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Figure 1.13 Plot of the univariate Gaussian
showing the mean µ and the
standard deviation σ.
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N

(
x|µ, σ2

)
dx = 1. (1.48)

Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-

tion. In particular, the average value of x is given byExercise 1.8

E[x] =
∫ ∞

−∞
N

(
x|µ, σ2

)
xdx = µ. (1.49)

Because the parameter µ represents the average value of x under the distribution, it
is referred to as the mean. Similarly, for the second order moment

E[x2] =
∫ ∞

−∞
N

(
x|µ, σ2

)
x2 dx = µ2 + σ2. (1.50)

From (1.49) and (1.50), it follows that the variance of x is given by

var[x] = E[x2] − E[x]2 = σ2 (1.51)

and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(1.52)

where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.

p(x) =

E[x] = µ cov[x] = ⌃
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where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.

p(x) =

E[x] = µ cov[x] = ⌃
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functional dependence of the Gaussian on x is through the quadratic form

∆2 = (x − µ)TΣ−1(x − µ) (2.44)

which appears in the exponent. The quantity ∆ is called the Mahalanobis distance
from µ to x and reduces to the Euclidean distance when Σ is the identity matrix. The
Gaussian distribution will be constant on surfaces in x-space for which this quadratic
form is constant.

First of all, we note that the matrix Σ can be taken to be symmetric, without
loss of generality, because any antisymmetric component would disappear from the
exponent. Now consider the eigenvector equation for the covariance matrixExercise 2.17

Σui = λiui (2.45)

where i = 1, . . . , D. Because Σ is a real, symmetric matrix its eigenvalues will be
real, and its eigenvectors can be chosen to form an orthonormal set, so thatExercise 2.18

uT
i uj = Iij (2.46)

where Iij is the i, j element of the identity matrix and satisfies

Iij =
{

1, if i = j
0, otherwise. (2.47)

The covariance matrix Σ can be expressed as an expansion in terms of its eigenvec-
tors in the formExercise 2.19

Σ =
D∑

i=1

λiuiuT
i (2.48)

and similarly the inverse covariance matrix Σ−1 can be expressed as

Σ−1 =
D∑

i=1

1
λi

uiuT
i . (2.49)

Substituting (2.49) into (2.44), the quadratic form becomes

∆2 =
D∑

i=1

y2
i

λi
(2.50)

where we have defined
yi = uT

i (x − µ). (2.51)

We can interpret {yi} as a new coordinate system defined by the orthonormal vectors
ui that are shifted and rotated with respect to the original xi coordinates. Forming
the vector y = (y1, . . . , yD)T, we have

y = U(x − µ) (2.52)

distance de 
Mahalanobis

{
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Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-

tion. In particular, the average value of x is given byExercise 1.8
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and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by
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where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.
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• Exemple : x = (x 1,x 2)
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Figure 2.8 Contours of constant
probability density for a Gaussian
distribution in two dimensions in
which the covariance matrix is (a) of
general form, (b) diagonal, in which
the elliptical contours are aligned
with the coordinate axes, and (c)
proportional to the identity matrix, in
which the contours are concentric
circles.
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therefore grows quadratically with D, and the computational task of manipulating
and inverting large matrices can become prohibitive. One way to address this prob-
lem is to use restricted forms of the covariance matrix. If we consider covariance
matrices that are diagonal, so that Σ = diag(σ2

i ), we then have a total of 2D inde-
pendent parameters in the density model. The corresponding contours of constant
density are given by axis-aligned ellipsoids. We could further restrict the covariance
matrix to be proportional to the identity matrix, Σ = σ2I, known as an isotropic co-
variance, giving D + 1 independent parameters in the model and spherical surfaces
of constant density. The three possibilities of general, diagonal, and isotropic covari-
ance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches
limit the number of degrees of freedom in the distribution and make inversion of the
covariance matrix a much faster operation, they also greatly restrict the form of the
probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically uni-
modal (i.e., has a single maximum) and so is unable to provide a good approximation
to multimodal distributions. Thus the Gaussian distribution can be both too flexible,
in the sense of having too many parameters, while also being too limited in the range
of distributions that it can adequately represent. We will see later that the introduc-
tion of latent variables, also called hidden variables or unobserved variables, allows
both of these problems to be addressed. In particular, a rich family of multimodal
distributions is obtained by introducing discrete latent variables leading to mixtures
of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous
latent variables, as described in Chapter 12, leads to models in which the number of
free parameters can be controlled independently of the dimensionality D of the data
space while still allowing the model to capture the dominant correlations in the data
set. Indeed, these two approaches can be combined and further extended to derive
a very rich set of hierarchical models that can be adapted to a broad range of prac-
tical applications. For instance, the Gaussian version of the Markov random field,Section 8.3
which is widely used as a probabilistic model of images, is a Gaussian distribution
over the joint space of pixel intensities but rendered tractable through the imposition
of considerable structure reflecting the spatial organization of the pixels. Similarly,
the linear dynamical system, used to model time series data for applications suchSection 13.3
as tracking, is also a joint Gaussian distribution over a potentially large number of
observed and latent variables and again is tractable due to the structure imposed on
the distribution. A powerful framework for expressing the form and properties of
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Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-

tion. In particular, the average value of x is given byExercise 1.8

E[x] =
∫ ∞

−∞
N

(
x|µ, σ2

)
xdx = µ. (1.49)

Because the parameter µ represents the average value of x under the distribution, it
is referred to as the mean. Similarly, for the second order moment

E[x2] =
∫ ∞

−∞
N

(
x|µ, σ2

)
x2 dx = µ2 + σ2. (1.50)

From (1.49) and (1.50), it follows that the variance of x is given by

var[x] = E[x2] − E[x]2 = σ2 (1.51)

and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(1.52)

where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.Σ = ( )1 0

0 1
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Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-

tion. In particular, the average value of x is given byExercise 1.8
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and hence σ2 is referred to as the variance parameter. The maximum of a distribution
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We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by
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where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.
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therefore grows quadratically with D, and the computational task of manipulating
and inverting large matrices can become prohibitive. One way to address this prob-
lem is to use restricted forms of the covariance matrix. If we consider covariance
matrices that are diagonal, so that Σ = diag(σ2

i ), we then have a total of 2D inde-
pendent parameters in the density model. The corresponding contours of constant
density are given by axis-aligned ellipsoids. We could further restrict the covariance
matrix to be proportional to the identity matrix, Σ = σ2I, known as an isotropic co-
variance, giving D + 1 independent parameters in the model and spherical surfaces
of constant density. The three possibilities of general, diagonal, and isotropic covari-
ance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches
limit the number of degrees of freedom in the distribution and make inversion of the
covariance matrix a much faster operation, they also greatly restrict the form of the
probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically uni-
modal (i.e., has a single maximum) and so is unable to provide a good approximation
to multimodal distributions. Thus the Gaussian distribution can be both too flexible,
in the sense of having too many parameters, while also being too limited in the range
of distributions that it can adequately represent. We will see later that the introduc-
tion of latent variables, also called hidden variables or unobserved variables, allows
both of these problems to be addressed. In particular, a rich family of multimodal
distributions is obtained by introducing discrete latent variables leading to mixtures
of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous
latent variables, as described in Chapter 12, leads to models in which the number of
free parameters can be controlled independently of the dimensionality D of the data
space while still allowing the model to capture the dominant correlations in the data
set. Indeed, these two approaches can be combined and further extended to derive
a very rich set of hierarchical models that can be adapted to a broad range of prac-
tical applications. For instance, the Gaussian version of the Markov random field,Section 8.3
which is widely used as a probabilistic model of images, is a Gaussian distribution
over the joint space of pixel intensities but rendered tractable through the imposition
of considerable structure reflecting the spatial organization of the pixels. Similarly,
the linear dynamical system, used to model time series data for applications suchSection 13.3
as tracking, is also a joint Gaussian distribution over a potentially large number of
observed and latent variables and again is tractable due to the structure imposed on
the distribution. A powerful framework for expressing the form and properties of

Σ = ( )2 0

0 1

5
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Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-

tion. In particular, the average value of x is given byExercise 1.8

E[x] =
∫ ∞
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)
xdx = µ. (1.49)

Because the parameter µ represents the average value of x under the distribution, it
is referred to as the mean. Similarly, for the second order moment

E[x2] =
∫ ∞

−∞
N

(
x|µ, σ2

)
x2 dx = µ2 + σ2. (1.50)

From (1.49) and (1.50), it follows that the variance of x is given by

var[x] = E[x2] − E[x]2 = σ2 (1.51)

and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(1.52)

where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.Σ = ( )1.5 0.5

0.5 1.5
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therefore grows quadratically with D, and the computational task of manipulating
and inverting large matrices can become prohibitive. One way to address this prob-
lem is to use restricted forms of the covariance matrix. If we consider covariance
matrices that are diagonal, so that Σ = diag(σ2

i ), we then have a total of 2D inde-
pendent parameters in the density model. The corresponding contours of constant
density are given by axis-aligned ellipsoids. We could further restrict the covariance
matrix to be proportional to the identity matrix, Σ = σ2I, known as an isotropic co-
variance, giving D + 1 independent parameters in the model and spherical surfaces
of constant density. The three possibilities of general, diagonal, and isotropic covari-
ance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches
limit the number of degrees of freedom in the distribution and make inversion of the
covariance matrix a much faster operation, they also greatly restrict the form of the
probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically uni-
modal (i.e., has a single maximum) and so is unable to provide a good approximation
to multimodal distributions. Thus the Gaussian distribution can be both too flexible,
in the sense of having too many parameters, while also being too limited in the range
of distributions that it can adequately represent. We will see later that the introduc-
tion of latent variables, also called hidden variables or unobserved variables, allows
both of these problems to be addressed. In particular, a rich family of multimodal
distributions is obtained by introducing discrete latent variables leading to mixtures
of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous
latent variables, as described in Chapter 12, leads to models in which the number of
free parameters can be controlled independently of the dimensionality D of the data
space while still allowing the model to capture the dominant correlations in the data
set. Indeed, these two approaches can be combined and further extended to derive
a very rich set of hierarchical models that can be adapted to a broad range of prac-
tical applications. For instance, the Gaussian version of the Markov random field,Section 8.3
which is widely used as a probabilistic model of images, is a Gaussian distribution
over the joint space of pixel intensities but rendered tractable through the imposition
of considerable structure reflecting the spatial organization of the pixels. Similarly,
the linear dynamical system, used to model time series data for applications suchSection 13.3
as tracking, is also a joint Gaussian distribution over a potentially large number of
observed and latent variables and again is tractable due to the structure imposed on
the distribution. A powerful framework for expressing the form and properties of
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These last two equations can also be written in the form

A =
M∑

i=1

λiuiuT
i (C.45)

A−1 =
M∑

i=1

1
λi

uiuT
i . (C.46)

If we take the determinant of (C.43), and use (C.12), we obtain

|A| =
M∏

i=1

λi. (C.47)

Similarly, taking the trace of (C.43), and using the cyclic property (C.8) of the trace
operator together with UTU = I, we have

Tr(A) =
M∑

i=1

λi. (C.48)

We leave it as an exercise for the reader to verify (C.22) by making use of the results
(C.33), (C.45), (C.46), and (C.47).

A matrix A is said to be positive definite, denoted by A ≻ 0, if wTAw > 0 for
all values of the vector w. Equivalently, a positive definite matrix has λi > 0 for all
of its eigenvalues (as can be seen by setting w to each of the eigenvectors in turn,
and by noting that an arbitrary vector can be expanded as a linear combination of the
eigenvectors). Note that positive definite is not the same as all the elements being
positive. For example, the matrix

(
1 2
3 4

)
(C.49)

has eigenvalues λ1 ≃ 5.37 and λ2 ≃ −0.37. A matrix is said to be positive semidef-
inite if wTAw ! 0 holds for all values of w, which is denoted A ≽ 0, and is
equivalent to λi ! 0.
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functional dependence of the Gaussian on x is through the quadratic form

∆2 = (x − µ)TΣ−1(x − µ) (2.44)

which appears in the exponent. The quantity ∆ is called the Mahalanobis distance
from µ to x and reduces to the Euclidean distance when Σ is the identity matrix. The
Gaussian distribution will be constant on surfaces in x-space for which this quadratic
form is constant.

First of all, we note that the matrix Σ can be taken to be symmetric, without
loss of generality, because any antisymmetric component would disappear from the
exponent. Now consider the eigenvector equation for the covariance matrixExercise 2.17

Σui = λiui (2.45)

where i = 1, . . . , D. Because Σ is a real, symmetric matrix its eigenvalues will be
real, and its eigenvectors can be chosen to form an orthonormal set, so thatExercise 2.18

uT
i uj = Iij (2.46)

where Iij is the i, j element of the identity matrix and satisfies

Iij =
{

1, if i = j
0, otherwise. (2.47)

The covariance matrix Σ can be expressed as an expansion in terms of its eigenvec-
tors in the formExercise 2.19

Σ =
D∑

i=1

λiuiuT
i (2.48)

and similarly the inverse covariance matrix Σ−1 can be expressed as

Σ−1 =
D∑

i=1

1
λi

uiuT
i . (2.49)

Substituting (2.49) into (2.44), the quadratic form becomes

∆2 =
D∑

i=1

y2
i

λi
(2.50)

where we have defined
yi = uT

i (x − µ). (2.51)

We can interpret {yi} as a new coordinate system defined by the orthonormal vectors
ui that are shifted and rotated with respect to the original xi coordinates. Forming
the vector y = (y1, . . . , yD)T, we have

y = U(x − µ) (2.52)
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Figure 2.7 The red curve shows the ellip-
tical surface of constant proba-
bility density for a Gaussian in
a two-dimensional space x =
(x1, x2) on which the density
is exp(−1/2) of its value at
x = µ. The major axes of
the ellipse are defined by the
eigenvectors ui of the covari-
ance matrix, with correspond-
ing eigenvalues λi.

x1

x2

λ1/2
1

λ1/2
2

y1

y2

u1

u2

µ

where U is a matrix whose rows are given by uT
i . From (2.46) it follows that U is

an orthogonal matrix, i.e., it satisfies UUT = I, and hence also UTU = I, where IAppendix C
is the identity matrix.

The quadratic form, and hence the Gaussian density, will be constant on surfaces
for which (2.51) is constant. If all of the eigenvalues λi are positive, then these
surfaces represent ellipsoids, with their centres at µ and their axes oriented along ui,
and with scaling factors in the directions of the axes given by λ1/2

i , as illustrated in
Figure 2.7.

For the Gaussian distribution to be well defined, it is necessary for all of the
eigenvalues λi of the covariance matrix to be strictly positive, otherwise the dis-
tribution cannot be properly normalized. A matrix whose eigenvalues are strictly
positive is said to be positive definite. In Chapter 12, we will encounter Gaussian
distributions for which one or more of the eigenvalues are zero, in which case the
distribution is singular and is confined to a subspace of lower dimensionality. If all
of the eigenvalues are nonnegative, then the covariance matrix is said to be positive
semidefinite.

Now consider the form of the Gaussian distribution in the new coordinate system
defined by the yi. In going from the x to the y coordinate system, we have a Jacobian
matrix J with elements given by

Jij =
∂xi

∂yj
= Uji (2.53)

where Uji are the elements of the matrix UT. Using the orthonormality property of
the matrix U, we see that the square of the determinant of the Jacobian matrix is

|J|2 =
∣∣UT

∣∣2 =
∣∣UT

∣∣ |U| =
∣∣UTU

∣∣ = |I| = 1 (2.54)

and hence |J| = 1. Also, the determinant |Σ| of the covariance matrix can be written



Sujets: 

HUGO LAROCHELLE

LOI DE PROBABILITÉ GAUSSIENNE

9

lien entre vecteurs et valeurs propres et forme de la gaussienne

�2 = (x� µ)T⌃�1(x� µ)

= (x� µ)T
 
X

i

1

�i
uiu

T
i

!
(x� µ)

=
X

i

�
(x� µ)Tui

�2

�i
=
X

i

 
(x� µ)Tui

�1/2
i

!2



Sujets: 

HUGO LAROCHELLE

LOI DE PROBABILITÉ GAUSSIENNE

9

lien entre vecteurs et valeurs propres et forme de la gaussienne

2.3. The Gaussian Distribution 81

Figure 2.7 The red curve shows the ellip-
tical surface of constant proba-
bility density for a Gaussian in
a two-dimensional space x =
(x1, x2) on which the density
is exp(−1/2) of its value at
x = µ. The major axes of
the ellipse are defined by the
eigenvectors ui of the covari-
ance matrix, with correspond-
ing eigenvalues λi.

x1

x2

λ1/2
1

λ1/2
2

y1

y2

u1

u2

µ

where U is a matrix whose rows are given by uT
i . From (2.46) it follows that U is

an orthogonal matrix, i.e., it satisfies UUT = I, and hence also UTU = I, where IAppendix C
is the identity matrix.

The quadratic form, and hence the Gaussian density, will be constant on surfaces
for which (2.51) is constant. If all of the eigenvalues λi are positive, then these
surfaces represent ellipsoids, with their centres at µ and their axes oriented along ui,
and with scaling factors in the directions of the axes given by λ1/2

i , as illustrated in
Figure 2.7.

For the Gaussian distribution to be well defined, it is necessary for all of the
eigenvalues λi of the covariance matrix to be strictly positive, otherwise the dis-
tribution cannot be properly normalized. A matrix whose eigenvalues are strictly
positive is said to be positive definite. In Chapter 12, we will encounter Gaussian
distributions for which one or more of the eigenvalues are zero, in which case the
distribution is singular and is confined to a subspace of lower dimensionality. If all
of the eigenvalues are nonnegative, then the covariance matrix is said to be positive
semidefinite.

Now consider the form of the Gaussian distribution in the new coordinate system
defined by the yi. In going from the x to the y coordinate system, we have a Jacobian
matrix J with elements given by

Jij =
∂xi

∂yj
= Uji (2.53)

where Uji are the elements of the matrix UT. Using the orthonormality property of
the matrix U, we see that the square of the determinant of the Jacobian matrix is

|J|2 =
∣∣UT

∣∣2 =
∣∣UT

∣∣ |U| =
∣∣UTU

∣∣ = |I| = 1 (2.54)

and hence |J| = 1. Also, the determinant |Σ| of the covariance matrix can be written
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Figure 2.8 Contours of constant
probability density for a Gaussian
distribution in two dimensions in
which the covariance matrix is (a) of
general form, (b) diagonal, in which
the elliptical contours are aligned
with the coordinate axes, and (c)
proportional to the identity matrix, in
which the contours are concentric
circles.

x1

x2

(a)

x1

x2

(b)
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therefore grows quadratically with D, and the computational task of manipulating
and inverting large matrices can become prohibitive. One way to address this prob-
lem is to use restricted forms of the covariance matrix. If we consider covariance
matrices that are diagonal, so that Σ = diag(σ2

i ), we then have a total of 2D inde-
pendent parameters in the density model. The corresponding contours of constant
density are given by axis-aligned ellipsoids. We could further restrict the covariance
matrix to be proportional to the identity matrix, Σ = σ2I, known as an isotropic co-
variance, giving D + 1 independent parameters in the model and spherical surfaces
of constant density. The three possibilities of general, diagonal, and isotropic covari-
ance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches
limit the number of degrees of freedom in the distribution and make inversion of the
covariance matrix a much faster operation, they also greatly restrict the form of the
probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically uni-
modal (i.e., has a single maximum) and so is unable to provide a good approximation
to multimodal distributions. Thus the Gaussian distribution can be both too flexible,
in the sense of having too many parameters, while also being too limited in the range
of distributions that it can adequately represent. We will see later that the introduc-
tion of latent variables, also called hidden variables or unobserved variables, allows
both of these problems to be addressed. In particular, a rich family of multimodal
distributions is obtained by introducing discrete latent variables leading to mixtures
of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous
latent variables, as described in Chapter 12, leads to models in which the number of
free parameters can be controlled independently of the dimensionality D of the data
space while still allowing the model to capture the dominant correlations in the data
set. Indeed, these two approaches can be combined and further extended to derive
a very rich set of hierarchical models that can be adapted to a broad range of prac-
tical applications. For instance, the Gaussian version of the Markov random field,Section 8.3
which is widely used as a probabilistic model of images, is a Gaussian distribution
over the joint space of pixel intensities but rendered tractable through the imposition
of considerable structure reflecting the spatial organization of the pixels. Similarly,
the linear dynamical system, used to model time series data for applications suchSection 13.3
as tracking, is also a joint Gaussian distribution over a potentially large number of
observed and latent variables and again is tractable due to the structure imposed on
the distribution. A powerful framework for expressing the form and properties of
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Figure 1.13 Plot of the univariate Gaussian
showing the mean µ and the
standard deviation σ.

N (x|µ, σ2)

x

2σ

µ

∫ ∞

−∞
N

(
x|µ, σ2

)
dx = 1. (1.48)

Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-

tion. In particular, the average value of x is given byExercise 1.8

E[x] =
∫ ∞

−∞
N

(
x|µ, σ2

)
xdx = µ. (1.49)

Because the parameter µ represents the average value of x under the distribution, it
is referred to as the mean. Similarly, for the second order moment

E[x2] =
∫ ∞

−∞
N

(
x|µ, σ2

)
x2 dx = µ2 + σ2. (1.50)

From (1.49) and (1.50), it follows that the variance of x is given by

var[x] = E[x2] − E[x]2 = σ2 (1.51)

and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(1.52)

where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.Σ = ( )1 0

0 1
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N (x|µ, σ2)

x

2σ

µ

∫ ∞

−∞
N

(
x|µ, σ2

)
dx = 1. (1.48)

Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-

tion. In particular, the average value of x is given byExercise 1.8

E[x] =
∫ ∞

−∞
N

(
x|µ, σ2

)
xdx = µ. (1.49)

Because the parameter µ represents the average value of x under the distribution, it
is referred to as the mean. Similarly, for the second order moment

E[x2] =
∫ ∞

−∞
N

(
x|µ, σ2

)
x2 dx = µ2 + σ2. (1.50)

From (1.49) and (1.50), it follows that the variance of x is given by

var[x] = E[x2] − E[x]2 = σ2 (1.51)

and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(1.52)

where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.
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probability density for a Gaussian
distribution in two dimensions in
which the covariance matrix is (a) of
general form, (b) diagonal, in which
the elliptical contours are aligned
with the coordinate axes, and (c)
proportional to the identity matrix, in
which the contours are concentric
circles.
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therefore grows quadratically with D, and the computational task of manipulating
and inverting large matrices can become prohibitive. One way to address this prob-
lem is to use restricted forms of the covariance matrix. If we consider covariance
matrices that are diagonal, so that Σ = diag(σ2

i ), we then have a total of 2D inde-
pendent parameters in the density model. The corresponding contours of constant
density are given by axis-aligned ellipsoids. We could further restrict the covariance
matrix to be proportional to the identity matrix, Σ = σ2I, known as an isotropic co-
variance, giving D + 1 independent parameters in the model and spherical surfaces
of constant density. The three possibilities of general, diagonal, and isotropic covari-
ance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches
limit the number of degrees of freedom in the distribution and make inversion of the
covariance matrix a much faster operation, they also greatly restrict the form of the
probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically uni-
modal (i.e., has a single maximum) and so is unable to provide a good approximation
to multimodal distributions. Thus the Gaussian distribution can be both too flexible,
in the sense of having too many parameters, while also being too limited in the range
of distributions that it can adequately represent. We will see later that the introduc-
tion of latent variables, also called hidden variables or unobserved variables, allows
both of these problems to be addressed. In particular, a rich family of multimodal
distributions is obtained by introducing discrete latent variables leading to mixtures
of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous
latent variables, as described in Chapter 12, leads to models in which the number of
free parameters can be controlled independently of the dimensionality D of the data
space while still allowing the model to capture the dominant correlations in the data
set. Indeed, these two approaches can be combined and further extended to derive
a very rich set of hierarchical models that can be adapted to a broad range of prac-
tical applications. For instance, the Gaussian version of the Markov random field,Section 8.3
which is widely used as a probabilistic model of images, is a Gaussian distribution
over the joint space of pixel intensities but rendered tractable through the imposition
of considerable structure reflecting the spatial organization of the pixels. Similarly,
the linear dynamical system, used to model time series data for applications suchSection 13.3
as tracking, is also a joint Gaussian distribution over a potentially large number of
observed and latent variables and again is tractable due to the structure imposed on
the distribution. A powerful framework for expressing the form and properties of

Σ = ( )2 0

0 1
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N (x|µ, σ2)

x

2σ

µ

∫ ∞

−∞
N

(
x|µ, σ2

)
dx = 1. (1.48)

Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-

tion. In particular, the average value of x is given byExercise 1.8

E[x] =
∫ ∞

−∞
N

(
x|µ, σ2

)
xdx = µ. (1.49)

Because the parameter µ represents the average value of x under the distribution, it
is referred to as the mean. Similarly, for the second order moment

E[x2] =
∫ ∞

−∞
N

(
x|µ, σ2

)
x2 dx = µ2 + σ2. (1.50)

From (1.49) and (1.50), it follows that the variance of x is given by

var[x] = E[x2] − E[x]2 = σ2 (1.51)

and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(1.52)

where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.Σ = ( )1.5 0.5

0.5 1.5
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therefore grows quadratically with D, and the computational task of manipulating
and inverting large matrices can become prohibitive. One way to address this prob-
lem is to use restricted forms of the covariance matrix. If we consider covariance
matrices that are diagonal, so that Σ = diag(σ2

i ), we then have a total of 2D inde-
pendent parameters in the density model. The corresponding contours of constant
density are given by axis-aligned ellipsoids. We could further restrict the covariance
matrix to be proportional to the identity matrix, Σ = σ2I, known as an isotropic co-
variance, giving D + 1 independent parameters in the model and spherical surfaces
of constant density. The three possibilities of general, diagonal, and isotropic covari-
ance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches
limit the number of degrees of freedom in the distribution and make inversion of the
covariance matrix a much faster operation, they also greatly restrict the form of the
probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically uni-
modal (i.e., has a single maximum) and so is unable to provide a good approximation
to multimodal distributions. Thus the Gaussian distribution can be both too flexible,
in the sense of having too many parameters, while also being too limited in the range
of distributions that it can adequately represent. We will see later that the introduc-
tion of latent variables, also called hidden variables or unobserved variables, allows
both of these problems to be addressed. In particular, a rich family of multimodal
distributions is obtained by introducing discrete latent variables leading to mixtures
of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous
latent variables, as described in Chapter 12, leads to models in which the number of
free parameters can be controlled independently of the dimensionality D of the data
space while still allowing the model to capture the dominant correlations in the data
set. Indeed, these two approaches can be combined and further extended to derive
a very rich set of hierarchical models that can be adapted to a broad range of prac-
tical applications. For instance, the Gaussian version of the Markov random field,Section 8.3
which is widely used as a probabilistic model of images, is a Gaussian distribution
over the joint space of pixel intensities but rendered tractable through the imposition
of considerable structure reflecting the spatial organization of the pixels. Similarly,
the linear dynamical system, used to model time series data for applications suchSection 13.3
as tracking, is also a joint Gaussian distribution over a potentially large number of
observed and latent variables and again is tractable due to the structure imposed on
the distribution. A powerful framework for expressing the form and properties of
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