Apprentissage automatique Formulation probabiliste - loi marginale d'une gaussienne

Sujets: loi gaussienne multidimensionnelle

• La version multidimensionnelle a une forme similaire

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

• paramétrée par sa moyenne μ et sa matrice de covariance Σ

$$\mathbb{E}[\mathbf{x}] = \boldsymbol{\mu} \qquad \operatorname{cov}[\mathbf{x}] = \boldsymbol{\Sigma}$$

 Σ permet de représenter des dépendances entre les élément de x

Sujets: loi gaussienne multidimensionnelle

THÉORIE DES PROBABILITÉS

Sujets: fonction de densité marginale et conditionnelle

- Soit X et Y deux variables aléatoires continues
 - la fonction de densité marginale s'obtient en intégrant l'autre variable :

$$p(x) = \int p(x, y) \mathrm{d}y$$

la **fonction de densité conditionnelle** s'obtient en divisant par la marginale :

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

THÉORIE DES PROBABILITÉS

Sujets: fonction de densité marginale et conditionnelle

- Soit X et Y deux variables aléatoires continues
 - la fonction de densité marginale s'obtient en intégrant l'autre variable :

$$p(x) = \int p(x, y) \mathrm{d}y$$

la fonction de densité conditionnelle s'obtient en divisant par la marginale :

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

Sujets: loi marginale d'une gaussienne

• Soit $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)^{\mathrm{T}}$ une variable aléatoire gaussienne, de moyenne et matrice de covariance

$$oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_a \ oldsymbol{\mu}_b \end{pmatrix} \qquad oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{aa} & oldsymbol{\Sigma}_{ab} \ oldsymbol{\Sigma}_{ba} & oldsymbol{\Sigma}_{bb} \end{pmatrix}$$

• La **loi marginale** $p(\mathbf{x}_a) = \int p(\mathbf{x}_a, \mathbf{x}_b) \, \mathrm{d}\mathbf{x}_b$ est également gaussienne et est égale à

$$p(\mathbf{x}_a) = \mathcal{N}(\mathbf{x}_a | \boldsymbol{\mu}_a, \boldsymbol{\Sigma}_{aa})$$

HUGO LAROCHELLE

3II IT

Sujets: loi marginale d'une gaussienne

• Soit $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)^{\mathrm{T}}$ une variable aléatoire gaussienne, de $e \operatorname{cov}[\mathbf{x}_a]$ $\operatorname{cov}[\mathbf{x}_a, \mathbf{x}_b]$ moyenne et matrice de covariance

$$oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_a \ oldsymbol{\mu}_b \end{pmatrix} \qquad oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{aa} & oldsymbol{\Sigma}_{ab} \ oldsymbol{\Sigma}_{ba} & oldsymbol{\Sigma}_{bb} \end{pmatrix}$$

• La **loi marginale** $p(\mathbf{x}_a) = \int p(\mathbf{x}_a, \mathbf{x}_b) d\mathbf{x}_b$ est également gaussienne et est égale à

$$p(\mathbf{x}_a) = \mathcal{N}(\mathbf{x}_a | \boldsymbol{\mu}_a, \boldsymbol{\Sigma}_{aa})$$

Sujets: loi gaussienne multidimensionnelle

• Exemple : $\mathbf{x} = (x_1, x_2)$

Sujets: loi gaussienne multidimensionnelle

• Exemple : $\mathbf{x} = (x_1, x_2)$

Sujets: loi gaussienne multidimensionnelle

• Exemple : $\mathbf{x} = (x_1, x_2)$

$p(x_1) = \mathcal{N}(x_1 | -0.5, 2)$

Sujets: loi gaussienne multidimensionnelle

• Exemple : $\mathbf{x} = (x_1, x_2)$

$p(x_1) = \mathcal{N}(x_1| - 0.5, 2)$ $p(x_2) = \mathcal{N}(x_2|1, 1)$

Sujets: loi gaussienne multidimensionnelle

• Exemple : $\mathbf{x} = (x_1, x_2)$

Sujets: loi gaussienne multidimensionnelle

• Exemple : $\mathbf{x} = (x_1, x_2)$

HUGO LAROCHELLE

$p(x_1) = \mathcal{N}(x_1 | -0.5, 1.5)$

Sujets: loi gaussienne multidimensionnelle

• Exemple : $\mathbf{x} = (x_1, x_2)$

HUGO LAROCHELLE

$p(x_1) = \mathcal{N}(x_1| - 0.5, 1.5)$ $p(x_2) = \mathcal{N}(x_2|1, 1.5)$

Apprentissage automatique Formulation probabiliste - loi conditionnelle d'une gaussienne

THÉORIE DES PROBABILITÉS

Sujets: fonction de densité marginale et conditionnelle

- Soit X et Y deux variables aléatoires continues
 - la fonction de densité marginale s'obtient en intégrant l'autre variable :

$$p(x) = \int p(x, y) \mathrm{d}y$$

la **fonction de densité conditionnelle** s'obtient en divisant par la marginale :

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

THÉORIE DES PROBABILITÉS

Sujets: fonction de densité marginale et conditionnelle

- Soit X et Y deux variables aléatoires continues
 - la fonction de densité marginale s'obtient en intégrant l'autre variable :

$$p(x) = \int p(x, y) \mathrm{d}y$$

la fonction de densité conditionnelle s'obtient en divisant par la marginale :

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

Sujets: loi conditionnelle d'une gaussienne

• Soit $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)^{\mathrm{T}}$ une variable aléatoire gaussienne, de moyenne et matrice de covariance

$$oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_a \ oldsymbol{\mu}_b \end{pmatrix} \qquad oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{aa} & oldsymbol{\Sigma}_{ab} \ oldsymbol{\Sigma}_{ba} & oldsymbol{\Sigma}_{bb} \end{pmatrix}$$

BILIT

• La loi conditionnelle $p(\mathbf{x}_a | \mathbf{x}_b)$ est aussi gaussienne :

$$egin{array}{rcl} egin{array}{rcl} eta_{a|b} &=& eta_{a} + \Sigma_{ab} \Sigma_{bb}^{-1} (\mathbf{x}_{b} - eta_{b}) \ \Sigma_{a|b} &=& \Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba} \ \end{array}$$

Sujets: loi conditionnelle d'une gaussienne

• Exemple 10 $x_{\mathbf{b}}$ $p(x_a | x_b = 0.7)$ $x_b = 0.7$ 0.5 5 $p(x_a, x_b)$ $p(x_a)$ 0 0.5 0.5 0 0 x_a x_a

 $egin{array}{rcl} oldsymbol{\mu}_{a|b} &=& oldsymbol{\mu}_{a} + oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_{b} - oldsymbol{\mu}_{b}) \ oldsymbol{\Sigma}_{a|b} &=& oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} oldsymbol{\Sigma}_{ba} \end{array}$

Sujets: loi gaussienne multidimensionnelle

• **Exemple :** $x = (x_1, x_2)$

$$\boldsymbol{\Sigma} = \begin{pmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{pmatrix}$$

 $egin{array}{rcl} oldsymbol{\mu}_{a|b} &=& oldsymbol{\mu}_{a} + oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_{b} - oldsymbol{\mu}_{b}) \ oldsymbol{\Sigma}_{a|b} &=& oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} oldsymbol{\Sigma}_{ba} \end{array}$

Sujets: loi gaussienne multidimensionnelle

• Exemple : $\mathbf{x} = (x_1, x_2)$

$$\boldsymbol{\Sigma} = \begin{pmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{pmatrix}$$

 $egin{array}{rcl} oldsymbol{\mu}_{a|b} &=& oldsymbol{\mu}_{a} + oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_{b} - oldsymbol{\mu}_{b}) \ oldsymbol{\Sigma}_{a|b} &=& oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} oldsymbol{\Sigma}_{ba} \end{array}$

Sujets: loi gaussienne multidimensionnelle

• **Exemple :** $x = (x_1, x_2)$

$$\boldsymbol{\Sigma} = \begin{pmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{pmatrix}$$

HUGO LAROCHELLE

 $egin{array}{rcl} oldsymbol{\mu}_{a|b} &=& oldsymbol{\mu}_{a} + oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_{b} - oldsymbol{\mu}_{b}) \ oldsymbol{\Sigma}_{a|b} &=& oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} oldsymbol{\Sigma}_{ba} \end{array}$

 $p(x_2|x_1 = -2) = \mathcal{N}(x_2|0.5, 1.33)$ $\mu_{2|1} = 1 + 0.5 \times (-2 + 0.5)/1.5 = 0.5$ $\Sigma_{2|1} = 1.5 - 0.5^2/1.5 \approx 1.33$