
IFT 725 : Assignment 1

Individual work

Due date : September 23rd, 9 :00am (at the latest)

In this assignment, you must implement in Python a multi-layer feedforward neural network for classifica-
tion.

The implementation of the neural network must be contained in a class named NeuralNetwork, that inherits
from the class Learner of the MLPython library. The definition of the class must be placed in a file named
nnet.py. Your implementation should support the use of the hyper-parameters :

– lr : learning rate of stochastic gradient descent (float)

– dc : decrease constant for the learning rate

– sizes : list of the number of neurons in each hidden layer, from the first to the last hidden layer (list
of ints)

– L2 : L2 regularization of the weight matrices of the neural network (float)

– L1 : L1 regularization of the weight matrices of the neural network (float)

– seed : seed of the random number generator for initialization of the parameters (int)

– tanh : boolean indicating whether the hyperbolic tangent function must be used as the activation
function of the hidden neurons (True) rather than the sigmoid function (False)

– n epochs : number of training iterations (int)

A skeleton of the NeuralNetwork class is provided in the file nnet.py available on the course’s website.
The skeleton also specifies the signature of all methods that you must implement. It is important to use
the Numpy library in your implementation, so that it is efficient.

A method called verify gradients is already implemented. It compares the computation of the gra-
dients through backpropagation with a finite difference approximation. It is important to use this me-
thod to test whether your implementation of the forward and backward propagation are correct. A script
run verify gradients.py that verifies the gradients for different configurations of hyper-parameters is also
provided. The reported differences between your implementation and the finite difference approximation
should be smaller than 10−10.

Moreover, a script run nnet.py is available to train a neural network on the OCR Letters data set, using
early stopping. The script’s arguments are the values of the hyper-parameters, as follows :

Usage: python run_nnet.py lr dc sizes L2 L1 seed tanh

Ex.: python run_nnet.py 0.1 0 [20,10] 0 0 1234 False

The script will print the neural network errors on the training and validation sets after every epoch of
training. At the end of training, the errors on the training, validation and test sets will also be appended into
a text file named results nnet ocr letters.txt. Each new execution of the script will append a new line.
The errors that must be computed in your implementation are the classification errors and the regularized
negative log-likelihood. Early stopping will use the classification error on the validation set to determine
when to stop and will use a “look ahead” of 5.

1



For the script to work properly, you must first download the OCR Letters data set using MLPython’s
automatic procedure. Make sure to define the MLPYTHON DATASET REPO environment variable and use the
script mlpython helper to download the data set as follows :

mlpython_helper -datasets -download ocr_letters

You can find more information in MLPython’s tutorial, including on how to handle MLProblem objects 1

(MLPython’s data set objects).

Once your implementation is complete, you must generate results on the OCR letters data set to assess the
performance of your implementation. Specifically, you must :

– report the classification error rates on the training and validation sets for at least 15 different
choices of hyper-parameter configurations ;

– illustrate the progression of the classification error on the training and validation sets, for
a configuration of your choice of the hyper-parameters ;

– also illustrate the progression of the average negative log-likelihood on the training and
validation sets, for a configuration of your choice of the hyper-parameters ;

– report the classification error rate on the test set only for the hyper-parameter configuration
having the best performance on the validation set ;

– specify a 95% confidence interval of the test set classification error.

These results must be reported in a report following the format of the NIPS machine learning conference 2.
The document must be in the PDF format and must have been generated using LATEX 3.

The report must thus contain the following elements :

– a table with the average training and validation errors of at least 15 different configurations of
hyper-parameters ;

– a plot showing the progression of the classification error rate on the training and validation sets for a
configuration of hyper-parameters of your choice

– a plot showing the progression of the average regularized negative log-likelihood on the training and
validation sets for a configuration of hyper-parameters of your choice

– the result on the test set only for the hyper-parameter configuration with the best performance on the
validation set ;

– the 95% confidence interval for the test set classification error.

The points are distributed as follows :

– 10 points for the correctness of the implementation, as well as its quality (including the appropriate
use of Numpy) ;

– 4 points for reporting all the expected results in the submitted report and for their validity.

The report may be written in English or French. All the work in this assignment most be done individually.
No code, text or results may be shared between students. However, students are encouraged to discuss
elements of their solutions orally with each other.

Please submit your implementation and your report using the turnin command :

turnin -c ift725 -p devoir_1 nnet.py rapport.pdf

Good luck !

1. http://www.dmi.usherb.ca/~larocheh/mlpython/tutorial.html#processed-datasets-mlproblems

2. See http://nips.cc/PaperInformation/StyleFiles for the necessary format files. You will need to add the command
\nipsfinalcopy after the command \author to deanonymize your document.

3. See http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/GSWLaTeX.pdf for an introduction and http://www.

andy-roberts.net/writing/latex/pdfs for how to generate a PDF document from a LATEXfile.

2

http://www.dmi.usherb.ca/~larocheh/mlpython/tutorial.html#processed-datasets-mlproblems
http://nips.cc/PaperInformation/StyleFiles
http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/GSWLaTeX.pdf
http://www.andy-roberts.net/writing/latex/pdfs
http://www.andy-roberts.net/writing/latex/pdfs

