = 1− tanh(x)2 (14)
ġ(x) = sigm′(x) = sigm(x)(1− sigm(x)) (15)
g(x) = softmax′(x) = softmax(x)(1− softmax(x)) (16)

2.3 Backward Propagation

The backward propagation is a way of calculating the gradients needed to minimize the training
objective function (described in section 2.2). It takes place after having performed a forward propa-
gation on a given input x associated to a target y. This technique works by computing the gradient of
the output layer before its activation using equation (13). Then using equations from (8) to (11), we
compute the gradients of all remaining hidden layers. The algorithm for the backward propagation
goes like this:

1. Compute the output gradient before activation using equation (13):
∇a(K) − ln f(x)y ⇐ −(e(y)− f(x)y)

2. Next, for k from K − 1 to 0:
(a) Compute gradients of parameters using equations (10) and (11):

∇W(k) − ln f(x)y ⇐ (∇a(k) − ln f(x)y)h(k−1)T

∇b(k) − ln f(x)y ⇐ (∇a(k) − ln f(x)y)

(b) Compute gradient of layer below using equations (8) and (9):

∇h(k) − ln f(x)y ⇐W(k)T (∇a(k+1) − ln f(x)y)

∇a(k) − ln f(x)y ⇐ (∇h(k) − ln f(x)y)� ġ(a(k))

3

2.4 Stochastic Gradient

The stochastic gradient descent is an algorithm to find (possibly local) minima in a function. We
need a special algorithm like this one because the function we try to minimize, the training objective,
is higly non-convex. The main idea is to perform a gradient step using only a single training example
(x(t), y(t)) and update the parameters. Then we do another gradient step using the next training
example (x(t+1), y(t+1)) and so on, updating the parameters after each step.

The general algorithm repeats the following steps, for every training example (x(t), y(t)):

∆ = −∇Θl(f(x(t); Θ), y(t)) (17)
Θ = Θ + α∆ (18)

where α is the learning rate. Before training starts, the parameters of the neural network must be
initialized. All biases are initialized to 0. The weight matrices can’t be initialized to 0, otherwise
it can be shown that all gradients will always be equal to 0 (i.e. it corresponds to a saddle point
of the optimization problem). The weight matrices also must not be initialized to the same value,
otherwise it can be shown that the hidden units in a given layer will alway behave exactly the same
(i.e. their incoming weights will remain the same throughout training). So, we opt for a randomized
initialization close to 0, where each weight W (k)

i,j is sampled from a uniform distribution in the
interval [−b, b], where b =

√
6/(|h(k)|+ |h(k+1)|).

In the case of training a neural network, equation (17) is equivalent to performing a step of forward
propagation (Section 2.1) followed by a step of backward propagation (Section 2.3). We then use
the gradients calculated by the backward propagation to update each parameter of Θ.

2.5 Hyper-parameters

Here are a short description of all hyper-parameters used by the model.

lr is the learning rate α. If too small, stochastic gradient descent will take more time before
converging. If too big, it could diverge.

dc is the decrease constant δ for the learning rate. It could be wise to start with high learning
rate, but reduce it as it converges. A way to do it, is to use a decrease factor. For example, in this
assignment to technique used is: αt = α

1+δt , where t is the number of updates.

sizes is the list of hidden layer sizes. The size of the list is the number of hidden layers and each
element corresponds to the number of neurons on a specific hidden layer.

L2 is the L2 regularization weight λ2 (weight decay). Controls the weight given to the `2 norm of
the regularization terms in the training objective function (see section 2.2).

L1 is the L1 regularization weight λ1 (weight decay). Controls the weight given to the `1 norm of
the regularization terms in the training objective function (see section 2.2)

seed is the seed of the random number generator. It makes it possible to reproduce the results of a
given experiment and to vary the specific randomized initialization used.

tanh is a boolean indicating whether to use the hyperbolic tangent activation function (True) in-
stead of the sigmoid activation function (False). In other words, it tells the algorithm whether to use
equation (1) or equation (2) as activation function for neurons on hidden layers.

n epochs is the number of training epochs. This hyper-parameter is not used in this assignment
because the early stopping technique is used (not explained in this report, but more information can
be found in [3]).

4

Table 1: Results of the training and validation errors of 20 different configurations of hyper-
parameters

lr dc sizes L2 L1 tanh train valid
0.01 1e-5 [100] 0 0 True 0.0570 0.1263
0.001 1e-10 [100] 0 0 False 0.0822 0.1283
0.001 1e-10 [100] 0 0 True 0.0631 0.1284
0.001 1e-7 [100] 0 0 True 0.0669 0.1287
0.001 1e-7 [100] 0 0 False 0.1012 0.1381
0.01 1e-7 [100] 0 0 True 0.0750 0.1393
0.01 1e-5 [100] 0.001 0 True 0.1381 0.1610
0.001 1e-7 [100] 0.001 0 True 0.1393 0.1636
0.01 1e-10 [20] 0 0 False 0.1651 0.1927
0.1 1e-5 [20,10] 0.001 0 True 0.1786 0.1946
0.001 1e-7 [20] 0 0 True 0.1688 0.1952
0.001 1e-7 [20,10] 0.001 0 True 0.1797 0.2003
0.001 1e-10 [20] 0 0 False 0.1768 0.2008
0.001 1e-10 [100] 0.001 0.001 True 0.2243 0.2381
1 1e-5 [100] 0.001 0 False 0.2513 0.2619
0.001 1e-5 [100] 0 0.001 False 0.3601 0.3727
0.001 1e-5 [20] 0.001 0.001 False 0.3994 0.4041
1 1e-7 [20] 0.001 0.001 True 0.9939 0.9917
1 1e-10 [20] 0.001 0.001 True 0.9939 0.9917
1 1e-10 [20,10] 0.001 0 True 0.9939 0.9917

3 Experiments

This section presents the results of some experiments made while testing different configurations
of hyper-parameters. The metric used to compare those results is the classification error which is
essentially the percent of example of a dataset that have been misclassified.

The table 1 shows the training and validation classification errors of 20 different configurations of
hyper-parameters. The table is sorted by the validation error. It is worth mentioning that the selected
configurations are not the ”Top Best 20” but rather a manual selection to see the impact of some
hyper-parameters. Clearly, we see that having a learning rate of 1 while not having a high decrease
constant tends to diverge. We can also see that the regularization is not really useful here and that
having only one layer with a lot of neurons is preferred. The reason behind the non-impact of
regularization is related to the fact we are using an early stopping technique, which might be seen
has a kind of regularization.

In addition, figure 1 shows two plots reporting the progression of the classification error (figure 1(a))
and the average regularized negative log-likelihood (figure 1(b)) on the training and validation sets
for the hyper-parameter configuration with the best performance on the validation set.

The classification error on the test set for the hyper-parameter configuration with the best perfor-
mance on the validation set is: 0.1208 ± 0.0064 with a 95% confidence interval. Also, the average
negative log-likelihood is 0.4182. The hyper-parameters configuration is shown as the first row in
the table 1.

4 Conclusion

This report mathematically described the multi-layer neural network model used in the context of
multi-class classification problem. Also, it reported results obtained from different configuration of
hyper-parameters.

References

[1] Larochelle, Hugo (2012) Review of fundamentals, IFT725 - Réseaux neuronaux, UdeS.

5

(a) Classification error (b) Regularized Negative Log-Likelihood

Figure 1: Progression of the classification error (a) and the average regularized negative log-
likelihood (b) on the training and validation sets for the hyper-parameter configuration with the
best performance on the validation set.

[2] Larochelle, Hugo (2012) Feedforward neural network, IFT725 - Réseaux neuronaux, UdeS.

[3] Larochelle, Hugo (2012) Training neural networks, IFT725 - Réseaux neuronaux, UdeS.

6

