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THÉORIE DES PROBABILITÉS

• La théorie des probabilités est l’outil idéal pour formaliser 
nos hypothèses et incertitudes par rapport à nos données

• On va traiter nos données comme des variables 
aléatoires
‣ la valeur d’une variable aléatoire est incertaine (avant de l’observer)

‣ la loi de probabilité de la variable aléatoire caractérise notre 
incertitude par rapport à sa valeur

2

variable aléatoire
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THÉORIE DES PROBABILITÉS

• Soit X et Y des variables aléatoires discrètes

‣ X peut prendre comme valeurs x1, ... , xM

‣ Y peut prendre comme valeurs y1, ... , yM

• La probabilité jointe qu’on observe X=xi et Y=yj est 
notée

3

variable aléatoire discrète, probabilité jointe

1.2. Probability Theory 13

Figure 1.10 We can derive the sum and product rules of probability by
considering two random variables, X, which takes the values {xi} where
i = 1, . . . , M , and Y , which takes the values {yj} where j = 1, . . . , L.
In this illustration we have M = 5 and L = 3. If we consider a total
number N of instances of these variables, then we denote the number
of instances where X = xi and Y = yj by nij , which is the number of
points in the corresponding cell of the array. The number of points in
column i, corresponding to X = xi, is denoted by ci, and the number of
points in row j, corresponding to Y = yj , is denoted by rj .

}

}ci

rjyj

xi

nij

and the probability of selecting the blue box is 6/10. We write these probabilities
as p(B = r) = 4/10 and p(B = b) = 6/10. Note that, by definition, probabilities
must lie in the interval [0, 1]. Also, if the events are mutually exclusive and if they
include all possible outcomes (for instance, in this example the box must be either
red or blue), then we see that the probabilities for those events must sum to one.

We can now ask questions such as: “what is the overall probability that the se-
lection procedure will pick an apple?”, or “given that we have chosen an orange,
what is the probability that the box we chose was the blue one?”. We can answer
questions such as these, and indeed much more complex questions associated with
problems in pattern recognition, once we have equipped ourselves with the two el-
ementary rules of probability, known as the sum rule and the product rule. Having
obtained these rules, we shall then return to our boxes of fruit example.

In order to derive the rules of probability, consider the slightly more general ex-
ample shown in Figure 1.10 involving two random variables X and Y (which could
for instance be the Box and Fruit variables considered above). We shall suppose that
X can take any of the values xi where i = 1, . . . , M , and Y can take the values yj

where j = 1, . . . , L. Consider a total of N trials in which we sample both of the
variables X and Y , and let the number of such trials in which X = xi and Y = yj

be nij . Also, let the number of trials in which X takes the value xi (irrespective
of the value that Y takes) be denoted by ci, and similarly let the number of trials in
which Y takes the value yj be denoted by rj .

The probability that X will take the value xi and Y will take the value yj is
written p(X = xi, Y = yj) and is called the joint probability of X = xi and
Y = yj . It is given by the number of points falling in the cell i,j as a fraction of the
total number of points, and hence

p(X = xi, Y = yj) =
nij

N
. (1.5)

Here we are implicitly considering the limit N → ∞. Similarly, the probability that
X takes the value xi irrespective of the value of Y is written as p(X = xi) and is
given by the fraction of the total number of points that fall in column i, so that

p(X = xi) =
ci

N
. (1.6)

Because the number of instances in column i in Figure 1.10 is just the sum of the
number of instances in each cell of that column, we have ci =

∑
j nij and therefore,
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THÉORIE DES PROBABILITÉS

• Une probabilité marginale est lorsqu’on ne 
s’intéresse pas à toutes les variables aléatoire qu’on a 
défini

‣ exemple : la probabilité marginale d’observer X=xi

4

probabilité marginale

14 1. INTRODUCTION

from (1.5) and (1.6), we have

p(X = xi) =
L∑

j=1

p(X = xi, Y = yj) (1.7)

which is the sum rule of probability. Note that p(X = xi) is sometimes called the
marginal probability, because it is obtained by marginalizing, or summing out, the
other variables (in this case Y ).

If we consider only those instances for which X = xi, then the fraction of
such instances for which Y = yj is written p(Y = yj |X = xi) and is called the
conditional probability of Y = yj given X = xi. It is obtained by finding the
fraction of those points in column i that fall in cell i,j and hence is given by

p(Y = yj |X = xi) =
nij

ci
. (1.8)

From (1.5), (1.6), and (1.8), we can then derive the following relationship

p(X = xi, Y = yj) =
nij

N
=

nij

ci
· ci

N
= p(Y = yj |X = xi)p(X = xi) (1.9)

which is the product rule of probability.
So far we have been quite careful to make a distinction between a random vari-

able, such as the box B in the fruit example, and the values that the random variable
can take, for example r if the box were the red one. Thus the probability that B takes
the value r is denoted p(B = r). Although this helps to avoid ambiguity, it leads
to a rather cumbersome notation, and in many cases there will be no need for such
pedantry. Instead, we may simply write p(B) to denote a distribution over the ran-
dom variable B, or p(r) to denote the distribution evaluated for the particular value
r, provided that the interpretation is clear from the context.

With this more compact notation, we can write the two fundamental rules of
probability theory in the following form.

The Rules of Probability

sum rule p(X) =
∑

Y

p(X, Y ) (1.10)

product rule p(X, Y ) = p(Y |X)p(X). (1.11)

Here p(X, Y ) is a joint probability and is verbalized as “the probability of X and
Y ”. Similarly, the quantity p(Y |X) is a conditional probability and is verbalized as
“the probability of Y given X”, whereas the quantity p(X) is a marginal probability
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• Une probabilité conditionnelle est lorsqu’on 
s’intéresse la valeur d’une variable aléatoire «étant 
donnée» une valeur assignée à d’autres variables

‣ exemple : la probabilité queY=yj si on suppose que X=xi 

‣ utile si on veut raisonner par rapport à Y, après avoir observé 
que X=xi 

5

probabilité conditionnelle

p(Y = yj |X = xi) =
p(Y = yj , X = xi)

p(X = xi)
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• Une probabilité jointe peut toujours être décomposée dans 
le produit d’une probabilité conditionnelle et marginale

• En mots : 

‣ la probabilité d’observer X=xi et Y=yj , c’est la probabilité 
d’observer X=xi multipliée par la probabilité d’observerY=yi étant 
donné que X=xi

6

règle du produit

p(X = xi, Y = yj) = p(Y = yj |X = xi)p(X = xi)
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probabilités jointes, marginales et conditionnelles16 1. INTRODUCTION

p(X,Y )

X

Y = 2

Y = 1

p(Y )

p(X)

X X

p(X |Y = 1)

Figure 1.11 An illustration of a distribution over two variables, X, which takes 9 possible values, and Y , which
takes two possible values. The top left figure shows a sample of 60 points drawn from a joint probability distri-
bution over these variables. The remaining figures show histogram estimates of the marginal distributions p(X)
and p(Y ), as well as the conditional distribution p(X|Y = 1) corresponding to the bottom row in the top left
figure.

Again, note that these probabilities are normalized so that

p(F = a|B = r) + p(F = o|B = r) = 1 (1.20)

and similarly
p(F = a|B = b) + p(F = o|B = b) = 1. (1.21)

We can now use the sum and product rules of probability to evaluate the overall
probability of choosing an apple

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

=
1
4
× 4

10
+

3
4
× 6

10
=

11
20

(1.22)

from which it follows, using the sum rule, that p(F = o) = 1 − 11/20 = 9/20.
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règle de Bayes, loi a priori

• La règle de Bayes permet d’inverser l’ordre de la 
conditionnelle

                                                   ,  où 

‣ p(Y ) est appelée loi de probabilité a priori (prior)

‣ p(Y |X) est appelée loi de probabilité a posteriori (posterior)

1.2. Probability Theory 15

and is simply “the probability of X”. These two simple rules form the basis for all
of the probabilistic machinery that we use throughout this book.

From the product rule, together with the symmetry property p(X, Y ) = p(Y, X),
we immediately obtain the following relationship between conditional probabilities

p(Y |X) =
p(X|Y )p(Y )

p(X)
(1.12)

which is called Bayes’ theorem and which plays a central role in pattern recognition
and machine learning. Using the sum rule, the denominator in Bayes’ theorem can
be expressed in terms of the quantities appearing in the numerator

p(X) =
∑

Y

p(X|Y )p(Y ). (1.13)

We can view the denominator in Bayes’ theorem as being the normalization constant
required to ensure that the sum of the conditional probability on the left-hand side of
(1.12) over all values of Y equals one.

In Figure 1.11, we show a simple example involving a joint distribution over two
variables to illustrate the concept of marginal and conditional distributions. Here
a finite sample of N = 60 data points has been drawn from the joint distribution
and is shown in the top left. In the top right is a histogram of the fractions of data
points having each of the two values of Y . From the definition of probability, these
fractions would equal the corresponding probabilities p(Y ) in the limit N → ∞. We
can view the histogram as a simple way to model a probability distribution given only
a finite number of points drawn from that distribution. Modelling distributions from
data lies at the heart of statistical pattern recognition and will be explored in great
detail in this book. The remaining two plots in Figure 1.11 show the corresponding
histogram estimates of p(X) and p(X|Y = 1).

Let us now return to our example involving boxes of fruit. For the moment, we
shall once again be explicit about distinguishing between the random variables and
their instantiations. We have seen that the probabilities of selecting either the red or
the blue boxes are given by

p(B = r) = 4/10 (1.14)
p(B = b) = 6/10 (1.15)

respectively. Note that these satisfy p(B = r) + p(B = b) = 1.
Now suppose that we pick a box at random, and it turns out to be the blue box.

Then the probability of selecting an apple is just the fraction of apples in the blue
box which is 3/4, and so p(F = a|B = b) = 3/4. In fact, we can write out all four
conditional probabilities for the type of fruit, given the selected box

p(F = a|B = r) = 1/4 (1.16)
p(F = o|B = r) = 3/4 (1.17)
p(F = a|B = b) = 3/4 (1.18)
p(F = o|B = b) = 1/4. (1.19)
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xi et yj ont disparu, 
seulement pour 

simplifier la notation 
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indépendance

• Deux variables aléatoires X et Y sont indépendantes si

‣ p(X,Y) = p(X ) p(Y ) ou

‣ p(Y |X) = p(Y ) ou

‣ p(X |Y) = p(X ) 

• En mots : observer la valeur d’une variable ne nous 
apprend rien sur la valeur de l’autre
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variable aléatoire continue, fonction de densité

• Soit X une variable aléatoire continue

‣ X peut prendre un nombre infini de valeurs possibles (e.g. ℝ)

‣ X est associée à une fonction de densité de probabilité p(x) 

‣ la probabilité que X appartienne à un intervalle (a,b) est

1.2. Probability Theory 17

Suppose instead we are told that a piece of fruit has been selected and it is an
orange, and we would like to know which box it came from. This requires that
we evaluate the probability distribution over boxes conditioned on the identity of
the fruit, whereas the probabilities in (1.16)–(1.19) give the probability distribution
over the fruit conditioned on the identity of the box. We can solve the problem of
reversing the conditional probability by using Bayes’ theorem to give

p(B = r|F = o) =
p(F = o|B = r)p(B = r)

p(F = o)
=

3
4
× 4

10
× 20

9
=

2
3
. (1.23)

From the sum rule, it then follows that p(B = b|F = o) = 1 − 2/3 = 1/3.
We can provide an important interpretation of Bayes’ theorem as follows. If

we had been asked which box had been chosen before being told the identity of
the selected item of fruit, then the most complete information we have available is
provided by the probability p(B). We call this the prior probability because it is the
probability available before we observe the identity of the fruit. Once we are told that
the fruit is an orange, we can then use Bayes’ theorem to compute the probability
p(B|F ), which we shall call the posterior probability because it is the probability
obtained after we have observed F . Note that in this example, the prior probability
of selecting the red box was 4/10, so that we were more likely to select the blue box
than the red one. However, once we have observed that the piece of selected fruit is
an orange, we find that the posterior probability of the red box is now 2/3, so that
it is now more likely that the box we selected was in fact the red one. This result
accords with our intuition, as the proportion of oranges is much higher in the red box
than it is in the blue box, and so the observation that the fruit was an orange provides
significant evidence favouring the red box. In fact, the evidence is sufficiently strong
that it outweighs the prior and makes it more likely that the red box was chosen
rather than the blue one.

Finally, we note that if the joint distribution of two variables factorizes into the
product of the marginals, so that p(X, Y ) = p(X)p(Y ), then X and Y are said to
be independent. From the product rule, we see that p(Y |X) = p(Y ), and so the
conditional distribution of Y given X is indeed independent of the value of X . For
instance, in our boxes of fruit example, if each box contained the same fraction of
apples and oranges, then p(F |B) = P (F ), so that the probability of selecting, say,
an apple is independent of which box is chosen.

1.2.1 Probability densities
As well as considering probabilities defined over discrete sets of events, we

also wish to consider probabilities with respect to continuous variables. We shall
limit ourselves to a relatively informal discussion. If the probability of a real-valued
variable x falling in the interval (x, x + δx) is given by p(x)δx for δx → 0, then
p(x) is called the probability density over x. This is illustrated in Figure 1.12. The
probability that x will lie in an interval (a, b) is then given by

p(x ∈ (a, b)) =
∫ b

a

p(x) dx. (1.24)
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variable aléatoire continue, fonction de densité

• Soit X une variable aléatoire continue

‣ la fonction de densité doit satisfaire

‣ à noter que, contrairement aux probabilités d’une variable discrète, 
la fonction de densité peut être > 1. 

‣ peut être vu comme la probabilité que X appartienne à un intervalle 
infinitésimalement petit centrée en x

18 1. INTRODUCTION

Figure 1.12 The concept of probability for
discrete variables can be ex-
tended to that of a probability
density p(x) over a continuous
variable x and is such that the
probability of x lying in the inter-
val (x, x+δx) is given by p(x)δx
for δx → 0. The probability
density can be expressed as the
derivative of a cumulative distri-
bution function P (x).

xδx

p(x) P (x)

Because probabilities are nonnegative, and because the value of x must lie some-
where on the real axis, the probability density p(x) must satisfy the two conditions

p(x) ! 0 (1.25)∫ ∞

−∞
p(x) dx = 1. (1.26)

Under a nonlinear change of variable, a probability density transforms differently
from a simple function, due to the Jacobian factor. For instance, if we consider
a change of variables x = g(y), then a function f(x) becomes f̃(y) = f(g(y)).
Now consider a probability density px(x) that corresponds to a density py(y) with
respect to the new variable y, where the suffices denote the fact that px(x) and py(y)
are different densities. Observations falling in the range (x, x + δx) will, for small
values of δx, be transformed into the range (y, y + δy) where px(x)δx ≃ py(y)δy,
and hence

py(y) = px(x)
∣∣∣∣
dx

dy

∣∣∣∣

= px(g(y)) |g′(y)| . (1.27)

One consequence of this property is that the concept of the maximum of a probability
density is dependent on the choice of variable.Exercise 1.4

The probability that x lies in the interval (−∞, z) is given by the cumulative
distribution function defined by

P (z) =
∫ z

−∞
p(x) dx (1.28)

which satisfies P ′(x) = p(x), as shown in Figure 1.12.
If we have several continuous variables x1, . . . , xD, denoted collectively by the

vector x, then we can define a joint probability density p(x) = p(x1, . . . , xD) such
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fonction de probabilité cumulative

• Soit X une variable aléatoire continue

‣ la fonction de répartition P(z) (cumulative distribution function) 
donne la probabilité que X appartienne à l’intervalle (-∞,z) 

‣ les mêmes règles des probabilités marginales et conditionnelles 
s’appliquent à la fonction de densité

- les sommes sont remplacées par des intégrales

18 1. INTRODUCTION
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variable aléatoire continue18 1. INTRODUCTION
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fonction de densité jointe

• Soit X et Y deux variables aléatoires continues

‣ elles sont associées à une fonction de densité jointe p(x,y) 
telle que :

p(x 2 (a
x

, b

x

), y 2 (a
y

, b

y

)) =

Z
b

x

a

x

Z
b

y

a

y

p(x, y)dydx
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fonction de densité marginale et conditionnelle

• Soit X et Y deux variables aléatoires continues

‣ la fonction de densité marginale s’obtient en intégrant l’autre 
variable :

‣ la fonction de densité conditionnelle s’obtient en divisant 
par la marginale : 

p(x) =

Z
p(x, y)dy

p(y|x) = p(x, y)

p(x)
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espérance

• L’espérance d’une fonction f d’une variable X est

‣ donne une «idée générale» de la valeur de f(x )

1.2. Probability Theory 19

that the probability of x falling in an infinitesimal volume δx containing the point x
is given by p(x)δx. This multivariate probability density must satisfy

p(x) ! 0 (1.29)∫
p(x) dx = 1 (1.30)

in which the integral is taken over the whole of x space. We can also consider joint
probability distributions over a combination of discrete and continuous variables.

Note that if x is a discrete variable, then p(x) is sometimes called a probability
mass function because it can be regarded as a set of ‘probability masses’ concentrated
at the allowed values of x.

The sum and product rules of probability, as well as Bayes’ theorem, apply
equally to the case of probability densities, or to combinations of discrete and con-
tinuous variables. For instance, if x and y are two real variables, then the sum and
product rules take the form

p(x) =
∫

p(x, y) dy (1.31)

p(x, y) = p(y|x)p(x). (1.32)

A formal justification of the sum and product rules for continuous variables (Feller,
1966) requires a branch of mathematics called measure theory and lies outside the
scope of this book. Its validity can be seen informally, however, by dividing each
real variable into intervals of width ∆ and considering the discrete probability dis-
tribution over these intervals. Taking the limit ∆ → 0 then turns sums into integrals
and gives the desired result.

1.2.2 Expectations and covariances
One of the most important operations involving probabilities is that of finding

weighted averages of functions. The average value of some function f(x) under a
probability distribution p(x) is called the expectation of f(x) and will be denoted by
E[f ]. For a discrete distribution, it is given by

E[f ] =
∑

x

p(x)f(x) (1.33)

so that the average is weighted by the relative probabilities of the different values
of x. In the case of continuous variables, expectations are expressed in terms of an
integration with respect to the corresponding probability density

E[f ] =
∫

p(x)f(x) dx. (1.34)

In either case, if we are given a finite number N of points drawn from the probability
distribution or probability density, then the expectation can be approximated as a
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(cas discret)

(cas continu)
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variance

• La variance d’une fonction f d’une variable X est

‣ mesure à quelle point les valeurs de f(x ) varient autour de 
l’espérance 

20 1. INTRODUCTION

finite sum over these points

E[f ] ≃ 1
N

N∑

n=1

f(xn). (1.35)

We shall make extensive use of this result when we discuss sampling methods in
Chapter 11. The approximation in (1.35) becomes exact in the limit N → ∞.

Sometimes we will be considering expectations of functions of several variables,
in which case we can use a subscript to indicate which variable is being averaged
over, so that for instance

Ex[f(x, y)] (1.36)

denotes the average of the function f(x, y) with respect to the distribution of x. Note
that Ex[f(x, y)] will be a function of y.

We can also consider a conditional expectation with respect to a conditional
distribution, so that

Ex[f |y] =
∑

x

p(x|y)f(x) (1.37)

with an analogous definition for continuous variables.
The variance of f(x) is defined by

var[f ] = E
[
(f(x) − E[f(x)])2

]
(1.38)

and provides a measure of how much variability there is in f(x) around its mean
value E[f(x)]. Expanding out the square, we see that the variance can also be written
in terms of the expectations of f(x) and f(x)2Exercise 1.5

var[f ] = E[f(x)2] − E[f(x)]2. (1.39)

In particular, we can consider the variance of the variable x itself, which is given by

var[x] = E[x2] − E[x]2. (1.40)

For two random variables x and y, the covariance is defined by

cov[x, y] = Ex,y [{x − E[x]} {y − E[y]}]
= Ex,y[xy] − E[x]E[y] (1.41)

which expresses the extent to which x and y vary together. If x and y are indepen-
dent, then their covariance vanishes.Exercise 1.6

In the case of two vectors of random variables x and y, the covariance is a matrix

cov[x,y] = Ex,y

[
{x − E[x]}{yT − E[yT]}

]

= Ex,y[xyT] − E[x]E[yT]. (1.42)

If we consider the covariance of the components of a vector x with each other, then
we use a slightly simpler notation cov[x] ≡ cov[x,x].
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propriétés de l’espérance et la variance

• L’espérance d’une transformation linéaire satisfait

• La variance d’une transformation linéaire satisfait 

seulement si X et Y sont indépendantes

E [ax+ by] = aE [x] + bE [y]

var [ax+ by] = a

2var [x] + b

2var [y]

a et b sont 
des constantes
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espérance et variance conditionnelle

• L’espérance et la variance se généralise au cas conditionnel :

(cas continu)E[f(x)|y] =
Z

f(x)p(x|y)dx

var[f(x)|y] = E
⇥
(f(x)� E[f(x)|y])2 |y

⇤



Sujets: 

HUGO LAROCHELLE

THÉORIE DES PROBABILITÉS

22

covariance

• La covariance entre deux variables X et Y est

‣ mesure à quel point on peut prédire X à partir de Y (linéairement), 
et vice-versa

‣ si X etY sont indépendantes, alors la covariance est 0

‣ l’inverse n’est pas nécessairement vrai

20 1. INTRODUCTION
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E[f ] ≃ 1
N

N∑

n=1

f(xn). (1.35)

We shall make extensive use of this result when we discuss sampling methods in
Chapter 11. The approximation in (1.35) becomes exact in the limit N → ∞.

Sometimes we will be considering expectations of functions of several variables,
in which case we can use a subscript to indicate which variable is being averaged
over, so that for instance

Ex[f(x, y)] (1.36)

denotes the average of the function f(x, y) with respect to the distribution of x. Note
that Ex[f(x, y)] will be a function of y.

We can also consider a conditional expectation with respect to a conditional
distribution, so that

Ex[f |y] =
∑

x

p(x|y)f(x) (1.37)

with an analogous definition for continuous variables.
The variance of f(x) is defined by

var[f ] = E
[
(f(x) − E[f(x)])2

]
(1.38)

and provides a measure of how much variability there is in f(x) around its mean
value E[f(x)]. Expanding out the square, we see that the variance can also be written
in terms of the expectations of f(x) and f(x)2Exercise 1.5

var[f ] = E[f(x)2] − E[f(x)]2. (1.39)

In particular, we can consider the variance of the variable x itself, which is given by

var[x] = E[x2] − E[x]2. (1.40)

For two random variables x and y, the covariance is defined by

cov[x, y] = Ex,y [{x − E[x]} {y − E[y]}]
= Ex,y[xy] − E[x]E[y] (1.41)

which expresses the extent to which x and y vary together. If x and y are indepen-
dent, then their covariance vanishes.Exercise 1.6

In the case of two vectors of random variables x and y, the covariance is a matrix

cov[x,y] = Ex,y

[
{x − E[x]}{yT − E[yT]}

]

= Ex,y[xyT] − E[x]E[yT]. (1.42)

If we consider the covariance of the components of a vector x with each other, then
we use a slightly simpler notation cov[x] ≡ cov[x,x].



Sujets: 

HUGO LAROCHELLE

THÉORIE DES PROBABILITÉS

23

variable aléatoires multidimensionnelles

• Une variable aléatoire peut être un vecteur

‣ la loi de probabilité du vecteur discret est une probabilité jointe

‣ la fonction de densité d’un vecteur continu intègre à 1

où 

p(X = x) = p(X1 = x1, . . . , XD = xD)

Z
p(x) dx =

Z

x1

. . .

Z

xD

p(x) dx
D

. . . dx1 = 1

p(x) � 0
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variable aléatoires multidimensionnelles

• Une variable aléatoire peut être une vecteur

‣ l’espérance d’un vecteur et le vecteur des espérances

‣ la covariance entre deux vecteurs est la matrice des covariances

‣ on note 

E[x] = (E[x1], . . . ,E[xD])T

20 1. INTRODUCTION
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variable aléatoires multidimensionnelles

• L’espérance d’une transformation linéaire satisfait

• La covariance d’une transformation linéaire satisfait

cov[Ax+ b,Cy + d] = Acov[x,y]CT

E[Ax+ b] = AE[x] + b

cov[Ax+ b] = Acov[x]A

T
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loi gaussienne (loi normale) 

• La loi gaussienne (aussi appelée loi normale) est une loi 
simple et pratique pour exprimer notre incertitude sur 
une quantité continue

‣ assigne la densité de probabilité la plus élevée à une 
valeur moyenne μ

‣  notre incertitude est exprimée par la variance σ 
2 

(ou l’écart-type σ )

‣ exemple : «la réclamation des clients prend une valeur autour 
de μ $, mais varie selon un écart-type de σ $»
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loi gaussienne (loi normale) 

• Une variable aléatoire suivant une loi gaussienne a la 
fonction de densité suivante :

‣ paramétrée par sa moyenne μ et sa variance σ 
2

24 1. INTRODUCTION

see, is required in order to make predictions or to compare different models. The
development of sampling methods, such as Markov chain Monte Carlo (discussed in
Chapter 11) along with dramatic improvements in the speed and memory capacity
of computers, opened the door to the practical use of Bayesian techniques in an im-
pressive range of problem domains. Monte Carlo methods are very flexible and can
be applied to a wide range of models. However, they are computationally intensive
and have mainly been used for small-scale problems.

More recently, highly efficient deterministic approximation schemes such as
variational Bayes and expectation propagation (discussed in Chapter 10) have been
developed. These offer a complementary alternative to sampling methods and have
allowed Bayesian techniques to be used in large-scale applications (Blei et al., 2003).

1.2.4 The Gaussian distribution
We shall devote the whole of Chapter 2 to a study of various probability dis-

tributions and their key properties. It is convenient, however, to introduce here one
of the most important probability distributions for continuous variables, called the
normal or Gaussian distribution. We shall make extensive use of this distribution in
the remainder of this chapter and indeed throughout much of the book.

For the case of a single real-valued variable x, the Gaussian distribution is de-
fined by

N
(
x|µ, σ2

)
=

1
(2πσ2)1/2

exp
{
− 1

2σ2
(x − µ)2

}
(1.46)

which is governed by two parameters: µ, called the mean, and σ2, called the vari-
ance. The square root of the variance, given by σ, is called the standard deviation,
and the reciprocal of the variance, written as β = 1/σ2, is called the precision. We
shall see the motivation for these terms shortly. Figure 1.13 shows a plot of the
Gaussian distribution.

From the form of (1.46) we see that the Gaussian distribution satisfies

N (x|µ, σ2) > 0. (1.47)

Also it is straightforward to show that the Gaussian is normalized, so thatExercise 1.7

Pierre-Simon Laplace
1749–1827

It is said that Laplace was seri-
ously lacking in modesty and at one
point declared himself to be the
best mathematician in France at the
time, a claim that was arguably true.
As well as being prolific in mathe-

matics, he also made numerous contributions to as-
tronomy, including the nebular hypothesis by which the

earth is thought to have formed from the condensa-
tion and cooling of a large rotating disk of gas and
dust. In 1812 he published the first edition of Théorie
Analytique des Probabilités, in which Laplace states
that “probability theory is nothing but common sense
reduced to calculation”. This work included a discus-
sion of the inverse probability calculation (later termed
Bayes’ theorem by Poincaré), which he used to solve
problems in life expectancy, jurisprudence, planetary
masses, triangulation, and error estimation.

p(x) =
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Figure 1.13 Plot of the univariate Gaussian
showing the mean µ and the
standard deviation σ.

N (x|µ, σ2)

x

2σ

µ

∫ ∞

−∞
N

(
x|µ, σ2

)
dx = 1. (1.48)

Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-

tion. In particular, the average value of x is given byExercise 1.8

E[x] =
∫ ∞

−∞
N

(
x|µ, σ2

)
xdx = µ. (1.49)

Because the parameter µ represents the average value of x under the distribution, it
is referred to as the mean. Similarly, for the second order moment

E[x2] =
∫ ∞

−∞
N

(
x|µ, σ2

)
x2 dx = µ2 + σ2. (1.50)

From (1.49) and (1.50), it follows that the variance of x is given by

var[x] = E[x2] − E[x]2 = σ2 (1.51)

and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(1.52)

where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.

var[x] =

Z 1

�1
N (x|µ,�2)(x� µ)2 dx = �

2
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loi gaussienne (loi normale) 
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Figure 1.13 Plot of the univariate Gaussian
showing the mean µ and the
standard deviation σ.

N (x|µ, σ2)

x

2σ

µ

∫ ∞

−∞
N

(
x|µ, σ2

)
dx = 1. (1.48)

Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-
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Because the parameter µ represents the average value of x under the distribution, it
is referred to as the mean. Similarly, for the second order moment

E[x2] =
∫ ∞

−∞
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(
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)
x2 dx = µ2 + σ2. (1.50)

From (1.49) and (1.50), it follows that the variance of x is given by

var[x] = E[x2] − E[x]2 = σ2 (1.51)

and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(1.52)

where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.
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loi gaussienne multidimensionnelle 

• La version multidimensionnelle a une forme similaire

‣ paramétrée par sa moyenne μ et sa matrice de covariance Σ

‣ Σ permet de représenter des dépendances entre les élément de x

1.2. Probability Theory 25

Figure 1.13 Plot of the univariate Gaussian
showing the mean µ and the
standard deviation σ.
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Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-

tion. In particular, the average value of x is given byExercise 1.8

E[x] =
∫ ∞
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xdx = µ. (1.49)

Because the parameter µ represents the average value of x under the distribution, it
is referred to as the mean. Similarly, for the second order moment

E[x2] =
∫ ∞

−∞
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(
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)
x2 dx = µ2 + σ2. (1.50)

From (1.49) and (1.50), it follows that the variance of x is given by

var[x] = E[x2] − E[x]2 = σ2 (1.51)

and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(1.52)

where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.

p(x) =

E[x] = µ cov[x] = ⌃
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loi gaussienne multidimensionnelle 
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Figure 1.13 Plot of the univariate Gaussian
showing the mean µ and the
standard deviation σ.
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From (1.49) and (1.50), it follows that the variance of x is given by
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and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
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where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.

x 1x 2

• Exemple : x = (x 1,x 2)
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loi gaussienne multidimensionnelle 

• Exemple : x = (x 1,x 2)
84 2. PROBABILITY DISTRIBUTIONS

Figure 2.8 Contours of constant
probability density for a Gaussian
distribution in two dimensions in
which the covariance matrix is (a) of
general form, (b) diagonal, in which
the elliptical contours are aligned
with the coordinate axes, and (c)
proportional to the identity matrix, in
which the contours are concentric
circles.
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therefore grows quadratically with D, and the computational task of manipulating
and inverting large matrices can become prohibitive. One way to address this prob-
lem is to use restricted forms of the covariance matrix. If we consider covariance
matrices that are diagonal, so that Σ = diag(σ2

i ), we then have a total of 2D inde-
pendent parameters in the density model. The corresponding contours of constant
density are given by axis-aligned ellipsoids. We could further restrict the covariance
matrix to be proportional to the identity matrix, Σ = σ2I, known as an isotropic co-
variance, giving D + 1 independent parameters in the model and spherical surfaces
of constant density. The three possibilities of general, diagonal, and isotropic covari-
ance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches
limit the number of degrees of freedom in the distribution and make inversion of the
covariance matrix a much faster operation, they also greatly restrict the form of the
probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically uni-
modal (i.e., has a single maximum) and so is unable to provide a good approximation
to multimodal distributions. Thus the Gaussian distribution can be both too flexible,
in the sense of having too many parameters, while also being too limited in the range
of distributions that it can adequately represent. We will see later that the introduc-
tion of latent variables, also called hidden variables or unobserved variables, allows
both of these problems to be addressed. In particular, a rich family of multimodal
distributions is obtained by introducing discrete latent variables leading to mixtures
of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous
latent variables, as described in Chapter 12, leads to models in which the number of
free parameters can be controlled independently of the dimensionality D of the data
space while still allowing the model to capture the dominant correlations in the data
set. Indeed, these two approaches can be combined and further extended to derive
a very rich set of hierarchical models that can be adapted to a broad range of prac-
tical applications. For instance, the Gaussian version of the Markov random field,Section 8.3
which is widely used as a probabilistic model of images, is a Gaussian distribution
over the joint space of pixel intensities but rendered tractable through the imposition
of considerable structure reflecting the spatial organization of the pixels. Similarly,
the linear dynamical system, used to model time series data for applications suchSection 13.3
as tracking, is also a joint Gaussian distribution over a potentially large number of
observed and latent variables and again is tractable due to the structure imposed on
the distribution. A powerful framework for expressing the form and properties of
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)
dx = 1. (1.48)

Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-

tion. In particular, the average value of x is given byExercise 1.8

E[x] =
∫ ∞

−∞
N

(
x|µ, σ2

)
xdx = µ. (1.49)

Because the parameter µ represents the average value of x under the distribution, it
is referred to as the mean. Similarly, for the second order moment

E[x2] =
∫ ∞

−∞
N

(
x|µ, σ2

)
x2 dx = µ2 + σ2. (1.50)

From (1.49) and (1.50), it follows that the variance of x is given by

var[x] = E[x2] − E[x]2 = σ2 (1.51)

and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(1.52)

where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.Σ = ( )1 0

0 1
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be studied in detail in Section 2.3.
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therefore grows quadratically with D, and the computational task of manipulating
and inverting large matrices can become prohibitive. One way to address this prob-
lem is to use restricted forms of the covariance matrix. If we consider covariance
matrices that are diagonal, so that Σ = diag(σ2

i ), we then have a total of 2D inde-
pendent parameters in the density model. The corresponding contours of constant
density are given by axis-aligned ellipsoids. We could further restrict the covariance
matrix to be proportional to the identity matrix, Σ = σ2I, known as an isotropic co-
variance, giving D + 1 independent parameters in the model and spherical surfaces
of constant density. The three possibilities of general, diagonal, and isotropic covari-
ance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches
limit the number of degrees of freedom in the distribution and make inversion of the
covariance matrix a much faster operation, they also greatly restrict the form of the
probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically uni-
modal (i.e., has a single maximum) and so is unable to provide a good approximation
to multimodal distributions. Thus the Gaussian distribution can be both too flexible,
in the sense of having too many parameters, while also being too limited in the range
of distributions that it can adequately represent. We will see later that the introduc-
tion of latent variables, also called hidden variables or unobserved variables, allows
both of these problems to be addressed. In particular, a rich family of multimodal
distributions is obtained by introducing discrete latent variables leading to mixtures
of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous
latent variables, as described in Chapter 12, leads to models in which the number of
free parameters can be controlled independently of the dimensionality D of the data
space while still allowing the model to capture the dominant correlations in the data
set. Indeed, these two approaches can be combined and further extended to derive
a very rich set of hierarchical models that can be adapted to a broad range of prac-
tical applications. For instance, the Gaussian version of the Markov random field,Section 8.3
which is widely used as a probabilistic model of images, is a Gaussian distribution
over the joint space of pixel intensities but rendered tractable through the imposition
of considerable structure reflecting the spatial organization of the pixels. Similarly,
the linear dynamical system, used to model time series data for applications suchSection 13.3
as tracking, is also a joint Gaussian distribution over a potentially large number of
observed and latent variables and again is tractable due to the structure imposed on
the distribution. A powerful framework for expressing the form and properties of

Σ = ( )2 0

0 1
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Because the parameter µ represents the average value of x under the distribution, it
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From (1.49) and (1.50), it follows that the variance of x is given by

var[x] = E[x2] − E[x]2 = σ2 (1.51)

and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by
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exp
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where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.Σ = ( )1.5 0.5
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therefore grows quadratically with D, and the computational task of manipulating
and inverting large matrices can become prohibitive. One way to address this prob-
lem is to use restricted forms of the covariance matrix. If we consider covariance
matrices that are diagonal, so that Σ = diag(σ2

i ), we then have a total of 2D inde-
pendent parameters in the density model. The corresponding contours of constant
density are given by axis-aligned ellipsoids. We could further restrict the covariance
matrix to be proportional to the identity matrix, Σ = σ2I, known as an isotropic co-
variance, giving D + 1 independent parameters in the model and spherical surfaces
of constant density. The three possibilities of general, diagonal, and isotropic covari-
ance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches
limit the number of degrees of freedom in the distribution and make inversion of the
covariance matrix a much faster operation, they also greatly restrict the form of the
probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically uni-
modal (i.e., has a single maximum) and so is unable to provide a good approximation
to multimodal distributions. Thus the Gaussian distribution can be both too flexible,
in the sense of having too many parameters, while also being too limited in the range
of distributions that it can adequately represent. We will see later that the introduc-
tion of latent variables, also called hidden variables or unobserved variables, allows
both of these problems to be addressed. In particular, a rich family of multimodal
distributions is obtained by introducing discrete latent variables leading to mixtures
of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous
latent variables, as described in Chapter 12, leads to models in which the number of
free parameters can be controlled independently of the dimensionality D of the data
space while still allowing the model to capture the dominant correlations in the data
set. Indeed, these two approaches can be combined and further extended to derive
a very rich set of hierarchical models that can be adapted to a broad range of prac-
tical applications. For instance, the Gaussian version of the Markov random field,Section 8.3
which is widely used as a probabilistic model of images, is a Gaussian distribution
over the joint space of pixel intensities but rendered tractable through the imposition
of considerable structure reflecting the spatial organization of the pixels. Similarly,
the linear dynamical system, used to model time series data for applications suchSection 13.3
as tracking, is also a joint Gaussian distribution over a potentially large number of
observed and latent variables and again is tractable due to the structure imposed on
the distribution. A powerful framework for expressing the form and properties of
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• Une combinaison linéaire de variables aléatoires 
gaussiennes est également gaussienne

• Exemple

‣ soit x une variable gaussienne de moyenne μ1 et variance σ12

‣ soit y une variable gaussienne de moyenne μ2 et variance σ22

‣ alors ax + by suit une loi gaussienne de moyenne aμ1 + bμ2 et 
variance a2σ12 + b2σ22 (x et y sont indépendantes)
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• Retournons à notre exemple de régression 

‣ entrée : scalaire x

‣ cible : scalaire t

• Données d’entraînement       contiennent :

‣  

‣  

• Objectif : 

‣ faire une prédiction t pour une nouvelle entrée x
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4 1. INTRODUCTION

Figure 1.2 Plot of a training data set of N =
10 points, shown as blue circles,
each comprising an observation
of the input variable x along with
the corresponding target variable
t. The green curve shows the
function sin(2πx) used to gener-
ate the data. Our goal is to pre-
dict the value of t for some new
value of x, without knowledge of
the green curve.
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detailed treatment lies beyond the scope of this book.
Although each of these tasks needs its own tools and techniques, many of the

key ideas that underpin them are common to all such problems. One of the main
goals of this chapter is to introduce, in a relatively informal way, several of the most
important of these concepts and to illustrate them using simple examples. Later in
the book we shall see these same ideas re-emerge in the context of more sophisti-
cated models that are applicable to real-world pattern recognition applications. This
chapter also provides a self-contained introduction to three important tools that will
be used throughout the book, namely probability theory, decision theory, and infor-
mation theory. Although these might sound like daunting topics, they are in fact
straightforward, and a clear understanding of them is essential if machine learning
techniques are to be used to best effect in practical applications.

1.1. Example: Polynomial Curve Fitting

We begin by introducing a simple regression problem, which we shall use as a run-
ning example throughout this chapter to motivate a number of key concepts. Sup-
pose we observe a real-valued input variable x and we wish to use this observation to
predict the value of a real-valued target variable t. For the present purposes, it is in-
structive to consider an artificial example using synthetically generated data because
we then know the precise process that generated the data for comparison against any
learned model. The data for this example is generated from the function sin(2πx)
with random noise included in the target values, as described in detail in Appendix A.

Now suppose that we are given a training set comprising N observations of x,
written x ≡ (x1, . . . , xN )T, together with corresponding observations of the values
of t, denoted t ≡ (t1, . . . , tN )T. Figure 1.2 shows a plot of a training set comprising
N = 10 data points. The input data set x in Figure 1.2 was generated by choos-
ing values of xn, for n = 1, . . . , N , spaced uniformly in range [0, 1], and the target
data set t was obtained by first computing the corresponding values of the function
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• On va supposer qu’une bonne prédiction aurait
une forme polynomiale

•                 est notre modèle
‣ représente nos hypothèses sur le problème à résoudre

‣ a normalement des paramètres, qu’on doit trouver (w ici)
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ning example throughout this chapter to motivate a number of key concepts. Sup-
pose we observe a real-valued input variable x and we wish to use this observation to
predict the value of a real-valued target variable t. For the present purposes, it is in-
structive to consider an artificial example using synthetically generated data because
we then know the precise process that generated the data for comparison against any
learned model. The data for this example is generated from the function sin(2πx)
with random noise included in the target values, as described in detail in Appendix A.

Now suppose that we are given a training set comprising N observations of x,
written x ≡ (x1, . . . , xN )T, together with corresponding observations of the values
of t, denoted t ≡ (t1, . . . , tN )T. Figure 1.2 shows a plot of a training set comprising
N = 10 data points. The input data set x in Figure 1.2 was generated by choos-
ing values of xn, for n = 1, . . . , N , spaced uniformly in range [0, 1], and the target
data set t was obtained by first computing the corresponding values of the function
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sin(2πx) and then adding a small level of random noise having a Gaussian distri-
bution (the Gaussian distribution is discussed in Section 1.2.4) to each such point in
order to obtain the corresponding value tn. By generating data in this way, we are
capturing a property of many real data sets, namely that they possess an underlying
regularity, which we wish to learn, but that individual observations are corrupted by
random noise. This noise might arise from intrinsically stochastic (i.e. random) pro-
cesses such as radioactive decay but more typically is due to there being sources of
variability that are themselves unobserved.

Our goal is to exploit this training set in order to make predictions of the value
t̂ of the target variable for some new value x̂ of the input variable. As we shall see
later, this involves implicitly trying to discover the underlying function sin(2πx).
This is intrinsically a difficult problem as we have to generalize from a finite data
set. Furthermore the observed data are corrupted with noise, and so for a given x̂
there is uncertainty as to the appropriate value for t̂. Probability theory, discussed
in Section 1.2, provides a framework for expressing such uncertainty in a precise
and quantitative manner, and decision theory, discussed in Section 1.5, allows us to
exploit this probabilistic representation in order to make predictions that are optimal
according to appropriate criteria.

For the moment, however, we shall proceed rather informally and consider a
simple approach based on curve fitting. In particular, we shall fit the data using a
polynomial function of the form

y(x,w) = w0 + w1x + w2x
2 + . . . + wMxM =

M∑

j=0

wjx
j (1.1)

where M is the order of the polynomial, and xj denotes x raised to the power of j.
The polynomial coefficients w0, . . . , wM are collectively denoted by the vector w.
Note that, although the polynomial function y(x,w) is a nonlinear function of x, it
is a linear function of the coefficients w. Functions, such as the polynomial, which
are linear in the unknown parameters have important properties and are called linear
models and will be discussed extensively in Chapters 3 and 4.

The values of the coefficients will be determined by fitting the polynomial to the
training data. This can be done by minimizing an error function that measures the
misfit between the function y(x,w), for any given value of w, and the training set
data points. One simple choice of error function, which is widely used, is given by
the sum of the squares of the errors between the predictions y(xn,w) for each data
point xn and the corresponding target values tn, so that we minimize

E(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 (1.2)

where the factor of 1/2 is included for later convenience. We shall discuss the mo-
tivation for this choice of error function later in this chapter. For the moment we
simply note that it is a nonnegative quantity that would be zero if, and only if, the
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exploit this probabilistic representation in order to make predictions that are optimal
according to appropriate criteria.

For the moment, however, we shall proceed rather informally and consider a
simple approach based on curve fitting. In particular, we shall fit the data using a
polynomial function of the form

y(x,w) = w0 + w1x + w2x
2 + . . . + wMxM =

M∑

j=0

wjx
j (1.1)

where M is the order of the polynomial, and xj denotes x raised to the power of j.
The polynomial coefficients w0, . . . , wM are collectively denoted by the vector w.
Note that, although the polynomial function y(x,w) is a nonlinear function of x, it
is a linear function of the coefficients w. Functions, such as the polynomial, which
are linear in the unknown parameters have important properties and are called linear
models and will be discussed extensively in Chapters 3 and 4.

The values of the coefficients will be determined by fitting the polynomial to the
training data. This can be done by minimizing an error function that measures the
misfit between the function y(x,w), for any given value of w, and the training set
data points. One simple choice of error function, which is widely used, is given by
the sum of the squares of the errors between the predictions y(xn,w) for each data
point xn and the corresponding target values tn, so that we minimize

E(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 (1.2)

where the factor of 1/2 is included for later convenience. We shall discuss the mo-
tivation for this choice of error function later in this chapter. For the moment we
simply note that it is a nonnegative quantity that would be zero if, and only if, the
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regularity, which we wish to learn, but that individual observations are corrupted by
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variability that are themselves unobserved.
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t̂ of the target variable for some new value x̂ of the input variable. As we shall see
later, this involves implicitly trying to discover the underlying function sin(2πx).
This is intrinsically a difficult problem as we have to generalize from a finite data
set. Furthermore the observed data are corrupted with noise, and so for a given x̂
there is uncertainty as to the appropriate value for t̂. Probability theory, discussed
in Section 1.2, provides a framework for expressing such uncertainty in a precise
and quantitative manner, and decision theory, discussed in Section 1.5, allows us to
exploit this probabilistic representation in order to make predictions that are optimal
according to appropriate criteria.

For the moment, however, we shall proceed rather informally and consider a
simple approach based on curve fitting. In particular, we shall fit the data using a
polynomial function of the form

y(x,w) = w0 + w1x + w2x
2 + . . . + wMxM =
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where M is the order of the polynomial, and xj denotes x raised to the power of j.
The polynomial coefficients w0, . . . , wM are collectively denoted by the vector w.
Note that, although the polynomial function y(x,w) is a nonlinear function of x, it
is a linear function of the coefficients w. Functions, such as the polynomial, which
are linear in the unknown parameters have important properties and are called linear
models and will be discussed extensively in Chapters 3 and 4.

The values of the coefficients will be determined by fitting the polynomial to the
training data. This can be done by minimizing an error function that measures the
misfit between the function y(x,w), for any given value of w, and the training set
data points. One simple choice of error function, which is widely used, is given by
the sum of the squares of the errors between the predictions y(xn,w) for each data
point xn and the corresponding target values tn, so that we minimize

E(w) =
1
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N∑

n=1

{y(xn,w) − tn}2 (1.2)

where the factor of 1/2 is included for later convenience. We shall discuss the mo-
tivation for this choice of error function later in this chapter. For the moment we
simply note that it is a nonnegative quantity that would be zero if, and only if, the
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4 1. INTRODUCTION

Figure 1.2 Plot of a training data set of N =
10 points, shown as blue circles,
each comprising an observation
of the input variable x along with
the corresponding target variable
t. The green curve shows the
function sin(2πx) used to gener-
ate the data. Our goal is to pre-
dict the value of t for some new
value of x, without knowledge of
the green curve.

x

t

0 1

−1

0
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detailed treatment lies beyond the scope of this book.
Although each of these tasks needs its own tools and techniques, many of the

key ideas that underpin them are common to all such problems. One of the main
goals of this chapter is to introduce, in a relatively informal way, several of the most
important of these concepts and to illustrate them using simple examples. Later in
the book we shall see these same ideas re-emerge in the context of more sophisti-
cated models that are applicable to real-world pattern recognition applications. This
chapter also provides a self-contained introduction to three important tools that will
be used throughout the book, namely probability theory, decision theory, and infor-
mation theory. Although these might sound like daunting topics, they are in fact
straightforward, and a clear understanding of them is essential if machine learning
techniques are to be used to best effect in practical applications.

1.1. Example: Polynomial Curve Fitting

We begin by introducing a simple regression problem, which we shall use as a run-
ning example throughout this chapter to motivate a number of key concepts. Sup-
pose we observe a real-valued input variable x and we wish to use this observation to
predict the value of a real-valued target variable t. For the present purposes, it is in-
structive to consider an artificial example using synthetically generated data because
we then know the precise process that generated the data for comparison against any
learned model. The data for this example is generated from the function sin(2πx)
with random noise included in the target values, as described in detail in Appendix A.

Now suppose that we are given a training set comprising N observations of x,
written x ≡ (x1, . . . , xN )T, together with corresponding observations of the values
of t, denoted t ≡ (t1, . . . , tN )T. Figure 1.2 shows a plot of a training set comprising
N = 10 data points. The input data set x in Figure 1.2 was generated by choos-
ing values of xn, for n = 1, . . . , N , spaced uniformly in range [0, 1], and the target
data set t was obtained by first computing the corresponding values of the function
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Figure 1.15 Illustration of how bias arises in using max-
imum likelihood to determine the variance
of a Gaussian. The green curve shows
the true Gaussian distribution from which
data is generated, and the three red curves
show the Gaussian distributions obtained
by fitting to three data sets, each consist-
ing of two data points shown in blue, us-
ing the maximum likelihood results (1.55)
and (1.56). Averaged across the three data
sets, the mean is correct, but the variance
is systematically under-estimated because
it is measured relative to the sample mean
and not relative to the true mean.

(a)

(b)

(c)

In Section 10.1.3, we shall see how this result arises automatically when we adopt a
Bayesian approach.

Note that the bias of the maximum likelihood solution becomes less significant
as the number N of data points increases, and in the limit N → ∞ the maximum
likelihood solution for the variance equals the true variance of the distribution that
generated the data. In practice, for anything other than small N , this bias will not
prove to be a serious problem. However, throughout this book we shall be interested
in more complex models with many parameters, for which the bias problems asso-
ciated with maximum likelihood will be much more severe. In fact, as we shall see,
the issue of bias in maximum likelihood lies at the root of the over-fitting problem
that we encountered earlier in the context of polynomial curve fitting.

1.2.5 Curve fitting re-visited
We have seen how the problem of polynomial curve fitting can be expressed in

terms of error minimization. Here we return to the curve fitting example and view itSection 1.1
from a probabilistic perspective, thereby gaining some insights into error functions
and regularization, as well as taking us towards a full Bayesian treatment.

The goal in the curve fitting problem is to be able to make predictions for the
target variable t given some new value of the input variable x on the basis of a set of
training data comprising N input values x = (x1, . . . , xN )T and their corresponding
target values t = (t1, . . . , tN )T. We can express our uncertainty over the value of
the target variable using a probability distribution. For this purpose, we shall assume
that, given the value of x, the corresponding value of t has a Gaussian distribution
with a mean equal to the value y(x,w) of the polynomial curve given by (1.1). Thus
we have

p(t|x,w, β) = N
(
t|y(x,w), β−1

)
(1.60)

where, for consistency with the notation in later chapters, we have defined a preci-
sion parameter β corresponding to the inverse variance of the distribution. This is
illustrated schematically in Figure 1.16.
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Figure 1.16 Schematic illustration of a Gaus-
sian conditional distribution for t given x given by
(1.60), in which the mean is given by the polyno-
mial function y(x,w), and the precision is given
by the parameter β, which is related to the vari-
ance by β−1 = σ2.

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)

We now use the training data {x, t} to determine the values of the unknown
parameters w and β by maximum likelihood. If the data are assumed to be drawn
independently from the distribution (1.60), then the likelihood function is given by

p(t|x,w, β) =
N∏

n=1

N
(
tn|y(xn,w), β−1

)
. (1.61)

As we did in the case of the simple Gaussian distribution earlier, it is convenient to
maximize the logarithm of the likelihood function. Substituting for the form of the
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the
form

ln p(t|x,w, β) = −β

2

N∑

n=1

{y(xn,w) − tn}2 +
N

2
ln β − N

2
ln(2π). (1.62)

Consider first the determination of the maximum likelihood solution for the polyno-
mial coefficients, which will be denoted by wML. These are determined by maxi-
mizing (1.62) with respect to w. For this purpose, we can omit the last two terms
on the right-hand side of (1.62) because they do not depend on w. Also, we note
that scaling the log likelihood by a positive constant coefficient does not alter the
location of the maximum with respect to w, and so we can replace the coefficient
β/2 with 1/2. Finally, instead of maximizing the log likelihood, we can equivalently
minimize the negative log likelihood. We therefore see that maximizing likelihood is
equivalent, so far as determining w is concerned, to minimizing the sum-of-squares
error function defined by (1.2). Thus the sum-of-squares error function has arisen as
a consequence of maximizing likelihood under the assumption of a Gaussian noise
distribution.

We can also use maximum likelihood to determine the precision parameter β of
the Gaussian conditional distribution. Maximizing (1.62) with respect to β gives

1
βML

=
1
N

N∑

n=1

{y(xn,wML) − tn}2 . (1.63)
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Figure 1.16 Schematic illustration of a Gaus-
sian conditional distribution for t given x given by
(1.60), in which the mean is given by the polyno-
mial function y(x,w), and the precision is given
by the parameter β, which is related to the vari-
ance by β−1 = σ2.
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We now use the training data {x, t} to determine the values of the unknown
parameters w and β by maximum likelihood. If the data are assumed to be drawn
independently from the distribution (1.60), then the likelihood function is given by

p(t|x,w, β) =
N∏

n=1

N
(
tn|y(xn,w), β−1

)
. (1.61)

As we did in the case of the simple Gaussian distribution earlier, it is convenient to
maximize the logarithm of the likelihood function. Substituting for the form of the
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the
form

ln p(t|x,w, β) = −β

2

N∑

n=1

{y(xn,w) − tn}2 +
N

2
ln β − N

2
ln(2π). (1.62)

Consider first the determination of the maximum likelihood solution for the polyno-
mial coefficients, which will be denoted by wML. These are determined by maxi-
mizing (1.62) with respect to w. For this purpose, we can omit the last two terms
on the right-hand side of (1.62) because they do not depend on w. Also, we note
that scaling the log likelihood by a positive constant coefficient does not alter the
location of the maximum with respect to w, and so we can replace the coefficient
β/2 with 1/2. Finally, instead of maximizing the log likelihood, we can equivalently
minimize the negative log likelihood. We therefore see that maximizing likelihood is
equivalent, so far as determining w is concerned, to minimizing the sum-of-squares
error function defined by (1.2). Thus the sum-of-squares error function has arisen as
a consequence of maximizing likelihood under the assumption of a Gaussian noise
distribution.

We can also use maximum likelihood to determine the precision parameter β of
the Gaussian conditional distribution. Maximizing (1.62) with respect to β gives

1
βML

=
1
N

N∑

n=1

{y(xn,wML) − tn}2 . (1.63)
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Figure 1.16 Schematic illustration of a Gaus-
sian conditional distribution for t given x given by
(1.60), in which the mean is given by the polyno-
mial function y(x,w), and the precision is given
by the parameter β, which is related to the vari-
ance by β−1 = σ2.
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We now use the training data {x, t} to determine the values of the unknown
parameters w and β by maximum likelihood. If the data are assumed to be drawn
independently from the distribution (1.60), then the likelihood function is given by

p(t|x,w, β) =
N∏

n=1

N
(
tn|y(xn,w), β−1

)
. (1.61)

As we did in the case of the simple Gaussian distribution earlier, it is convenient to
maximize the logarithm of the likelihood function. Substituting for the form of the
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the
form

ln p(t|x,w, β) = −β

2

N∑

n=1

{y(xn,w) − tn}2 +
N

2
ln β − N

2
ln(2π). (1.62)

Consider first the determination of the maximum likelihood solution for the polyno-
mial coefficients, which will be denoted by wML. These are determined by maxi-
mizing (1.62) with respect to w. For this purpose, we can omit the last two terms
on the right-hand side of (1.62) because they do not depend on w. Also, we note
that scaling the log likelihood by a positive constant coefficient does not alter the
location of the maximum with respect to w, and so we can replace the coefficient
β/2 with 1/2. Finally, instead of maximizing the log likelihood, we can equivalently
minimize the negative log likelihood. We therefore see that maximizing likelihood is
equivalent, so far as determining w is concerned, to minimizing the sum-of-squares
error function defined by (1.2). Thus the sum-of-squares error function has arisen as
a consequence of maximizing likelihood under the assumption of a Gaussian noise
distribution.

We can also use maximum likelihood to determine the precision parameter β of
the Gaussian conditional distribution. Maximizing (1.62) with respect to β gives

1
βML

=
1
N

N∑

n=1

{y(xn,wML) − tn}2 . (1.63)
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Figure 1.16 Schematic illustration of a Gaus-
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(1.60), in which the mean is given by the polyno-
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by the parameter β, which is related to the vari-
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We now use the training data {x, t} to determine the values of the unknown
parameters w and β by maximum likelihood. If the data are assumed to be drawn
independently from the distribution (1.60), then the likelihood function is given by

p(t|x,w, β) =
N∏

n=1

N
(
tn|y(xn,w), β−1

)
. (1.61)

As we did in the case of the simple Gaussian distribution earlier, it is convenient to
maximize the logarithm of the likelihood function. Substituting for the form of the
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the
form

ln p(t|x,w, β) = −β

2

N∑

n=1

{y(xn,w) − tn}2 +
N

2
ln β − N

2
ln(2π). (1.62)

Consider first the determination of the maximum likelihood solution for the polyno-
mial coefficients, which will be denoted by wML. These are determined by maxi-
mizing (1.62) with respect to w. For this purpose, we can omit the last two terms
on the right-hand side of (1.62) because they do not depend on w. Also, we note
that scaling the log likelihood by a positive constant coefficient does not alter the
location of the maximum with respect to w, and so we can replace the coefficient
β/2 with 1/2. Finally, instead of maximizing the log likelihood, we can equivalently
minimize the negative log likelihood. We therefore see that maximizing likelihood is
equivalent, so far as determining w is concerned, to minimizing the sum-of-squares
error function defined by (1.2). Thus the sum-of-squares error function has arisen as
a consequence of maximizing likelihood under the assumption of a Gaussian noise
distribution.

We can also use maximum likelihood to determine the precision parameter β of
the Gaussian conditional distribution. Maximizing (1.62) with respect to β gives

1
βML

=
1
N

N∑

n=1

{y(xn,wML) − tn}2 . (1.63)

1.1. Example: Polynomial Curve Fitting 5

sin(2πx) and then adding a small level of random noise having a Gaussian distri-
bution (the Gaussian distribution is discussed in Section 1.2.4) to each such point in
order to obtain the corresponding value tn. By generating data in this way, we are
capturing a property of many real data sets, namely that they possess an underlying
regularity, which we wish to learn, but that individual observations are corrupted by
random noise. This noise might arise from intrinsically stochastic (i.e. random) pro-
cesses such as radioactive decay but more typically is due to there being sources of
variability that are themselves unobserved.

Our goal is to exploit this training set in order to make predictions of the value
t̂ of the target variable for some new value x̂ of the input variable. As we shall see
later, this involves implicitly trying to discover the underlying function sin(2πx).
This is intrinsically a difficult problem as we have to generalize from a finite data
set. Furthermore the observed data are corrupted with noise, and so for a given x̂
there is uncertainty as to the appropriate value for t̂. Probability theory, discussed
in Section 1.2, provides a framework for expressing such uncertainty in a precise
and quantitative manner, and decision theory, discussed in Section 1.5, allows us to
exploit this probabilistic representation in order to make predictions that are optimal
according to appropriate criteria.

For the moment, however, we shall proceed rather informally and consider a
simple approach based on curve fitting. In particular, we shall fit the data using a
polynomial function of the form

y(x,w) = w0 + w1x + w2x
2 + . . . + wMxM =

M∑

j=0

wjx
j (1.1)

where M is the order of the polynomial, and xj denotes x raised to the power of j.
The polynomial coefficients w0, . . . , wM are collectively denoted by the vector w.
Note that, although the polynomial function y(x,w) is a nonlinear function of x, it
is a linear function of the coefficients w. Functions, such as the polynomial, which
are linear in the unknown parameters have important properties and are called linear
models and will be discussed extensively in Chapters 3 and 4.

The values of the coefficients will be determined by fitting the polynomial to the
training data. This can be done by minimizing an error function that measures the
misfit between the function y(x,w), for any given value of w, and the training set
data points. One simple choice of error function, which is widely used, is given by
the sum of the squares of the errors between the predictions y(xn,w) for each data
point xn and the corresponding target values tn, so that we minimize

E(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 (1.2)

where the factor of 1/2 is included for later convenience. We shall discuss the mo-
tivation for this choice of error function later in this chapter. For the moment we
simply note that it is a nonnegative quantity that would be zero if, and only if, the
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We now use the training data {x, t} to determine the values of the unknown
parameters w and β by maximum likelihood. If the data are assumed to be drawn
independently from the distribution (1.60), then the likelihood function is given by

p(t|x,w, β) =
N∏

n=1

N
(
tn|y(xn,w), β−1

)
. (1.61)

As we did in the case of the simple Gaussian distribution earlier, it is convenient to
maximize the logarithm of the likelihood function. Substituting for the form of the
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the
form

ln p(t|x,w, β) = −β

2

N∑

n=1

{y(xn,w) − tn}2 +
N

2
ln β − N

2
ln(2π). (1.62)

Consider first the determination of the maximum likelihood solution for the polyno-
mial coefficients, which will be denoted by wML. These are determined by maxi-
mizing (1.62) with respect to w. For this purpose, we can omit the last two terms
on the right-hand side of (1.62) because they do not depend on w. Also, we note
that scaling the log likelihood by a positive constant coefficient does not alter the
location of the maximum with respect to w, and so we can replace the coefficient
β/2 with 1/2. Finally, instead of maximizing the log likelihood, we can equivalently
minimize the negative log likelihood. We therefore see that maximizing likelihood is
equivalent, so far as determining w is concerned, to minimizing the sum-of-squares
error function defined by (1.2). Thus the sum-of-squares error function has arisen as
a consequence of maximizing likelihood under the assumption of a Gaussian noise
distribution.

We can also use maximum likelihood to determine the precision parameter β of
the Gaussian conditional distribution. Maximizing (1.62) with respect to β gives

1
βML

=
1
N

N∑

n=1

{y(xn,wML) − tn}2 . (1.63)

1.1. Example: Polynomial Curve Fitting 5

sin(2πx) and then adding a small level of random noise having a Gaussian distri-
bution (the Gaussian distribution is discussed in Section 1.2.4) to each such point in
order to obtain the corresponding value tn. By generating data in this way, we are
capturing a property of many real data sets, namely that they possess an underlying
regularity, which we wish to learn, but that individual observations are corrupted by
random noise. This noise might arise from intrinsically stochastic (i.e. random) pro-
cesses such as radioactive decay but more typically is due to there being sources of
variability that are themselves unobserved.

Our goal is to exploit this training set in order to make predictions of the value
t̂ of the target variable for some new value x̂ of the input variable. As we shall see
later, this involves implicitly trying to discover the underlying function sin(2πx).
This is intrinsically a difficult problem as we have to generalize from a finite data
set. Furthermore the observed data are corrupted with noise, and so for a given x̂
there is uncertainty as to the appropriate value for t̂. Probability theory, discussed
in Section 1.2, provides a framework for expressing such uncertainty in a precise
and quantitative manner, and decision theory, discussed in Section 1.5, allows us to
exploit this probabilistic representation in order to make predictions that are optimal
according to appropriate criteria.

For the moment, however, we shall proceed rather informally and consider a
simple approach based on curve fitting. In particular, we shall fit the data using a
polynomial function of the form

y(x,w) = w0 + w1x + w2x
2 + . . . + wMxM =

M∑

j=0

wjx
j (1.1)

where M is the order of the polynomial, and xj denotes x raised to the power of j.
The polynomial coefficients w0, . . . , wM are collectively denoted by the vector w.
Note that, although the polynomial function y(x,w) is a nonlinear function of x, it
is a linear function of the coefficients w. Functions, such as the polynomial, which
are linear in the unknown parameters have important properties and are called linear
models and will be discussed extensively in Chapters 3 and 4.

The values of the coefficients will be determined by fitting the polynomial to the
training data. This can be done by minimizing an error function that measures the
misfit between the function y(x,w), for any given value of w, and the training set
data points. One simple choice of error function, which is widely used, is given by
the sum of the squares of the errors between the predictions y(xn,w) for each data
point xn and the corresponding target values tn, so that we minimize

E(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 (1.2)

where the factor of 1/2 is included for later convenience. We shall discuss the mo-
tivation for this choice of error function later in this chapter. For the moment we
simply note that it is a nonnegative quantity that would be zero if, and only if, the
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Again we can first determine the parameter vector wML governing the mean and sub-
sequently use this to find the precision βML as was the case for the simple Gaussian
distribution.Section 1.2.4

Having determined the parameters w and β, we can now make predictions for
new values of x. Because we now have a probabilistic model, these are expressed
in terms of the predictive distribution that gives the probability distribution over t,
rather than simply a point estimate, and is obtained by substituting the maximum
likelihood parameters into (1.60) to give

p(t|x,wML, βML) = N
(
t|y(x,wML), β−1

ML

)
. (1.64)

Now let us take a step towards a more Bayesian approach and introduce a prior
distribution over the polynomial coefficients w. For simplicity, let us consider a
Gaussian distribution of the form

p(w|α) = N (w|0, α−1I) =
( α

2π

)(M+1)/2

exp
{
−α

2
wTw

}
(1.65)

where α is the precision of the distribution, and M+1 is the total number of elements
in the vector w for an M th order polynomial. Variables such as α, which control
the distribution of model parameters, are called hyperparameters. Using Bayes’
theorem, the posterior distribution for w is proportional to the product of the prior
distribution and the likelihood function

p(w|x, t, α, β) ∝ p(t|x,w, β)p(w|α). (1.66)

We can now determine w by finding the most probable value of w given the data,
in other words by maximizing the posterior distribution. This technique is called
maximum posterior, or simply MAP. Taking the negative logarithm of (1.66) and
combining with (1.62) and (1.65), we find that the maximum of the posterior is
given by the minimum of

β

2

N∑

n=1

{y(xn,w) − tn}2 +
α

2
wTw. (1.67)

Thus we see that maximizing the posterior distribution is equivalent to minimizing
the regularized sum-of-squares error function encountered earlier in the form (1.4),
with a regularization parameter given by λ = α/β.

1.2.6 Bayesian curve fitting
Although we have included a prior distribution p(w|α), we are so far still mak-

ing a point estimate of w and so this does not yet amount to a Bayesian treatment. In
a fully Bayesian approach, we should consistently apply the sum and product rules
of probability, which requires, as we shall see shortly, that we integrate over all val-
ues of w. Such marginalizations lie at the heart of Bayesian methods for pattern
recognition.
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•              exprime notre croyance a priori sur la valeur de w

‣ c’est une loi a priori (prior)

• Lorsqu’on observe des données, on peut mettre à jour 
notre croyance

‣ c’est la loi a posteriori (posterior)
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Although we have included a prior distribution p(w|α), we are so far still mak-
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ues of w. Such marginalizations lie at the heart of Bayesian methods for pattern
recognition.

10 1. INTRODUCTION

x

t

ln λ = −18

0 1

−1

0

1

x

t

ln λ = 0

0 1

−1

0

1

Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter λ corresponding to ln λ = −18 and ln λ = 0. The
case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

Ẽ(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 +
λ

2
∥w∥2 (1.4)

where ∥w∥2 ≡ wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient λ governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing
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Again we can first determine the parameter vector wML governing the mean and sub-
sequently use this to find the precision βML as was the case for the simple Gaussian
distribution.Section 1.2.4

Having determined the parameters w and β, we can now make predictions for
new values of x. Because we now have a probabilistic model, these are expressed
in terms of the predictive distribution that gives the probability distribution over t,
rather than simply a point estimate, and is obtained by substituting the maximum
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where α is the precision of the distribution, and M+1 is the total number of elements
in the vector w for an M th order polynomial. Variables such as α, which control
the distribution of model parameters, are called hyperparameters. Using Bayes’
theorem, the posterior distribution for w is proportional to the product of the prior
distribution and the likelihood function

p(w|x, t, α, β) ∝ p(t|x,w, β)p(w|α). (1.66)

We can now determine w by finding the most probable value of w given the data,
in other words by maximizing the posterior distribution. This technique is called
maximum posterior, or simply MAP. Taking the negative logarithm of (1.66) and
combining with (1.62) and (1.65), we find that the maximum of the posterior is
given by the minimum of
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Thus we see that maximizing the posterior distribution is equivalent to minimizing
the regularized sum-of-squares error function encountered earlier in the form (1.4),
with a regularization parameter given by λ = α/β.

1.2.6 Bayesian curve fitting
Although we have included a prior distribution p(w|α), we are so far still mak-

ing a point estimate of w and so this does not yet amount to a Bayesian treatment. In
a fully Bayesian approach, we should consistently apply the sum and product rules
of probability, which requires, as we shall see shortly, that we integrate over all val-
ues of w. Such marginalizations lie at the heart of Bayesian methods for pattern
recognition.
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Sujets: 

HUGO LAROCHELLE

THÉORIE DE L’INFORMATION

• Les probabilités sont également utiles pour quantifier 
l’information présente dans des données

‣ exemple : quel est le nombre minimum de bits nécessaire pour 
encoder un message ?

• Cette question est intimement liée à la probabilité 
d’observer ce message

‣ plus le message est «surprenant» (improbable), plus on aura besoin 
de bits
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• Codage de Huffman : 

‣ façon optimale d’encoder des symboles indépendants de façon binaire

‣ plus un symbole est «fréquent» (probable), plus son code sera court
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THÉORIE DE L’INFORMATION

• Soit p(x) la probabilité d’observer le symbole x
‣ la taille moyenne du code d’un symbole est

0.4 × 1 + 0.05 × 3 + 0.2 × 3 + 0.35 × 2 = 1.85 (bits)

•Entropie :

‣ Claude Shannon a démontré qu’il est impossible de compresser 
l’information dans un plus petit code moyen

‣ −log2 p(x) est l’information contenue par x
51
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Figure 1.29 Plots of the quantity Lq = |y − t|q for various values of q.

h(x) = − log2 p(x) (1.92)

where the negative sign ensures that information is positive or zero. Note that low
probability events x correspond to high information content. The choice of basis
for the logarithm is arbitrary, and for the moment we shall adopt the convention
prevalent in information theory of using logarithms to the base of 2. In this case, as
we shall see shortly, the units of h(x) are bits (‘binary digits’).

Now suppose that a sender wishes to transmit the value of a random variable to
a receiver. The average amount of information that they transmit in the process is
obtained by taking the expectation of (1.92) with respect to the distribution p(x) and
is given by

H[x] = −
∑

x

p(x) log2 p(x). (1.93)

This important quantity is called the entropy of the random variable x. Note that
limp→0 p ln p = 0 and so we shall take p(x) ln p(x) = 0 whenever we encounter a
value for x such that p(x) = 0.

So far we have given a rather heuristic motivation for the definition of informa-

≈ 1.7393



Sujets: 

HUGO LAROCHELLE

THÉORIE DE L’INFORMATION

• L’entropie donne une façon standard de quantifier 
l’information moyenne contenue par une observation x
‣ plus p(x) est proche d’une loi uniforme, plus l’entropie est élevée

‣ exemple : x ∈ {a,b,c,d,e,f,g,h}
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tion (1.92) and the corresponding entropy (1.93). We now show that these definitions
indeed possess useful properties. Consider a random variable x having 8 possible
states, each of which is equally likely. In order to communicate the value of x to
a receiver, we would need to transmit a message of length 3 bits. Notice that the
entropy of this variable is given by

H[x] = −8 × 1
8

log2

1
8

= 3 bits.

Now consider an example (Cover and Thomas, 1991) of a variable having 8 pos-
sible states {a, b, c, d, e, f, g, h} for which the respective probabilities are given by
( 1
2 , 1

4 , 1
8 , 1

16 , 1
64 , 1

64 , 1
64 , 1

64). The entropy in this case is given by

H[x] = −1
2

log2

1
2
− 1

4
log2

1
4
− 1

8
log2

1
8
− 1

16
log2

1
16

− 4
64

log2

1
64

= 2 bits.

We see that the nonuniform distribution has a smaller entropy than the uniform one,
and we shall gain some insight into this shortly when we discuss the interpretation of
entropy in terms of disorder. For the moment, let us consider how we would transmit
the identity of the variable’s state to a receiver. We could do this, as before, using
a 3-bit number. However, we can take advantage of the nonuniform distribution by
using shorter codes for the more probable events, at the expense of longer codes for
the less probable events, in the hope of getting a shorter average code length. This
can be done by representing the states {a, b, c, d, e, f, g, h} using, for instance, the
following set of code strings: 0, 10, 110, 1110, 111100, 111101, 111110, 111111.
The average length of the code that has to be transmitted is then

average code length =
1
2
× 1 +

1
4
× 2 +

1
8
× 3 +

1
16

× 4 + 4 × 1
64

× 6 = 2 bits

which again is the same as the entropy of the random variable. Note that shorter code
strings cannot be used because it must be possible to disambiguate a concatenation
of such strings into its component parts. For instance, 11001110 decodes uniquely
into the state sequence c, a, d.

This relation between entropy and shortest coding length is a general one. The
noiseless coding theorem (Shannon, 1948) states that the entropy is a lower bound
on the number of bits needed to transmit the state of a random variable.

From now on, we shall switch to the use of natural logarithms in defining en-
tropy, as this will provide a more convenient link with ideas elsewhere in this book.
In this case, the entropy is measured in units of ‘nats’ instead of bits, which differ
simply by a factor of ln 2.

We have introduced the concept of entropy in terms of the average amount of
information needed to specify the state of a random variable. In fact, the concept of
entropy has much earlier origins in physics where it was introduced in the context
of equilibrium thermodynamics and later given a deeper interpretation as a measure
of disorder through developments in statistical mechanics. We can understand this
alternative view of entropy by considering a set of N identical objects that are to be
divided amongst a set of bins, such that there are ni objects in the ith bin. Consider
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• L’entropie donne une façon standard de quantifier 
l’information moyenne contenue par une observation x
‣ plus p(x) est proche d’une loi uniforme, plus l’entropie est élevée

‣ exemple : x ∈ {a,b,c,d,e,f,g,h}
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tion (1.92) and the corresponding entropy (1.93). We now show that these definitions
indeed possess useful properties. Consider a random variable x having 8 possible
states, each of which is equally likely. In order to communicate the value of x to
a receiver, we would need to transmit a message of length 3 bits. Notice that the
entropy of this variable is given by

H[x] = −8 × 1
8

log2

1
8

= 3 bits.

Now consider an example (Cover and Thomas, 1991) of a variable having 8 pos-
sible states {a, b, c, d, e, f, g, h} for which the respective probabilities are given by
( 1
2 , 1

4 , 1
8 , 1

16 , 1
64 , 1

64 , 1
64 , 1

64). The entropy in this case is given by

H[x] = −1
2

log2

1
2
− 1

4
log2

1
4
− 1

8
log2

1
8
− 1

16
log2

1
16

− 4
64

log2

1
64

= 2 bits.

We see that the nonuniform distribution has a smaller entropy than the uniform one,
and we shall gain some insight into this shortly when we discuss the interpretation of
entropy in terms of disorder. For the moment, let us consider how we would transmit
the identity of the variable’s state to a receiver. We could do this, as before, using
a 3-bit number. However, we can take advantage of the nonuniform distribution by
using shorter codes for the more probable events, at the expense of longer codes for
the less probable events, in the hope of getting a shorter average code length. This
can be done by representing the states {a, b, c, d, e, f, g, h} using, for instance, the
following set of code strings: 0, 10, 110, 1110, 111100, 111101, 111110, 111111.
The average length of the code that has to be transmitted is then

average code length =
1
2
× 1 +

1
4
× 2 +

1
8
× 3 +

1
16

× 4 + 4 × 1
64

× 6 = 2 bits

which again is the same as the entropy of the random variable. Note that shorter code
strings cannot be used because it must be possible to disambiguate a concatenation
of such strings into its component parts. For instance, 11001110 decodes uniquely
into the state sequence c, a, d.

This relation between entropy and shortest coding length is a general one. The
noiseless coding theorem (Shannon, 1948) states that the entropy is a lower bound
on the number of bits needed to transmit the state of a random variable.

From now on, we shall switch to the use of natural logarithms in defining en-
tropy, as this will provide a more convenient link with ideas elsewhere in this book.
In this case, the entropy is measured in units of ‘nats’ instead of bits, which differ
simply by a factor of ln 2.

We have introduced the concept of entropy in terms of the average amount of
information needed to specify the state of a random variable. In fact, the concept of
entropy has much earlier origins in physics where it was introduced in the context
of equilibrium thermodynamics and later given a deeper interpretation as a measure
of disorder through developments in statistical mechanics. We can understand this
alternative view of entropy by considering a set of N identical objects that are to be
divided amongst a set of bins, such that there are ni objects in the ith bin. Consider
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• L’entropie est une fonction d’une loi de probabilité

‣ elle reflète l’incertitude représentée par la loi

‣ si p(x) = 1 pour une seule valeur de x, l’entropie est 0 

• On peut généraliser l’entropie à une loi jointe sur plusieurs 
variables
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• L’entropie conditionnelle quantifie l’information 
additionnelle qu’apporte une nouvelle observation y

• On peut démontrer que

55

entropie conditionnelle

H[y|x] = �
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p(x, y) log2 p(y|x)

H[x, y] = H[y|x] + H[x]
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• On peut généraliser l’entropie au cas continu :

‣ l’entropie différentielle peut être négative

‣ lorsqu’on utilise le logarithme naturel, on parle de «nats» à la place 
de bits

‣ l’interprétation comme mesure de l’incertitude associée à une loi de 
probabilité demeure pertinente
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∆ → 0. The first term on the right-hand side of (1.102) will approach the integral of
p(x) ln p(x) in this limit so that

lim
∆→0

{
∑

i

p(xi)∆ ln p(xi)

}
= −

∫
p(x) ln p(x) dx (1.103)

where the quantity on the right-hand side is called the differential entropy. We see
that the discrete and continuous forms of the entropy differ by a quantity ln ∆, which
diverges in the limit ∆ → 0. This reflects the fact that to specify a continuous
variable very precisely requires a large number of bits. For a density defined over
multiple continuous variables, denoted collectively by the vector x, the differential
entropy is given by

H[x] = −
∫

p(x) ln p(x) dx. (1.104)

In the case of discrete distributions, we saw that the maximum entropy con-
figuration corresponded to an equal distribution of probabilities across the possible
states of the variable. Let us now consider the maximum entropy configuration for
a continuous variable. In order for this maximum to be well defined, it will be nec-
essary to constrain the first and second moments of p(x) as well as preserving the
normalization constraint. We therefore maximize the differential entropy with the

Ludwig Boltzmann
1844–1906

Ludwig Eduard Boltzmann was an
Austrian physicist who created the
field of statistical mechanics. Prior
to Boltzmann, the concept of en-
tropy was already known from
classical thermodynamics where it

quantifies the fact that when we take energy from a
system, not all of that energy is typically available
to do useful work. Boltzmann showed that the ther-
modynamic entropy S, a macroscopic quantity, could
be related to the statistical properties at the micro-
scopic level. This is expressed through the famous
equation S = k ln W in which W represents the
number of possible microstates in a macrostate, and
k ≃ 1.38 × 10−23 (in units of Joules per Kelvin) is
known as Boltzmann’s constant. Boltzmann’s ideas
were disputed by many scientists of they day. One dif-
ficulty they saw arose from the second law of thermo-

dynamics, which states that the entropy of a closed
system tends to increase with time. By contrast, at
the microscopic level the classical Newtonian equa-
tions of physics are reversible, and so they found it
difficult to see how the latter could explain the for-
mer. They didn’t fully appreciate Boltzmann’s argu-
ments, which were statistical in nature and which con-
cluded not that entropy could never decrease over
time but simply that with overwhelming probability it
would generally increase. Boltzmann even had a long-
running dispute with the editor of the leading German
physics journal who refused to let him refer to atoms
and molecules as anything other than convenient the-
oretical constructs. The continued attacks on his work
lead to bouts of depression, and eventually he com-
mitted suicide. Shortly after Boltzmann’s death, new
experiments by Perrin on colloidal suspensions veri-
fied his theories and confirmed the value of the Boltz-
mann constant. The equation S = k ln W is carved on
Boltzmann’s tombstone.
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• Plus la fonction de densité est «piquée», plus l’entropie sera 
basse

‣ si x ∈ [a,b], la loi uniforme a l’entropie maximale

‣ si x ∈ ℝ avec moyenne μ et variance σ 
2, la loi gaussienne a l’entropie 

maximale
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three constraints
∫ ∞

−∞
p(x) dx = 1 (1.105)

∫ ∞

−∞
xp(x) dx = µ (1.106)

∫ ∞

−∞
(x − µ)2p(x) dx = σ2. (1.107)

The constrained maximization can be performed using Lagrange multipliers so thatAppendix E
we maximize the following functional with respect to p(x)

−
∫ ∞

−∞
p(x) ln p(x) dx + λ1

(∫ ∞

−∞
p(x) dx − 1

)

+λ2

(∫ ∞

−∞
xp(x) dx − µ

)
+ λ3

(∫ ∞

−∞
(x − µ)2p(x) dx − σ2

)
.

Using the calculus of variations, we set the derivative of this functional to zero givingAppendix D

p(x) = exp
{
−1 + λ1 + λ2x + λ3(x − µ)2

}
. (1.108)

The Lagrange multipliers can be found by back substitution of this result into the
three constraint equations, leading finally to the resultExercise 1.34

p(x) =
1

(2πσ2)1/2
exp

{
−(x − µ)2

2σ2

}
(1.109)

and so the distribution that maximizes the differential entropy is the Gaussian. Note
that we did not constrain the distribution to be nonnegative when we maximized the
entropy. However, because the resulting distribution is indeed nonnegative, we see
with hindsight that such a constraint is not necessary.

If we evaluate the differential entropy of the Gaussian, we obtainExercise 1.35

H[x] =
1
2

{
1 + ln(2πσ2)

}
. (1.110)

Thus we see again that the entropy increases as the distribution becomes broader,
i.e., as σ2 increases. This result also shows that the differential entropy, unlike the
discrete entropy, can be negative, because H(x) < 0 in (1.110) for σ2 < 1/(2πe).

Suppose we have a joint distribution p(x,y) from which we draw pairs of values
of x and y. If a value of x is already known, then the additional information needed
to specify the corresponding value of y is given by − ln p(y|x). Thus the average
additional information needed to specify y can be written as

H[y|x] = −
∫∫

p(y,x) ln p(y|x) dy dx (1.111)



Apprentissage automatique
Formulation probabiliste - divergence de Kullback-Leibler
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• Si on ne connait pas p(x), on va vouloir l’estimer

• Si q(x) est notre estimation, on définit la divergence de 
Kullback-Leibler (K-L) comme suit :

‣ dans le cas discret (avec des sommes), correspond au nombre de 
bits additionnels par rapport à ce qui serait optimal 

59

divergence de Kullback-Leibler ou entropie relative

1.6. Information Theory 55

which is called the conditional entropy of y given x. It is easily seen, using the
product rule, that the conditional entropy satisfies the relationExercise 1.37

H[x,y] = H[y|x] + H[x] (1.112)

where H[x,y] is the differential entropy of p(x,y) and H[x] is the differential en-
tropy of the marginal distribution p(x). Thus the information needed to describe x
and y is given by the sum of the information needed to describe x alone plus the
additional information required to specify y given x.

1.6.1 Relative entropy and mutual information
So far in this section, we have introduced a number of concepts from information

theory, including the key notion of entropy. We now start to relate these ideas to
pattern recognition. Consider some unknown distribution p(x), and suppose that
we have modelled this using an approximating distribution q(x). If we use q(x) to
construct a coding scheme for the purpose of transmitting values of x to a receiver,
then the average additional amount of information (in nats) required to specify the
value of x (assuming we choose an efficient coding scheme) as a result of using q(x)
instead of the true distribution p(x) is given by

KL(p∥q) = −
∫

p(x) ln q(x) dx −
(
−

∫
p(x) ln p(x) dx

)

= −
∫

p(x) ln
{

q(x)
p(x)

}
dx. (1.113)

This is known as the relative entropy or Kullback-Leibler divergence, or KL diver-
gence (Kullback and Leibler, 1951), between the distributions p(x) and q(x). Note
that it is not a symmetrical quantity, that is to say KL(p∥q) ̸≡ KL(q∥p).

We now show that the Kullback-Leibler divergence satisfies KL(p∥q) ! 0 with
equality if, and only if, p(x) = q(x). To do this we first introduce the concept of
convex functions. A function f(x) is said to be convex if it has the property that
every chord lies on or above the function, as shown in Figure 1.31. Any value of x
in the interval from x = a to x = b can be written in the form λa + (1 − λ)b where
0 " λ " 1. The corresponding point on the chord is given by λf(a) + (1 − λ)f(b),

Claude Shannon
1916–2001

After graduating from Michigan and
MIT, Shannon joined the AT&T Bell
Telephone laboratories in 1941. His
paper ‘A Mathematical Theory of
Communication’ published in the
Bell System Technical Journal in

1948 laid the foundations for modern information the-

ory. This paper introduced the word ‘bit’, and his con-
cept that information could be sent as a stream of 1s
and 0s paved the way for the communications revo-
lution. It is said that von Neumann recommended to
Shannon that he use the term entropy, not only be-
cause of its similarity to the quantity used in physics,
but also because “nobody knows what entropy really
is, so in any discussion you will always have an advan-
tage”.
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• Utilisée comme «distance» entre deux lois

‣ est toujours positive

‣ n’est pas symétrique (contrairement à une vraie distance)

• Peut mesurer à quel point deux variables sont dépendantes

‣ on appelle cette mesure l’information mutuelle
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where we have used the fact that − lnx is a convex function, together with the nor-
malization condition

∫
q(x) dx = 1. In fact, − lnx is a strictly convex function,

so the equality will hold if, and only if, q(x) = p(x) for all x. Thus we can in-
terpret the Kullback-Leibler divergence as a measure of the dissimilarity of the two
distributions p(x) and q(x).

We see that there is an intimate relationship between data compression and den-
sity estimation (i.e., the problem of modelling an unknown probability distribution)
because the most efficient compression is achieved when we know the true distri-
bution. If we use a distribution that is different from the true one, then we must
necessarily have a less efficient coding, and on average the additional information
that must be transmitted is (at least) equal to the Kullback-Leibler divergence be-
tween the two distributions.

Suppose that data is being generated from an unknown distribution p(x) that we
wish to model. We can try to approximate this distribution using some parametric
distribution q(x|θ), governed by a set of adjustable parameters θ, for example a
multivariate Gaussian. One way to determine θ is to minimize the Kullback-Leibler
divergence between p(x) and q(x|θ) with respect to θ. We cannot do this directly
because we don’t know p(x). Suppose, however, that we have observed a finite set
of training points xn, for n = 1, . . . , N , drawn from p(x). Then the expectation
with respect to p(x) can be approximated by a finite sum over these points, using
(1.35), so that

KL(p∥q) ≃
N∑

n=1

{− ln q(xn|θ) + ln p(xn)} . (1.119)

The second term on the right-hand side of (1.119) is independent of θ, and the first
term is the negative log likelihood function for θ under the distribution q(x|θ) eval-
uated using the training set. Thus we see that minimizing this Kullback-Leibler
divergence is equivalent to maximizing the likelihood function.

Now consider the joint distribution between two sets of variables x and y given
by p(x,y). If the sets of variables are independent, then their joint distribution will
factorize into the product of their marginals p(x,y) = p(x)p(y). If the variables are
not independent, we can gain some idea of whether they are ‘close’ to being indepen-
dent by considering the Kullback-Leibler divergence between the joint distribution
and the product of the marginals, given by

I[x,y] ≡ KL(p(x,y)∥p(x)p(y))

= −
∫∫

p(x,y) ln
(

p(x)p(y)
p(x,y)

)
dxdy (1.120)

which is called the mutual information between the variables x and y. From the
properties of the Kullback-Leibler divergence, we see that I(x,y) ! 0 with equal-
ity if, and only if, x and y are independent. Using the sum and product rules of
probability, we see that the mutual information is related to the conditional entropy
throughExercise 1.41

I[x,y] = H[x] − H[x|y] = H[y] − H[y|x]. (1.121)


