

- Comment développer une intelligence artificielle ?
 - exemple : reconnaître des caractères manuscrits

- Par énumération de règles ?
 - si intensité du pixel à la position (15,24) est plus grand que 50, et pixel à la position ... alors c'est un «3»

- Comment développer une intelligence artificielle ?
 - exemple : reconnaître des caractères manuscrits

- Par énumération de règles ?
 - trop fastidieux, difficile de couvrir tous les cas d'espèce

- Comment développer une intelligence artificielle ?
 - exemple : reconnaître des caractères manuscrits

- En donnant à l'ordinateur la capacité d'apprendre à le faire!
 - laisser l'ordinateur faire des essais et apprendre de ses erreurs

- Comment développer une intelligence artificielle ?
 - exemple : reconnaître des caractères manuscrits

- Apprentissage automatique / machine learning :
 - le domaine s'intéressant à l'étude de tels algorithmes

• Les al 0 hr 6 l'apprent 0 e procèdent comme suit : • on fourne à l'aigorithme des **uniées d'entraînement** ...

7 2 PREN SAGE AUTOMATIQUE

Sujets nde lo

- Les algorithmes d'apprentissage procèdent comme suit :
 - + on nq «programme» généré par l'algorithme d'apprentissage $\mathbf{y}(\mathbf{x})$ - on va aussi appeler $\mathbf{y}(\mathbf{x})$ un **modèle**

ithme retourne un «programme» capable de • ... et génc. Luger à de nouvelles données

7 2 PREN SAGE AUTOMATIQUE

HUGO LAROCHELLE

- Les algorithmes d'apprentissage procèdent comme suit :
 - on u1 🌱 n **ensemble de test** \mathcal{D}_{test} pour mesurer la performance de généralisation de notre modèle $\mathbf{y}(\mathbf{x})$

ithme retourne un «programme» capable de • ... et génc. Luier à de nouvelles données

3 5 5 6 3 5 6

'6'

Sujets: types d'apprentissage

- Il existe différents types d'apprentissage
 - apprentissage supervisé : il y a une cible à prédire

$$\mathcal{D} = \{(\mathbf{x}_1, t_1), \ \ldots, \ (\mathbf{x}_N, t_N)\}$$

apprentissage non-supervisé : cible n'est pas fournie

$$\mathcal{D} = \{\mathbf{x}_1, \, ... \,, \, \mathbf{x}_N\}$$

• apprentissage par renforcement (non couvert dans ce cours)

TYPES D'APPRENTISSAGE

Sujets: apprentissage supervisé, classification, régression

- L'apprentissage supervisé est lorsqu'on a une cible à prédire
 - **classification :** la cible est un indice de classe $t \in \{1, ..., K\}$
 - exemple : reconnaissance de caractères
 - \checkmark x : vecteur des intensités de tous les pixels de l'image
 - \checkmark t:identité du caractère
 - **régression :** la cible est un nombre réel $t \in \mathbb{R}$
 - exemple : prédiction de la valeur d'une action à la bourse
 - ✓ x : vecteur contenant l'information sur l'activité économique de la journée
 - \checkmark t:valeur d'une action à la bourse le lendemain

TYPES D'APPRENTISSAGE

Sujets: apprentissage non-supervisé, visualisation

- L'apprentissage non-supervisé est lorsqu'une cible n'est pas explicitement donnée
 - visualisation de données

Tenenbaum, de Silva, Langford, (2000)

Left-right pose

TYPES D'APPRENTISSAGE

Sujets: apprentissage non-supervisé, estimation de densité

- L'apprentissage non-supervisé est lorsqu'une cible n'est pas explicitement donnée
 - + estimation de densité : apprendre la loi de probabilité $p(\mathbf{x})$ ayant généré les données
 - pour générer de nouvelles données réalistes
 - pour distinguer les «vrais» données des «fausses» données (spam filtering)
 - compression de données

Sujets: régression 1D

- Exemple simple: régression en une dimension
 - entrée : scalaire x
 - cible : scalaire t
- Données d'entraînement ${\cal D}$ contiennent :
 - $\mathbf{X} \equiv (x_1, \dots, x_N)^{\mathrm{T}}$
 - , $\mathbf{t} \equiv (t_1, \ldots, t_N)^{\mathrm{T}}$
- Objectif :
 - faire une prédiction \hat{t} pour une nouvelle entrée \hat{x}

Sujets: régression 1D

- Exemple simple: régression en une dimension
 - entrée : scalaire x
 - cible : scalaire t
- Données d'entraînement ${\cal D}$ contiennent :
 - $\mathbf{X} \equiv (x_1, \dots, x_N)^{\mathrm{T}}$
 - , $\mathbf{t} \equiv (t_1, \ldots, t_N)^{\mathrm{T}}$
- Objectif :
 - + faire une prédiction \hat{t} pour une nouvelle entrée \hat{x}

Sujets: régression 1D

- Exemple simple: régression en une dimension
 - entrée : scalaire x
 - cible : scalaire t
- Données d'entraînement ${\cal D}$ contiennent :
 - $\mathbf{X} \equiv (x_1, \dots, x_N)^{\mathrm{T}}$
 - , $\mathbf{t} \equiv (t_1, \ldots, t_N)^{\mathrm{T}}$
- Objectif :
 - + faire une prédiction \hat{t} pour une nouvelle entrée \hat{x}

Sujets: régression polynomiale, modèle

• On va supposer qu'une bonne prédiction aurait tune forme polynomiale

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M$$

= $\sum_{j=0}^{M} w_j x^j$

• $y(x, \mathbf{w})$ est notre **modèle**

20

- représente nos hypothèses sur le problème à résoudre
- a normalement des paramètres, qu'on doit trouver (w ici) HUGO LAROCHELLE

Sujets: régression polynomiale, modèle

• On peut voir un modèle comme un «programme» treprésenté mathématiquement

def predict(x,w): x poly = x ** np.arange(len(w)) return np.dot(x poly,w)

•
$$y(x, \mathbf{w})$$
 est notre **modèle**

21

- représente nos hypothèses sur le problème à résoudre
- a normalement des paramètres, qu'on doit trouver (w ici) HUGO LAROCHELLE

Sujets: minimisation de perte (coût, erreur)

- Comme trouver w ? (problème d'apprentissage)
 - on cherche le w^* qui minimise la somme de notre perte / erreur / coût sur l'ensemble d'entraînement

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

- le « $\frac{1}{2}$ » n'est pas important (mais simplifiera certains calculs)
- Un algorithme d'apprentissage résoudrait ce problème
 - à partir des données, il va retourner w*

Sujets: minimisation de perte (coût, erreur)

- Comme trouver w ? (problème d'apprentissage)
 - on cherche le w^* qui minimise la somme de notre perte / erreur / coût sur l'ensemble d'entraînement

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

- le « $\frac{1}{2}$ » n'est pas important (mais simplifiera certains calculs)
- Un algorithme d'apprentissage résoudrait ce problème
 - à partir des données, il va retourner w*

Sujets: sous-apprentissage (underfitting)

- \bullet Comme choisir M ?
 - de trop petites valeurs auront une grande perte sur l'ensemble d'entraînement : situation de sous-apprentissage

EXEM

Sujets: sélection de modèle

- \bullet Comme choisir M ?
 - on voudrait une valeur interméc tendance générale de la relation
 - c'est ce qui va permettre de bien généraliser à de nouvelles entrées !
 - trouver cette meilleure valeur
 de M s'appelle de la
 sélection de modèle
 - on va voir plus tard différentes techniques

- Plus la capacité est grande, plus la différence entre l'erreur d'entraînement et l'erreur de test augmente
 - en régression, l'erreur sur tout un ensemble est souvent mesurée par la racine de la moyenne des erreurs au carré (root-mean-square error)

$$E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

Sujets: généralisation vs. quantité de données

 Plus la quantité de données d'entraînement augmente, plus le modèle entraîné va bien généraliser

Sujets: régularisation

- Comment utiliser un grand M avec peu de données
 - par exemple, si on connait le «vrai» M
- **Régularisation** : on réduit la capacité autrement
 - exemple : on pénalise la somme du carré des paramètres (i.e. la norme Euclidienne au carré)

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

• où $\|\mathbf{w}\|^2 \equiv \mathbf{w}^{\Gamma}\mathbf{w} = w_0^2 + w_1^2 + \ldots + w_M^2$

HUGO LAROCHELLE

contrôle la capacité

Sujets: régularisation

• Valeurs des paramètres w* pour différents M, sans régularisation

	M = 0	M = 1	M = 6	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Sujets: régularisation

• Plus la régularisation est forte, moins le modèle sera flexible (donc il aura moins de capacité)

Sujets: régularisation

• Comme M, la force de la régularisation a une influence sur l'erreur d'entraînement et de test

Sujets: hyper-paramètres

• Soit l'algorithme d'apprentissage qui optimise

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

- On appelle M et λ des **hyper-paramètres**
 - ils doivent être déterminés avant l'entraînement
- Comment choisir la valeur de ces hyper-paramètres ?
 - on appelle cela de la **sélection de modèle**

Sujets: hyper-paramètres

• Le choix des hyper-paramètres va influencer la performance sur de nouvelles données (test)

Sujets: ensemble de validation

- Solution I : on réserve des données d'entraînement pour comparer différentes valeurs
 - garde la majorité pour l'ensemble d'entraînement \mathcal{D}_{train} (ex. 80%)
 - le reste, \mathcal{D}_{valid} (ex. 20%), servira à comparer les hyper-paramètres
- On appelle \mathcal{D}_{valid} l'ensemble de validation

Sujets: sélection de modèle

- Algorithme de sélection de modèle
 - pour chaque valeur d'hyper-paramètres à comparer
 - obtenir un modèle entraîné à partir de $\mathcal{D}_{ ext{train}}$
 - évaluer la performance du modèle sur $\mathcal{D}_{ ext{valid}}$ -
 - retourner le choix d'hyper-paramètres ayant donné le modèle avec la meilleure performance sur \mathcal{D}_{valid}

Sujets: S-fold cross-validation

40

• Lorsqu'on a peu de données, 20% est trop peu pour estimer la performance de généralisation

• On pourrait répéter la procédure de séparation train/valid plus d'une fois

- S-fold cross-validation : divise les données en S portions différentes
 - chaque portion est utilisée une fois en tant que $\mathcal{D}_{\mathrm{valid}}$ HUGO LAROCHELLE

Sujets: *S*-fold cross-validation

• Exemple : S = 4

Sujets: S-fold cross-validation, leave-one-out

- Sélection de modèle avec S-fold cross-validation
 - pour s = 1 ... S
 - pour chaque valeur d'hyper-paramètres à comparer
 - \checkmark obtenir un modèle entraîné à partir de $\mathcal{D}_{ ext{train}} = \mathcal{D} \setminus \mathcal{D}_s$
 - \checkmark évaluer la performance du modèle sur $\mathcal{D}_{\mathrm{valid}} = \mathcal{D}_s$
 - retourner la valeur des hyper-paramètres ayant la meilleure performance **moyenne** sur les ensembles \mathcal{D}_{valid}

• Si S = N, on parle alors de méthode *leave-one-out*

Sujets: recherche sur une grille

- Comment déterminer la liste des valeurs d'hyperparamètres à comparer ?
 - recherche sur une grille (grid search) :
 - détermine une liste de valeur pour chaque hyper-paramètre
 - construit la liste de toutes les combinaisons possibles

```
>>> M = [1,2]
>>> lba = [0,1e-6,1e-3]
>>> hypers = [(m,1) \text{ for } m \text{ in } M] \text{ for } 1 \text{ in } 1ba ]
>>> print hypers
[[(1, 0), (2, 0)], [(1, 1e-06), (2, 1e-06)], [(1, 0.001),
(2, 0.001)]]
```


Sujets: régression polynomiale

• Jusqu'à maintenant, on a considéré un problème toù les entrées vivent sur 1 dimension

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M$$

= $\sum_{j=0}^{M} w_j x^j$ ⁻¹

• Qu'arrive-t-il si on augmente le nombre de dimensions ?

HUGO LAROCHELLE

 $\mathbf{0}$

Sujets: nombre de paramètres

• Notre modèle de régression aura plus de paramètres

• pour M=3 ,on a maintenant $1+D+D^2+D^3$ paramètres

- De façon générale, augmente selon $O(D^M)$!
 - pour D=100, M=3, on a déjà plus d'un million de paramètres

Sujets: nombre d'exemples pour bien généraliser

- \bullet Comment garantir qu'on généralise bien à une entrée ${\bf x}$?
 - avoir des entrées similaires dans l'ensemble d'entraînement
- Imaginons qu'on divise également l'espace d'entrée en région (hypercubes)
 - on aimerait avoir un exemple d'entraînement dans chaque région
 - qu'arrive-t-il au nombre de régions, lorsque D augmente ?

Sujets: nombre d'exemples pour bien généraliser

- Comment garantir qu'on généralise bien à une entrée x ?
 - avoir des entrées similaires dans l'ensemble d'entraînement

Sujets: nombre d'exemples pour bien généraliser

- Comment garantir qu'on généralise bien à une entrée x ?
 - avoir des entrées similaires dans l'ensemble d'entraînement

Sujets: malédiction de la dimensionnalité

- La difficulté à bien généraliser peut donc potentiellement augmenter **exponentiellement** avec la dimensionnalité D des entrées
- Cette observation est appelée la malédiction de la dimensionnalité

- Nécessite le design de modèles / algorithmes appropriés pour chaque problème
 - on cherche des modèles / algorithmes qui vont bien exploiter les données à notre disposition

Sujets: algorithme d'apprentissage

- Un algorithme d'apprentissage
 - entraîne un modèle à partir d'un ensemble d'entraînement, pouvant faire des prédictions sur de nouvelles données
 - a des hyper-paramètres qui contrôlent la capacité du modèle entraîné, choisis à l'aide d'une procédure de sélection de modèle
 - mesure sa performance de **généralisation** sur un **ensemble de** test (selon une fonction d'erreur qui peut être différente de la perte d'entraînement)

Sujets: algorithme d'apprentissage

- Un algorithme d'apprentissage
 - aura une meilleure performance de généralisation si la quantité de données d'entraînement augmente
 - peut souffrir de **sous-apprentissage** (pas assez de capacité) ou sur-apprentissage (trop de capacité)
 - sera plus ou moins victime de la malédiction de la dimensionnalité