
IFT 725 : Assignment 3

Individual work

Due date : November 5th, 9 :00am (at the latest)

In this assignment, you must implement in Python a restricted Boltzmann machine (RBM) and a denoising
autoencoder, used to pre-train a neural network.

The implementation of the RBM and the autoencoder must be contained in classes named RBM and
Autoencoder, that inherit from the class Learner of the MLPython library. The definition of the classes
must be placed in files named rbm.py and autoencoder.py respectively. Thes classes support the use of the
hyper-parameters :

– lr : learning rate of stochastic gradient descent (float)

– hidden size : size of the hidden layer (int)

– seed : seed of the random number generator for initialization of the parameters (int)

– n epochs : number of training iterations (int)

The RBM class must also support the following hyper-parameter :

– CDk : number of Gibbs step used by contrastive divergence (int)

On the other hand, the Autoencoder class must support the following hyper-parameter :

– noise prob : the noise probabiliy of fixing an input to 0 (float)

A skeleton of the RBM and Autoencoder classes are provided in the files rbm.py and autoencoder.py avai-
lable on the course’s website. You only have to implement the method train in these files. It is important
to use the Numpy library in your implementation, so that it is efficient.

To debug your implementations, the scripts run show filters rbm.py and run show filters autoencoder.py

can be used to compare the learned filters (i.e. the connections of each hidden units) with those obtained by
a correct implementation (see the files rbm filters.pdf and autoencoder filters.pdf available on the
course’s website).

Moreover, scripst run stacked rbms nnet.py et run stacked autoencoders nnet.py are available to pre-
train a neural network using either the restricted Boltzmann machine or the denoising autoencoder (respec-
tively) on the OCR Letters data set (the same as in the first assignment).

The script run stacked rbms nnet.py requires the following hyper-parameters :

Usage: python run_stacked_rbms_nnet.py lr dc sizes pretrain_lr pretrain_n_epochs pretrain_CDk seed

Ex.: python run_stacked_rbms_nnet.py 0.01 0 [200,100] 0.01 10 1 1234

The script run stacked autoencoders nnet.py requires the following hyper-parameters :

Usage: python run_stacked_autoencoders_nnet.py lr dc sizes pretrain_lr pretrain_n_epochs

pretrain_noise_prob seed

Ex.: python run_stacked_autoencoders_nnet.py 0.01 0 [200,100] 0.01 10 0.1 1234

The scripts will print the errors on the training and validation sets after every epoch of training. At the
end of training, the errors on the training, validation and test sets will also be appended into text files named
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results stacked rbms nnet ocr letters.txt and results stacked autoencoders nnet ocr letters.txt

(respectively). Each new execution of the script will append a new line. Pre-training uses the number of pre-
training epochs (pretrain n epochs) specified by the user. Early stopping based on the classification error
on the validation set determines the number of training iterations for fine-tuning (with a look ahead of 5).

Once your implementation is complete, you must generate results on this OCR letters data set to assess
the performance of your implementation. Specifically, you must :

– report the classification error rates on the training and validation sets for at least 15 different
choices of hyper-parameter configurations (don’t report experiments only with the RBM or the
autoencoder, try both at least once) ;

– illustrate the progression of the classification error on the training and validation sets, for
a configuration of your choice of the hyper-parameters ;

– also illustrate the progression of the average negative log-likelihood on the training and
validation sets, for a configuration of your choice of the hyper-parameters ;

– report the classification error rate on the test set only for the hyper-parameter configuration
having the best performance on the validation set ;

– specify a 95% confidence interval of the test set classification error.

These results must be reported in a report following the format of the NIPS machine learning conference 1.
The document must be in the PDF format and must have been generated using LATEX 2. The report must
contain the following sections :

– Introduction : gives a summary of the content and objective of the report (1/2 page).

– Description of the approach : mathematically describes the model and the learning algorithm (up
to 4 pages), including

– a description of the restricted Boltzmann machine :

– what is the energy function and the definition of p(x,h) ?

– what is the expression for p(x) ?

– what is the expression for the conditionnal distributions p(h|x) and p(x|h) ?

– what is the training objective we’d like to optimize and how is contrastive divergence used to
approximate its gradients ?

– why can’t we compute exactly the gradients of the training objective we’d like to optimize ?

– a description of the autoencoder (with/without denoising)

– what is forward propagation in the autoencoder ?

– what is the training objective ?

– what is backpropagation in the autoencoder ?

– what is the difference between the basic autoencoder and the denoising autoencoder ?

– what is the advantage of the denoising autoencoder over the basic autoencoder ?

– a description of the pre-training procedure of a neural network using a restricted Boltzmann
machine or an autoencoder ;

– an explanation for why pre-training can be helpful and improve the generalization of a neural
network.

– Experiments : presents the results of your experiments, that is :

– a table with the average training and validation errors of at least 15 different configurations
of hyper-parameters ;

– a plot showing the progression of the classification error rate on the training and validation sets
for a configuration of hyper-parameters of your choice

1. See http://nips.cc/PaperInformation/StyleFiles for the necessary format files. You will need to add the command
\nipsfinalcopy after the command \author to deanonymize your document.

2. See http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/GSWLaTeX.pdf for an introduction and http://www.

andy-roberts.net/writing/latex/pdfs for how to generate a PDF document from a LATEXfile.
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– a plot showing the progression of the average negative log-likelihood on the training and validation
sets for a configuration of hyper-parameters of your choice

– the result on the test set only for the hyper-parameter configuration with the best performance
on the validation set ;

– the 95% confidence interval for the test set classification error.

The points are distributed as follows :

– 10 points for the correctness of the implementation, as well as its quality (including the appropriate
use of Numpy) ;

– 4 points for the quality and accuracy of the Introduction and Description of the approach
sections in the report ;

– 4 points for reporting all the expected results in the Experiments section and for their validity.

The report may be written in English or French. All the work in this assignment most be done individually.
No code, text or results may be shared between students. However, students are encouraged to discuss
elements of their solutions orally with each other.

Please submit your code and your report using the turnin command :

turnin -c ift725 -p devoir_3 rbm.py autoencoder.py rapport.pdf

Good luck !
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