

TYPES D'APPRENTISSAGE

Sujets: apprentissage supervisé, classification, régression

- L'apprentissage supervisé est lorsqu'on a une cible à prédire
 - **classification :** la cible est un indice de classe $t \in \{1, ..., K\}$
 - exemple : reconnaissance de caractères -
 - \checkmark x : vecteur des intensités de tous les pixels de l'image
 - \checkmark t:identité du caractère
 - **régression :** la cible est un nombre réel $t \in \mathbb{R}$
 - exemple : prédiction de la valeur d'une action à la bourse
 - ✓ x : vecteur contenant l'information sur l'activité économique de la journée
 - \checkmark t:valeur d'une action à la bourse le lendemain

TYPES D'APPRENTISSAGE

Sujets: apprentissage supervisé, classification, régression

- L'apprentissage supervisé est lorsqu'on a une cible à prédire
 - **classification :** la cible est un indice de classe $t \in \{1, ..., K\}$
 - exemple : reconnaissance de caractères
 - \checkmark x : vecteur des intensités de tous les pixels de l'image
 - \checkmark *t*:identité du caractère
 - **régression :** la cible est un nombre réel $t \in \mathbb{R}$
 - exemple : prédiction de la valeur d'une action à la bourse -
 - ✓ x : vecteur contenant l'information sur l'activité économique de la journée
 - \checkmark t:valeur d'une action à la bourse le lendemain

Sujets: modèle, biais, poids

• Le modèle de **régression linéaire** est le suivant :

$$y(\mathbf{x},\mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_D x_D$$

pù $\mathbf{x} = (x_1,\ldots,x_D)^{\mathrm{T}}$

• La prédiction correspond donc à un hyperplan de dimension D (donc une droite si D=1)

Modèle de Régression Linéaire

Sujets: modèle, biais, poids

• Le modèle de **régression linéaire** est le suivant : biais $y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_D x_D$

où
$$\mathbf{x} = (x_1, \dots, x_D)^{\mathrm{T}}$$

• La prédiction correspond donc à un hyperplan de dimension D (donc une droite si D=1)

Modèle de Régression Linéaire

Sujets: modèle, biais, poids

• Le modèle de **régression linéaire** est le suivant : biais poids $y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \dots + w_D x_D$

où
$$\mathbf{x} = (x_1, \dots, x_D)^{\mathrm{T}}$$

• La prédiction correspond donc à un hyperplan de dimension D (donc une droite si D=1)

Sujets: exemple 1D

Sujets: exemple 1D

$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1$

Sujets: exemple 1D

$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1$

Sujets: exemple 1D

$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1$

Sujets: modèle

• Le modèle de **régression linéaire** est le suivant :

$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_D x_D$$

où $\mathbf{x} = (x_1, \ldots, x_D)^{\mathrm{T}}$

- La prédiction correspond donc à un hyperplan de dimension D
 - un hyperplan peut ne pas être assez flexible pour faire une bonne prédiction

Sujets: fonctions de base (basis functions)

• On peut introduire une non-linéarité comme suit :

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

où les $\phi_i(\mathbf{x})$ sont des **fonctions de base** (basis functions)

• Cas linéaire : $\phi_i(\mathbf{x}) = x_i$ et M = D + 1

Sujets: fonctions de base (basis functions)

• Pour simplifier la notation, on va supposer que $\phi_0(\mathbf{x}) = 1$ M-1 $y(\mathbf{x}, \mathbf{w}) = \sum w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$ j=0

Sujets: fonctions de base (basis functions)

• Pour simplifier la notation, on va supposer que $\phi_0(\mathbf{x}) = 1$ M-1 $y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$ $(w_0, \dots, w_{M-1})^{\mathrm{T}}$

Sujets: fonctions de base (basis functions)

• Pour simplifier la notation, on va supposer que $\phi_0(\mathbf{x}) = 1$ M-1 $y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{\infty} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$ $(w_0, \dots, w_{M-1})^{\mathrm{T}}$

Sujets: fonctions de base polynomiales

• Exemple : fonctions de bases polynomiales (1D)

$$\phi_j(x) = x^j$$

• On retrouve alors la régression polynomiale

Sujets: fonctions de base gaussiennes

• Exemple : fonctions de base gaussiennes

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

où μ_j et s doivent être spécifiés

Sujets: fonctions de base gaussiennes

• Exemple : fonctions de base gaussiennes

HUGO LAROCHELLE

0

Sujets: formulation probabiliste

• Pour entraîner le modèle $y(\mathbf{x}, \mathbf{w})$, nous passerons par une formulation probabiliste :

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

 équivaut à supposer que les cibles sont une version bruitée de la prédiction du vrai modèle

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$
 Gaussienne de moyenne 0 et variance β^{-1}

Sujets: formulation probabiliste

- Soit notre ensemble d'entraînement $\mathcal{D} = \{ (\mathbf{x}_1, t_1), \dots, (\mathbf{x}_N, t_N) \}$
 - on va également noter $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ et $\mathbf{t} = (t_1, \ldots, t_N)^T$

• En faisant l'hypothèse i.i.d., on a :

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$

Sujets: maximum de vraisemblance

• Lors de l'entraînement, on cherche le w maximisant la (log-)probabilité des données d'entraînement

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

où

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

Sujets: maximum de vraisemblance

• On sait que le gradient de la somme des pertes

$$\nabla E_D(\mathbf{w}) = -\sum_{n=1}^N \{t_n - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n)\} \ \phi(\mathbf{x}_n)^{\mathrm{T}}$$

à la valeur w minimisante doit être égale à 0 :

$$0 = \sum_{n=1}^{N} t_n \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} - \mathbf{w}^{\mathrm{T}} \left(\sum_{n=1}^{N} \boldsymbol{\phi}(\mathbf{x}_n) \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} \right)$$

Sujets: maximum de vraisemblance, design matrix

• En isolant w, on trouve que le w minimisant la somme des pertes (maximisant la log-probabilité) est $\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$

où Φ est appelée la design matrix :

$$\boldsymbol{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

Sujets: maximum de vraisemblance, design matrix

- En isolant w, on trouve que le w minimisant la somme des pertes (maximisant la log-probabilité) est $\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$
- Il faudrait aussi vérifier qu'il s'agit bel et bien d'un minimum de $E_D(\mathbf{w})$ (et non un maximum ou un pointselle)
 - se fait en calculant les dérivées secondes
 - plus précisément, on montre que la matrice des dérivées secondes (matrice hessienne) est définie positive

Sujets: maximum de vraisemblance

• Maximiser la log-probabilité

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

équivaut à minimiser la somme des pertes de l'erreur au carré (squared error) :

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

RÉGULARISATION

Sujets: régularisation, weight decay, régression de Ridge

• Afin de contrôler les risques de sur-apprentissage, on préfère ajouter un terme de régularisation

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

- équivaut au maximum a posteriori dans la formulation probabiliste
- le terme de régularisation est souvent appelé weight decay
- la régression avec un terme de régularisation est aussi appelée régression de Ridge

RÉGULARISATION

Sujets: régularisation, weight decay, régression de Ridge

• Afin de contrôler les risques de sur-apprentissage, on préfère ajouter un terme de régularisation

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \underbrace{\mathbf{w}^{\mathrm{T}} \mathbf{w}}_{\|\mathbf{w}\|^2}$$

- équivaut au maximum a posteriori dans la formulation probabiliste
- le terme de régularisation est souvent appelé weight decay
- la régression avec un terme de régularisation est aussi appelée régression de Ridge

RÉGULARISATION

Sujets: régularisation, weight decay, régression de Ridge

• On peut montrer que la solution (maximum a posteriori) est alors :

$$\mathbf{w} = \left(\lambda \mathbf{I} + \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}$$

- dans le cas $\lambda = 0$, on retrouve la solution du maximum de vraisemblance
- si $\lambda > 0$, permet également d'avoir une solution plus stable numériquement (si $\Phi^{T}\Phi$ n'est pas inversible)

TYPES D'APPRENTISSAGE

Sujets: apprentissage supervisé, classification, régression

- L'apprentissage supervisé est lorsqu'on a une cible à prédire
 - **classification :** la cible est un indice de classe $t \in \{1, ..., K\}$
 - exemple : reconnaissance de caractères
 - \checkmark x : vecteur des intensités de tous les pixels de l'image
 - \checkmark t:identité du caractère
 - **régression :** la cible est un nombre réel $t \in \mathbb{R}$
 - exemple : prédiction de la valeur d'une action à la bourse -
 - ✓ x : vecteur contenant l'information sur l'activité économique de la journée
 - \checkmark t:valeur d'une action à la bourse le lendemain

TYPES D'APPRENTISSAGE

Sujets: apprentissage supervisé, classification, régression

- L'apprentissage supervisé est lorsqu'on a une cible à prédire
 - **classification :** la cible est un indice de classe $t \in \{1, ..., K\}$
 - exemple : reconnaissance de caractères
 - \checkmark x : vecteur des intensités de tous les pixels de l'image
 - \checkmark *t*:identité du caractère
 - **régression :** la cible est un vecteur réel $\mathbf{t} \in \mathbb{R}^{K}$
 - exemple : prédiction de la valeur d'une action à la bourse -
 - ✓ x : vecteur contenant l'information sur l'activité économique de la journée
 - \checkmark t : la valeur de plusieurs actions le lendemain

PRÉDICTIONS MULTIPLES

Sujets: modèle pour prédictions multiples

• Le modèle doit maintenant prédire un vecteur :

$$\mathbf{y}(\mathbf{x}, \mathbf{w}) = \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

où W est une matrice $M \times K$

• Chaque colonne de W peut être vue comme le vecteur \mathbf{w}_k du modèle $y(\mathbf{x}, \mathbf{w}_k)$ pour la k^{e} cible

PRÉDICTIONS MULTIPLES

Sujets: formulation probabiliste pour prédictions multiples, modèle multitâche

• On suppose encore un modèle gaussien

$$p(\mathbf{t}|\mathbf{x}, \mathbf{W}, \beta) = \mathcal{N}(\mathbf{t}|\mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}), \beta^{-1}\mathbf{I})$$

où on suppose que les cibles sont indépendantes

• Un modèle faisant des prédictions multiples est parfois appelé un modèle multitâche

PRÉDICTIONS MULTIPLES

Sujets: formulation probabiliste pour prédictions multiples

- Soit notre ensemble d'entraînement $\mathcal{D} = \{ (\mathbf{x}_1, \mathbf{t}_1), \dots, (\mathbf{x}_N, \mathbf{t}_N) \}$
- on va également noter $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ et T est une matrice dont les rangées sont les vecteurs $\mathbf{t}_{1,\ldots,\mathbf{t}_{N}}$
- En faisant l'hypothèse i.i.d., on a : $\ln p(\mathbf{T}|\mathbf{X}, \mathbf{W}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(\mathbf{t}_n | \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1} \mathbf{I})$ n=1 $= \frac{NK}{2} \ln\left(\frac{\beta}{2\pi}\right) - \frac{\beta}{2} \sum_{n=1}^{N} \left\|\mathbf{t}_{n} - \mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_{n})\right\|^{2}$

Sujets: formulation probabiliste pour prédictions multiples

• On peut démontrer que le maximum de vraisemblance est :

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{T}$$

• On peut voir le résultat comme la concaténation (colonne par colonne) des solutions pour chaque tâche

$$\mathbf{w}_k = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}
ight)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}_k$$

où t_k = $(t_{1,k}, ..., t_{N,k})^{T}$

Modèle de Régression Linéaire

Sujets: formulation probabiliste

• En régression linéaire, on suppose que :

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

où M-1 $y(\mathbf{x}, \mathbf{w}) = \sum w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$ i=0

• Lorsqu'on doit faire une prédiction pour une nouvelle entrée x, on prédit alors la moyenne, i.e. y(x, w)

Sujets: théorie de la décision

• Pourquoi est-ce que prédire la moyenne $(y(\mathbf{x}, \mathbf{w}))$ est la bonne chose à faire ?

• La **théorie de la décision** va nous éclairer sur le sujet

- On va maintenant noter $\hat{y}(\mathbf{x})$ la prédiction (**décision**) que l'on va faire pour une entrée \mathbf{x}
 - $\hat{y}(\mathbf{x})$ pourrait être différente de $y(\mathbf{x}, \mathbf{w})$

Sujets: théorie de la décision

- Sachant que :
 - + chaque paire (\mathbf{x},t) est échantillonnée d'une distribution $p(\mathbf{x},t)$
 - + la perte qui nous intéresse est $L(t, \hat{y}(\mathbf{x})) = {\hat{y}(\mathbf{x}) t}^2$
- La perte espérée de notre prédiction (décision) sera

$$\mathbb{E}[L] = \iint \{\hat{y}(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \,\mathrm{d}\mathbf{x} \,\mathrm{d}t$$

Sujets: théorie de la décision

• Pour trouver $\hat{y}(\mathbf{x})$ optimale on commence par noter que :

 $\{\hat{y}(\mathbf{x}) - t\}^2 = \{\hat{y}(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}] + \mathbb{E}[t|\mathbf{x}] - t\}^2$ $= \{\hat{y}(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}^2 + 2\{\hat{y}(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}\{\mathbb{E}[t|\mathbf{x}] - t\} + \{\mathbb{E}[t|\mathbf{x}] - t\}^2$ • Ainsi : $\int \int {\{\hat{y}(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt} =$ <u>^</u> <u>1</u> \mathbf{r}

$$+ \int \int 2\{\hat{y}(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}\{\mathbb{E}[t|\mathbf{x}] - t\}p(\mathbf{x}, t)d\mathbf{x}dt$$

HUGO LAROCHELLE

 \mathbf{x}, t)d \mathbf{x} dt

Sujets: théorie de la décision

• Ensuite, on remarque que :

$$\int \int 2\{\hat{y}(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}\{\mathbb{E}[t|\mathbf{x}] - t\}p(\mathbf{x}, t)d\mathbf{x}dt$$

$$= \int \int 2\{\hat{y}(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}\{\mathbb{E}[t|\mathbf{x}] - t\}p(t|\mathbf{x})p(\mathbf{x})dtd\mathbf{x}\}$$

$$= \int 2\{\hat{y}(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}p(\mathbf{x}) \left(\int \{\mathbb{E}[t|\mathbf{x}] - t\}p(t|\mathbf{x})dt\right)d\mathbf{x}$$
$$= \int 2\{\hat{y}(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}p(\mathbf{x}) \left(\mathbb{E}[t|\mathbf{x}] - \int t \ p(t|\mathbf{x})dt\right)d\mathbf{x} =$$

HUGO LAROCHELLE

= 0

Sujets: théorie de la décision

• Donc on a que :

• Le mininum est donc atteint lorsque $\hat{y}(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}]$

$\mathbf{x}(\mathbf{x},t)\mathrm{d}\mathbf{x}\mathrm{d}t$

Sujets: théorie de la décision

• Puisqu'on ne connaît pas la vraie distribution $p(\mathbf{x},t)$ (et donc ni $p(t|\mathbf{x})$, ni $\mathbb{E}[t|\mathbf{x}]$), le mieux qu'on puisse faire est d'utiliser notre modèle de $p(t|\mathbf{x})$

$$\hat{y}(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}] = y(\mathbf{x},\mathbf{w})$$

• Donc, si on veut une petite perte de la différence au carré (en espérance), prédire la moyenne est un bon choix selon la théorie de la décision

Sujets: théorie de la décision

- Pour d'autres choix de perte, la décision optimale sera différente
 - pour la perte $L(t, \hat{y}(\mathbf{x})) = |\hat{y}(\mathbf{x}) t|$, la décision $\hat{y}(\mathbf{x})$ devrait être la médiane de $p(t|\mathbf{x},\mathbf{w})$
- Par chance, la médiane d'une gaussienne est aussi la moyenne!
 - pour d'autres choix de modèle probabiliste $p(t|\mathbf{x},\mathbf{w})$, ce pourrait ne pas être le cas

Sujets: généralisation

 Analysons la performance espérée de généralisation d'un modèle donné $y(\mathbf{x}, \mathbf{w})$ de régression :

$$\mathbb{E}_{(\mathbf{x},t)}[L(t, y(\mathbf{x}, \mathbf{w}))] = \int \int \{y(\mathbf{x}, \mathbf{w}) - t\}^2 p(\mathbf{x}, \mathbf{w})$$

où $p(\mathbf{x},t)$ est la vraie distribution des exemples (\mathbf{x},t)

 Changement à la notation : on note explicitement selon quelles variables aléatoires on fait l'espérance, en ajoutant l'information en indice

t)d**x**dt

Sujets: généralisation

 Analysons la performance espérée de généralisation d'un modèle donné $y(\mathbf{x}, \mathbf{w})$ de régression :

$$\mathbb{E}_{(\mathbf{x},t)}[L(t, y(\mathbf{x}, \mathbf{w}))] = \int \int \{y(\mathbf{x}, \mathbf{w}) - t\}^2 p(\mathbf{x}, \mathbf{w})$$

où $p(\mathbf{x},t)$ est la vraie distribution des exemples (\mathbf{x},t)

Changement à la notation : on note explicitement selon quelles variables aléatoires on fait l'espérance, en ajoutant l'information en indice

t)d**x**dt

Sujets: généralisation

 Analysons la performance espérée de généralisation d'un modèle donné $y(\mathbf{x}, \mathbf{w})$ de régression :

$$\mathbb{E}_{(\mathbf{x},t)}[L(t, y(\mathbf{x}, \mathbf{w}))] = \int \int \{y(\mathbf{x}, \mathbf{w}) - t\}^2 p(\mathbf{x}, \mathbf{w})$$

où $p(\mathbf{x},t)$ est la vraie distribution des exemples (\mathbf{x},t)

• On s'intéresse plus spécifiquement au cas où le modèle w est celui obtenu après s'être entraîné sur ${\cal D}$

• en régression linéaire, lorsque $\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$ HUGO LAROCHELLE

$t)\mathrm{d}\mathbf{x}\mathrm{d}t$

Sujets: généralisation

 Analysons la performance espérée de généralisation d'un modèle donné $y(\mathbf{x}, \mathbf{w})$ de régression :

où $p(\mathbf{x},t)$ est la vraie distribution des exemples (\mathbf{x},t)

- Pour traiter le cas général, on va plutôt noter notre modèle $y(\mathbf{x}; \mathcal{D})$
 - c'est le modèle obtenu après avoir entraîné sur \mathcal{D}

HUGO LAROCHELLE

 $t)d\mathbf{x}dt$

Sujets: généralisation

 Analysons la performance espérée de généralisation d'un modèle donné $y(\mathbf{x}, \mathbf{w})$ de régression :

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{(\mathbf{x},t)}[L(t, y(\mathbf{x}; \mathcal{D}))]\right] = \mathbb{E}_{\mathcal{D}}\left[\int\int\{y(\mathbf{x}; \mathcal{D}) - t\}^{2}\right]$$

où $p(\mathbf{x},t)$ est la vraie distribution des exemples (\mathbf{x},t)

• Dans ce qui suit, on va noter $h(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}]$ le meilleur modèle possible, i.e. celui qu'on cherche (voir diapositives sur la théorie de la décision)

$p^2 p(\mathbf{x}, t) \mathrm{d}\mathbf{x} \mathrm{d}t$

Sujets: biais, variance, bruit

• On peut montrer que :

 $\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{(\mathbf{x},t)}[L(t, y(\mathbf{x}; \mathcal{D}))]\right] = (\text{bias})^2 + \text{variance} + \text{noise}$

$$(\text{bias})^{2} = \int \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})] - h(\mathbf{x})\}^{2} p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

variance =
$$\int \mathbb{E}_{\mathcal{D}} \left[\{y(\mathbf{x};\mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})]\}^{2} \right] p(\mathbf{x};\mathcal{D})$$

noise =
$$\int \{h(\mathbf{x}) - t\}^{2} p(\mathbf{x},t) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

 \mathbf{x}) d \mathbf{x}

Sujets: biais

• On peut montrer que :

 $\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{(\mathbf{x},t)}[L(t, y(\mathbf{x}; \mathcal{D}))]\right] = (\text{bias})^2 + \text{variance} + \text{noise}$

$$(\text{bias})^2 = \int \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})] - h(\mathbf{x})\}^2 p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

À quel point le modèle «moyen» donné par l'algorithme d'apprentissage sera proche du meilleur modèle possible $h(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}]$, i.e. est-ce que l'algorithme d'apprentissage est capable de modéliser $h(\mathbf{x})$

Sujets: variance

- On peut montrer que :
 - $\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{(\mathbf{x},t)}[L(t, y(\mathbf{x}; \mathcal{D}))]\right] = (\text{bias})^2 + \text{variance} + \text{noise}$

À quel point le modèle donné par l'algorithme d'apprentissage varie d'un ensemble d'entraînement à l'autre variance = $\int \mathbb{E}_{\mathcal{D}} \left[\{ y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] \}^2 \right] p(\mathbf{x}) d\mathbf{x}$ noise = $\int {h(\mathbf{x}) - t}^2 p(\mathbf{x}, t) d\mathbf{x} dt$

Sujets: bruit

• On peut montrer que :

 $\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{(\mathbf{x},t)}[L(t, y(\mathbf{x}; \mathcal{D}))]\right] = (\text{bias})^2 + \text{variance} + \text{noise}$

À quel point il y a du bruit dans la cible à prédire, i.e. à que point elle varie autour de son espérance conditionnelle varia (ne dépend pas de l'algorithme d'apprentissage) dx noise = $\int {\{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt}$

Sujets: bruit

- On bon algorithme d'apprentissage aura un bon compromis entre son biais et sa variance
 - si la capacité augmente, le biais diminue et la variance augmente
 - si on régularise, la variance diminue, mais le biais augmente
- La décomposition biais-variance illustre donc plus formellement les phénomène de sur-apprentissage et sousappprentissage
 - pas assez de capacité \implies biais très élevé \implies mauvaise généralisation
 - trop de capacité ⇒ variance très élevée ⇒ mauvaise généralisation

RÉGRESSION LINÉAIRE

Sujets: résumé de la régression linéaire M-1

• Modèle : $y(\mathbf{x}, \mathbf{w}) = \sum w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$ j=0

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

- Entraînement : $\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$ (maximum de vraisemblance si $\lambda = 0$ ou maximum a posteriori si $\lambda > 0$)
- Hyper-paramètre : λ
- Prédiction : $y(\mathbf{x}, \mathbf{w})$

