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TYPES D’APPRENTISSAGE

• L’apprentissage supervisé est lorsqu’on a une cible à 
prédire

‣ classification : la cible est un indice de classe t ∈{1, ... , K}
- exemple : reconnaissance de caractères

✓ x : vecteur des intensités de tous les pixels de l’image

✓ t : identité du caractère

‣ régression : la cible est un nombre réel t ∈ ℝ
- exemple : prédiction de la valeur d’une action à la bourse

✓ x : vecteur contenant l’information sur l’activité économique de la journée

✓ t : valeur d’une action à la bourse le lendemain

2

apprentissage supervisé, classification, régression
RAPPEL



Sujets: 

HUGO LAROCHELLE

TYPES D’APPRENTISSAGE

• L’apprentissage supervisé est lorsqu’on a une cible à 
prédire

‣ classification : la cible est un indice de classe t ∈{1, ... , K}
- exemple : reconnaissance de caractères

✓ x : vecteur des intensités de tous les pixels de l’image

✓ t : identité du caractère

‣ régression : la cible est un nombre réel t ∈ ℝ
- exemple : prédiction de la valeur d’une action à la bourse

✓ x : vecteur contenant l’information sur l’activité économique de la journée

✓ t : valeur d’une action à la bourse le lendemain

2

apprentissage supervisé, classification, régression
RAPPEL



Sujets: 

HUGO LAROCHELLE

MODÈLE DE RÉGRESSION LINÉAIRE

• Le modèle de régression linéaire est le suivant :

où

• La prédiction correspond donc à un hyperplan de 
dimension D (donc une droite si D=1)

3
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138 3. LINEAR MODELS FOR REGRESSION

Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w⋆)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.
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give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.
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Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,
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our uncertainty about the value of t for each value of x. From this conditional dis-
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minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,
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Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.
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The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑
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wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
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j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,
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where φj(x) are known as basis functions. By denoting the maximum value of the
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The parameter w0 allows for any fixed offset in the data and is sometimes called
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Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,
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Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,
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Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑
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wjφj(x) = wTφ(x) (3.3)
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or feature extraction, to the original data variables. If the original variables com-
prise the vector x, then the features can be expressed in terms of the basis functions
{φj(x)}.

By using nonlinear basis functions, we allow the function y(x,w) to be a non-
linear function of the input vector x. Functions of the form (3.2) are called linear
models, however, because this function is linear in w. It is this linearity in the pa-
rameters that will greatly simplify the analysis of this class of models. However, it
also leads to some significant limitations, as we discuss in Section 3.6.

The example of polynomial regression considered in Chapter 1 is a particular
example of this model in which there is a single input variable x, and the basis func-
tions take the form of powers of x so that φj(x) = xj . One limitation of polynomial
basis functions is that they are global functions of the input variable, so that changes
in one region of input space affect all other regions. This can be resolved by dividing
the input space up into regions and fit a different polynomial in each region, leading
to spline functions (Hastie et al., 2001).

There are many other possible choices for the basis functions, for example

φj(x) = exp
{
−(x − µj)2

2s2

}
(3.4)

where the µj govern the locations of the basis functions in input space, and the pa-
rameter s governs their spatial scale. These are usually referred to as ‘Gaussian’
basis functions, although it should be noted that they are not required to have a prob-
abilistic interpretation, and in particular the normalization coefficient is unimportant
because these basis functions will be multiplied by adaptive parameters wj .

Another possibility is the sigmoidal basis function of the form

φj(x) = σ
(x − µj

s

)
(3.5)

where σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
. (3.6)

Equivalently, we can use the ‘tanh’ function because this is related to the logistic
sigmoid by tanh(a) = 2σ(a) − 1, and so a general linear combination of logistic
sigmoid functions is equivalent to a general linear combination of ‘tanh’ functions.
These various choices of basis function are illustrated in Figure 3.1.

Yet another possible choice of basis function is the Fourier basis, which leads to
an expansion in sinusoidal functions. Each basis function represents a specific fre-
quency and has infinite spatial extent. By contrast, basis functions that are localized
to finite regions of input space necessarily comprise a spectrum of different spatial
frequencies. In many signal processing applications, it is of interest to consider ba-
sis functions that are localized in both space and frequency, leading to a class of
functions known as wavelets. These are also defined to be mutually orthogonal, to
simplify their application. Wavelets are most applicable when the input values live

µj
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

on a regular lattice, such as the successive time points in a temporal sequence, or the
pixels in an image. Useful texts on wavelets include Ogden (1997), Mallat (1999),
and Vidakovic (1999).

Most of the discussion in this chapter, however, is independent of the particular
choice of basis function set, and so for most of our discussion we shall not specify
the particular form of the basis functions, except for the purposes of numerical il-
lustration. Indeed, much of our discussion will be equally applicable to the situation
in which the vector φ(x) of basis functions is simply the identity φ(x) = x. Fur-
thermore, in order to keep the notation simple, we shall focus on the case of a single
target variable t. However, in Section 3.1.5, we consider briefly the modifications
needed to deal with multiple target variables.

3.1.1 Maximum likelihood and least squares
In Chapter 1, we fitted polynomial functions to data sets by minimizing a sum-

of-squares error function. We also showed that this error function could be motivated
as the maximum likelihood solution under an assumed Gaussian noise model. Let
us return to this discussion and consider the least squares approach, and its relation
to maximum likelihood, in more detail.

As before, we assume that the target variable t is given by a deterministic func-
tion y(x,w) with additive Gaussian noise so that

t = y(x,w) + ϵ (3.7)

where ϵ is a zero mean Gaussian random variable with precision (inverse variance)
β. Thus we can write

p(t|x,w, β) = N (t|y(x,w), β−1). (3.8)

Recall that, if we assume a squared loss function, then the optimal prediction, for a
new value of x, will be given by the conditional mean of the target variable. In theSection 1.5.5
case of a Gaussian conditional distribution of the form (3.8), the conditional mean
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

on a regular lattice, such as the successive time points in a temporal sequence, or the
pixels in an image. Useful texts on wavelets include Ogden (1997), Mallat (1999),
and Vidakovic (1999).

Most of the discussion in this chapter, however, is independent of the particular
choice of basis function set, and so for most of our discussion we shall not specify
the particular form of the basis functions, except for the purposes of numerical il-
lustration. Indeed, much of our discussion will be equally applicable to the situation
in which the vector φ(x) of basis functions is simply the identity φ(x) = x. Fur-
thermore, in order to keep the notation simple, we shall focus on the case of a single
target variable t. However, in Section 3.1.5, we consider briefly the modifications
needed to deal with multiple target variables.

3.1.1 Maximum likelihood and least squares
In Chapter 1, we fitted polynomial functions to data sets by minimizing a sum-

of-squares error function. We also showed that this error function could be motivated
as the maximum likelihood solution under an assumed Gaussian noise model. Let
us return to this discussion and consider the least squares approach, and its relation
to maximum likelihood, in more detail.

As before, we assume that the target variable t is given by a deterministic func-
tion y(x,w) with additive Gaussian noise so that

t = y(x,w) + ϵ (3.7)

where ϵ is a zero mean Gaussian random variable with precision (inverse variance)
β. Thus we can write

p(t|x,w, β) = N (t|y(x,w), β−1). (3.8)

Recall that, if we assume a squared loss function, then the optimal prediction, for a
new value of x, will be given by the conditional mean of the target variable. In theSection 1.5.5
case of a Gaussian conditional distribution of the form (3.8), the conditional mean
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

on a regular lattice, such as the successive time points in a temporal sequence, or the
pixels in an image. Useful texts on wavelets include Ogden (1997), Mallat (1999),
and Vidakovic (1999).

Most of the discussion in this chapter, however, is independent of the particular
choice of basis function set, and so for most of our discussion we shall not specify
the particular form of the basis functions, except for the purposes of numerical il-
lustration. Indeed, much of our discussion will be equally applicable to the situation
in which the vector φ(x) of basis functions is simply the identity φ(x) = x. Fur-
thermore, in order to keep the notation simple, we shall focus on the case of a single
target variable t. However, in Section 3.1.5, we consider briefly the modifications
needed to deal with multiple target variables.

3.1.1 Maximum likelihood and least squares
In Chapter 1, we fitted polynomial functions to data sets by minimizing a sum-

of-squares error function. We also showed that this error function could be motivated
as the maximum likelihood solution under an assumed Gaussian noise model. Let
us return to this discussion and consider the least squares approach, and its relation
to maximum likelihood, in more detail.

As before, we assume that the target variable t is given by a deterministic func-
tion y(x,w) with additive Gaussian noise so that

t = y(x,w) + ϵ (3.7)

where ϵ is a zero mean Gaussian random variable with precision (inverse variance)
β. Thus we can write

p(t|x,w, β) = N (t|y(x,w), β−1). (3.8)

Recall that, if we assume a squared loss function, then the optimal prediction, for a
new value of x, will be given by the conditional mean of the target variable. In theSection 1.5.5
case of a Gaussian conditional distribution of the form (3.8), the conditional mean

Gaussienne de 
moyenne 0 

et variance β -1



Sujets: 

HUGO LAROCHELLE

MAXIMUM DE VRAISEMBLANCE

• Soit notre ensemble d’entraînement 
      = {(x1,t1), ... , (xN,tN)}

‣ on va également noter                                   
et   =(               )T

• En faisant l’hypothèse i.i.d., on a :

14

formulation probabiliste

D

3.1. Linear Basis Function Models 141

will be simply

E[t|x] =
∫

tp(t|x) dt = y(x,w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t1, . . . , tN . We group the target variables {tn} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that
these data points are drawn independently from the distribution (3.8), we obtain the
following expression for the likelihood function, which is a function of the adjustable
parameters w and β, in the form

p(t|X,w, β) =
N∏

n=1

N (tn|wTφ(xn), β−1) (3.10)

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the input
variables. Thus x will always appear in the set of conditioning variables, and so
from now on we will drop the explicit x from expressions such as p(t|x,w, β) in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

ln p(t|w, β) =
N∑

n=1

lnN (tn|wTφ(xn), β−1)

=
N

2
ln β − N

2
ln(2π) − βED(w) (3.11)

where the sum-of-squares error function is defined by

ED(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2. (3.12)

Having written down the likelihood function, we can use maximum likelihood to
determine w and β. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

∇ ln p(t|w, β) =
N∑

n=1

{
tn − wTφ(xn)

}
φ(xn)T. (3.13)
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Setting this gradient to zero gives

0 =
N∑

n=1

tnφ(xn)T − wT

(
N∑

n=1

φ(xn)φ(xn)T
)

. (3.14)

Solving for w we obtain
wML =

(
ΦTΦ

)−1
ΦTt (3.15)

which are known as the normal equations for the least squares problem. Here Φ is an
N×M matrix, called the design matrix, whose elements are given by Φnj = φj(xn),
so that

Φ =

⎛

⎜⎜⎝

φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN ) φ1(xN ) · · · φM−1(xN )

⎞

⎟⎟⎠ . (3.16)

The quantity
Φ† ≡

(
ΦTΦ

)−1
ΦT (3.17)

is known as the Moore-Penrose pseudo-inverse of the matrix Φ (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the
notion of matrix inverse to nonsquare matrices. Indeed, if Φ is square and invertible,
then using the property (AB)−1 = B−1A−1 we see that Φ† ≡ Φ−1.

At this point, we can gain some insight into the role of the bias parameter w0. If
we make the bias parameter explicit, then the error function (3.12) becomes

ED(w) =
1
2

N∑

n=1

{tn − w0 −
M−1∑

j=1

wjφj(xn)}2. (3.18)

Setting the derivative with respect to w0 equal to zero, and solving for w0, we obtain

w0 = t −
M−1∑

j=1

wjφj (3.19)

where we have defined

t =
1
N

N∑

n=1

tn, φj =
1
N

N∑

n=1

φj(xn). (3.20)

Thus the bias w0 compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter β, giving

1
βML

=
1
N

N∑

n=1

{tn − wT
MLφ(xn)}2 (3.21)

rED(w) = �
NX

n=1

{tn �w

T�(xn)} �(xn)
T
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Solving for w we obtain
wML =

(
ΦTΦ

)−1
ΦTt (3.15)

which are known as the normal equations for the least squares problem. Here Φ is an
N×M matrix, called the design matrix, whose elements are given by Φnj = φj(xn),
so that

Φ =

⎛

⎜⎜⎝

φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN ) φ1(xN ) · · · φM−1(xN )

⎞

⎟⎟⎠ . (3.16)

The quantity
Φ† ≡

(
ΦTΦ

)−1
ΦT (3.17)

is known as the Moore-Penrose pseudo-inverse of the matrix Φ (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the
notion of matrix inverse to nonsquare matrices. Indeed, if Φ is square and invertible,
then using the property (AB)−1 = B−1A−1 we see that Φ† ≡ Φ−1.

At this point, we can gain some insight into the role of the bias parameter w0. If
we make the bias parameter explicit, then the error function (3.12) becomes

ED(w) =
1
2

N∑

n=1

{tn − w0 −
M−1∑

j=1

wjφj(xn)}2. (3.18)

Setting the derivative with respect to w0 equal to zero, and solving for w0, we obtain

w0 = t −
M−1∑

j=1

wjφj (3.19)

where we have defined

t =
1
N

N∑

n=1

tn, φj =
1
N

N∑

n=1

φj(xn). (3.20)

Thus the bias w0 compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter β, giving

1
βML

=
1
N

N∑

n=1

{tn − wT
MLφ(xn)}2 (3.21)
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will be simply

E[t|x] =
∫

tp(t|x) dt = y(x,w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t1, . . . , tN . We group the target variables {tn} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that
these data points are drawn independently from the distribution (3.8), we obtain the
following expression for the likelihood function, which is a function of the adjustable
parameters w and β, in the form

p(t|X,w, β) =
N∏

n=1

N (tn|wTφ(xn), β−1) (3.10)

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the input
variables. Thus x will always appear in the set of conditioning variables, and so
from now on we will drop the explicit x from expressions such as p(t|x,w, β) in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

ln p(t|w, β) =
N∑

n=1

lnN (tn|wTφ(xn), β−1)

=
N

2
ln β − N

2
ln(2π) − βED(w) (3.11)

where the sum-of-squares error function is defined by

ED(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2. (3.12)

Having written down the likelihood function, we can use maximum likelihood to
determine w and β. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

∇ ln p(t|w, β) =
N∑

n=1

{
tn − wTφ(xn)

}
φ(xn)T. (3.13)
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régression de Ridge
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in which the data points are considered one at a time, and the model parameters up-
dated after each such presentation. Sequential learning is also appropriate for real-
time applications in which the data observations are arriving in a continuous stream,
and predictions must be made before all of the data points are seen.

We can obtain a sequential learning algorithm by applying the technique of
stochastic gradient descent, also known as sequential gradient descent, as follows. If
the error function comprises a sum over data points E =

∑
n En, then after presen-

tation of pattern n, the stochastic gradient descent algorithm updates the parameter
vector w using

w(τ+1) = w(τ) − η∇En (3.22)

where τ denotes the iteration number, and η is a learning rate parameter. We shall
discuss the choice of value for η shortly. The value of w is initialized to some starting
vector w(0). For the case of the sum-of-squares error function (3.12), this gives

w(τ+1) = w(τ) + η(tn − w(τ)Tφn)φn (3.23)

where φn = φ(xn). This is known as least-mean-squares or the LMS algorithm.
The value of η needs to be chosen with care to ensure that the algorithm converges
(Bishop and Nabney, 2008).

3.1.4 Regularized least squares
In Section 1.1, we introduced the idea of adding a regularization term to an

error function in order to control over-fitting, so that the total error function to be
minimized takes the form

ED(w) + λEW (w) (3.24)

where λ is the regularization coefficient that controls the relative importance of the
data-dependent error ED(w) and the regularization term EW (w). One of the sim-
plest forms of regularizer is given by the sum-of-squares of the weight vector ele-
ments

EW (w) =
1
2
wTw. (3.25)

If we also consider the sum-of-squares error function given by

E(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2 (3.26)

then the total error function becomes

1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2
wTw. (3.27)

This particular choice of regularizer is known in the machine learning literature as
weight decay because in sequential learning algorithms, it encourages weight values
to decay towards zero, unless supported by the data. In statistics, it provides an ex-
ample of a parameter shrinkage method because it shrinks parameter values towards
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Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter λ corresponding to ln λ = −18 and ln λ = 0. The
case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

Ẽ(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 +
λ

2
∥w∥2 (1.4)

where ∥w∥2 ≡ wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient λ governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing

{
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Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter q.

zero. It has the advantage that the error function remains a quadratic function of
w, and so its exact minimizer can be found in closed form. Specifically, setting the
gradient of (3.27) with respect to w to zero, and solving for w as before, we obtain

w =
(
λI + ΦTΦ

)−1
ΦTt. (3.28)

This represents a simple extension of the least-squares solution (3.15).
A more general regularizer is sometimes used, for which the regularized error

takes the form
1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2

M∑

j=1

|wj |q (3.29)

where q = 2 corresponds to the quadratic regularizer (3.27). Figure 3.3 shows con-
tours of the regularization function for different values of q.

The case of q = 1 is know as the lasso in the statistics literature (Tibshirani,
1996). It has the property that if λ is sufficiently large, some of the coefficients
wj are driven to zero, leading to a sparse model in which the corresponding basis
functions play no role. To see this, we first note that minimizing (3.29) is equivalent
to minimizing the unregularized sum-of-squares error (3.12) subject to the constraintExercise 3.5

M∑

j=1

|wj |q ! η (3.30)

for an appropriate value of the parameter η, where the two approaches can be related
using Lagrange multipliers. The origin of the sparsity can be seen from Figure 3.4,Appendix E
which shows that the minimum of the error function, subject to the constraint (3.30).
As λ is increased, so an increasing number of parameters are driven to zero.

Regularization allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting the effective model complexity.
However, the problem of determining the optimal model complexity is then shifted
from one of finding the appropriate number of basis functions to one of determining
a suitable value of the regularization coefficient λ. We shall return to the issue of
model complexity later in this chapter.
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• L’apprentissage supervisé est lorsqu’on a une cible à 
prédire

‣ classification : la cible est un indice de classe t ∈{1, ... , K}
- exemple : reconnaissance de caractères

✓ x : vecteur des intensités de tous les pixels de l’image

✓ t : identité du caractère

‣ régression : la cible est un nombre réel t ∈ ℝ
- exemple : prédiction de la valeur d’une action à la bourse

✓ x : vecteur contenant l’information sur l’activité économique de la journée

✓ t : valeur d’une action à la bourse le lendemain
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un vecteur réel t ∈ ℝK

t : la valeur de plusieurs actions le lendemain   
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• Le modèle doit maintenant prédire un vecteur :

où W est une matrice M ⨉ K

• Chaque colonne de W peut être vue comme le vecteur 

wk du modèle y(x,wk) pour la ke cible
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Figure 3.4 Plot of the contours
of the unregularized error function
(blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer q = 2 on the left and the lasso
regularizer q = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w⋆.
The lasso gives a sparse solution in
which w⋆

1 = 0.

w1

w2

w⋆

w1

w2

w⋆

For the remainder of this chapter we shall focus on the quadratic regularizer
(3.27) both for its practical importance and its analytical tractability.

3.1.5 Multiple outputs
So far, we have considered the case of a single target variable t. In some applica-

tions, we may wish to predict K > 1 target variables, which we denote collectively
by the target vector t. This could be done by introducing a different set of basis func-
tions for each component of t, leading to multiple, independent regression problems.
However, a more interesting, and more common, approach is to use the same set of
basis functions to model all of the components of the target vector so that

y(x,w) = WTφ(x) (3.31)

where y is a K-dimensional column vector, W is an M × K matrix of parameters,
and φ(x) is an M -dimensional column vector with elements φj(x), with φ0(x) = 1
as before. Suppose we take the conditional distribution of the target vector to be an
isotropic Gaussian of the form

p(t|x,W, β) = N (t|WTφ(x), β−1I). (3.32)

If we have a set of observations t1, . . . , tN , we can combine these into a matrix T
of size N × K such that the nth row is given by tT

n . Similarly, we can combine the
input vectors x1, . . . ,xN into a matrix X. The log likelihood function is then given
by

ln p(T|X,W, β) =
N∑

n=1

lnN (tn|WTφ(xn), β−1I)

=
NK

2
ln

(
β

2π

)
− β

2

N∑

n=1

∥∥tn − WTφ(xn)
∥∥2

. (3.33)
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• On suppose encore un modèle gaussien

où on suppose que les cibles sont indépendantes

• Un modèle faisant des prédictions multiples est parfois 
appelé un modèle multitâche
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• Soit notre ensemble d’entraînement 
      = {(x1,t1), ... , (xN,tN)}

‣ on va également noter                                   
et T est une matrice dont les rangées sont les vecteurs t1, ... , tN

• En faisant l’hypothèse i.i.d., on a :
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will be simply

E[t|x] =
∫

tp(t|x) dt = y(x,w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t1, . . . , tN . We group the target variables {tn} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that
these data points are drawn independently from the distribution (3.8), we obtain the
following expression for the likelihood function, which is a function of the adjustable
parameters w and β, in the form

p(t|X,w, β) =
N∏

n=1

N (tn|wTφ(xn), β−1) (3.10)

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the input
variables. Thus x will always appear in the set of conditioning variables, and so
from now on we will drop the explicit x from expressions such as p(t|x,w, β) in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

ln p(t|w, β) =
N∑

n=1

lnN (tn|wTφ(xn), β−1)

=
N

2
ln β − N

2
ln(2π) − βED(w) (3.11)

where the sum-of-squares error function is defined by

ED(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2. (3.12)

Having written down the likelihood function, we can use maximum likelihood to
determine w and β. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

∇ ln p(t|w, β) =
N∑

n=1

{
tn − wTφ(xn)

}
φ(xn)T. (3.13)
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Figure 3.4 Plot of the contours
of the unregularized error function
(blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer q = 2 on the left and the lasso
regularizer q = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w⋆.
The lasso gives a sparse solution in
which w⋆

1 = 0.

w1

w2

w⋆

w1

w2

w⋆

For the remainder of this chapter we shall focus on the quadratic regularizer
(3.27) both for its practical importance and its analytical tractability.

3.1.5 Multiple outputs
So far, we have considered the case of a single target variable t. In some applica-

tions, we may wish to predict K > 1 target variables, which we denote collectively
by the target vector t. This could be done by introducing a different set of basis func-
tions for each component of t, leading to multiple, independent regression problems.
However, a more interesting, and more common, approach is to use the same set of
basis functions to model all of the components of the target vector so that

y(x,w) = WTφ(x) (3.31)

where y is a K-dimensional column vector, W is an M × K matrix of parameters,
and φ(x) is an M -dimensional column vector with elements φj(x), with φ0(x) = 1
as before. Suppose we take the conditional distribution of the target vector to be an
isotropic Gaussian of the form

p(t|x,W, β) = N (t|WTφ(x), β−1I). (3.32)

If we have a set of observations t1, . . . , tN , we can combine these into a matrix T
of size N × K such that the nth row is given by tT

n . Similarly, we can combine the
input vectors x1, . . . ,xN into a matrix X. The log likelihood function is then given
by

ln p(T|X,W, β) =
N∑

n=1

lnN (tn|WTφ(xn), β−1I)

=
NK

2
ln

(
β

2π

)
− β

2

N∑

n=1

∥∥tn − WTφ(xn)
∥∥2

. (3.33)
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• On peut démontrer que le maximum de vraisemblance est :

• On peut voir le résultat comme la concaténation (colonne 
par colonne) des solutions pour chaque tâche 

où   k = (t1,k , ... , tN,k)T
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As before, we can maximize this function with respect to W, giving

WML =
(
ΦTΦ

)−1
ΦTT. (3.34)

If we examine this result for each target variable tk, we have

wk =
(
ΦTΦ

)−1
ΦTtk = Φ†tk (3.35)

where tk is an N -dimensional column vector with components tnk for n = 1, . . . N .
Thus the solution to the regression problem decouples between the different target
variables, and we need only compute a single pseudo-inverse matrix Φ†, which is
shared by all of the vectors wk.

The extension to general Gaussian noise distributions having arbitrary covari-
ance matrices is straightforward. Again, this leads to a decoupling into K inde-Exercise 3.6
pendent regression problems. This result is unsurprising because the parameters W
define only the mean of the Gaussian noise distribution, and we know from Sec-
tion 2.3.4 that the maximum likelihood solution for the mean of a multivariate Gaus-
sian is independent of the covariance. From now on, we shall therefore consider a
single target variable t for simplicity.

3.2. The Bias-Variance Decomposition

So far in our discussion of linear models for regression, we have assumed that the
form and number of basis functions are both fixed. As we have seen in Chapter 1,
the use of maximum likelihood, or equivalently least squares, can lead to severe
over-fitting if complex models are trained using data sets of limited size. However,
limiting the number of basis functions in order to avoid over-fitting has the side
effect of limiting the flexibility of the model to capture interesting and important
trends in the data. Although the introduction of regularization terms can control
over-fitting for models with many parameters, this raises the question of how to
determine a suitable value for the regularization coefficient λ. Seeking the solution
that minimizes the regularized error function with respect to both the weight vector
w and the regularization coefficient λ is clearly not the right approach since this
leads to the unregularized solution with λ = 0.

As we have seen in earlier chapters, the phenomenon of over-fitting is really an
unfortunate property of maximum likelihood and does not arise when we marginalize
over parameters in a Bayesian setting. In this chapter, we shall consider the Bayesian
view of model complexity in some depth. Before doing so, however, it is instructive
to consider a frequentist viewpoint of the model complexity issue, known as the bias-
variance trade-off. Although we shall introduce this concept in the context of linear
basis function models, where it is easy to illustrate the ideas using simple examples,
the discussion has more general applicability.

In Section 1.5.5, when we discussed decision theory for regression problems,
we considered various loss functions each of which leads to a corresponding optimal
prediction once we are given the conditional distribution p(t|x). A popular choice is
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will be simply

E[t|x] =
∫

tp(t|x) dt = y(x,w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t1, . . . , tN . We group the target variables {tn} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that
these data points are drawn independently from the distribution (3.8), we obtain the
following expression for the likelihood function, which is a function of the adjustable
parameters w and β, in the form

p(t|X,w, β) =
N∏

n=1

N (tn|wTφ(xn), β−1) (3.10)

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the input
variables. Thus x will always appear in the set of conditioning variables, and so
from now on we will drop the explicit x from expressions such as p(t|x,w, β) in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

ln p(t|w, β) =
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lnN (tn|wTφ(xn), β−1)

=
N

2
ln β − N

2
ln(2π) − βED(w) (3.11)

where the sum-of-squares error function is defined by

ED(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2. (3.12)

Having written down the likelihood function, we can use maximum likelihood to
determine w and β. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

∇ ln p(t|w, β) =
N∑

n=1

{
tn − wTφ(xn)

}
φ(xn)T. (3.13)
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MODÈLE DE RÉGRESSION LINÉAIRE

• En régression linéaire, on suppose que :

où 

• Lorsqu’on doit faire une prédiction pour une nouvelle 
entrée x, on prédit alors la moyenne, i.e. y(x,w)
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

on a regular lattice, such as the successive time points in a temporal sequence, or the
pixels in an image. Useful texts on wavelets include Ogden (1997), Mallat (1999),
and Vidakovic (1999).

Most of the discussion in this chapter, however, is independent of the particular
choice of basis function set, and so for most of our discussion we shall not specify
the particular form of the basis functions, except for the purposes of numerical il-
lustration. Indeed, much of our discussion will be equally applicable to the situation
in which the vector φ(x) of basis functions is simply the identity φ(x) = x. Fur-
thermore, in order to keep the notation simple, we shall focus on the case of a single
target variable t. However, in Section 3.1.5, we consider briefly the modifications
needed to deal with multiple target variables.

3.1.1 Maximum likelihood and least squares
In Chapter 1, we fitted polynomial functions to data sets by minimizing a sum-

of-squares error function. We also showed that this error function could be motivated
as the maximum likelihood solution under an assumed Gaussian noise model. Let
us return to this discussion and consider the least squares approach, and its relation
to maximum likelihood, in more detail.

As before, we assume that the target variable t is given by a deterministic func-
tion y(x,w) with additive Gaussian noise so that

t = y(x,w) + ϵ (3.7)

where ϵ is a zero mean Gaussian random variable with precision (inverse variance)
β. Thus we can write

p(t|x,w, β) = N (t|y(x,w), β−1). (3.8)

Recall that, if we assume a squared loss function, then the optimal prediction, for a
new value of x, will be given by the conditional mean of the target variable. In theSection 1.5.5
case of a Gaussian conditional distribution of the form (3.8), the conditional mean
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Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,
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• Pourquoi est-ce que prédire la moyenne (y(x,w)) est la 

bonne chose à faire ?

• La théorie de la décision va nous éclairer sur le sujet

• On va maintenant noter ŷ(x) la prédiction (décision) 

que l’on va faire pour une entrée x

‣ ŷ(x) pourrait être différente de y(x,w)
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• Sachant que :

‣ chaque paire (x,t) est échantillonnée d’une distribution p(x,t)

‣ la perte qui nous intéresse est L(t,ŷ(x)) = {ŷ(x)-t}2

• La perte espérée de notre prédiction (décision) sera
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independent, so that

p(xI,xB|Ck) = p(xI|Ck)p(xB|Ck). (1.84)

This is an example of conditional independence property, because the indepen-Section 8.2
dence holds when the distribution is conditioned on the class Ck. The posterior
probability, given both the X-ray and blood data, is then given by

p(Ck|xI,xB) ∝ p(xI,xB|Ck)p(Ck)
∝ p(xI|Ck)p(xB|Ck)p(Ck)

∝ p(Ck|xI)p(Ck|xB)
p(Ck)

(1.85)

Thus we need the class prior probabilities p(Ck), which we can easily estimate
from the fractions of data points in each class, and then we need to normalize
the resulting posterior probabilities so they sum to one. The particular condi-
tional independence assumption (1.84) is an example of the naive Bayes model.Section 8.2.2
Note that the joint marginal distribution p(xI,xB) will typically not factorize
under this model. We shall see in later chapters how to construct models for
combining data that do not require the conditional independence assumption
(1.84).

1.5.5 Loss functions for regression
So far, we have discussed decision theory in the context of classification prob-

lems. We now turn to the case of regression problems, such as the curve fitting
example discussed earlier. The decision stage consists of choosing a specific esti-Section 1.1
mate y(x) of the value of t for each input x. Suppose that in doing so, we incur a
loss L(t, y(x)). The average, or expected, loss is then given by

E[L] =
∫∫

L(t, y(x))p(x, t) dxdt. (1.86)

A common choice of loss function in regression problems is the squared loss given
by L(t, y(x)) = {y(x) − t}2. In this case, the expected loss can be written

E[L] =
∫∫

{y(x) − t}2p(x, t) dxdt. (1.87)

Our goal is to choose y(x) so as to minimize E[L]. If we assume a completely
flexible function y(x), we can do this formally using the calculus of variations toAppendix D
give

δE[L]
δy(x)

= 2
∫

{y(x) − t}p(x, t) dt = 0. (1.88)

Solving for y(x), and using the sum and product rules of probability, we obtain

y(x) =

∫
tp(x, t) dt

p(x)
=

∫
tp(t|x) dt = Et[t|x] (1.89)

^



Sujets: 

HUGO LAROCHELLE

THÉORIE DE LA DÉCISION

• Pour trouver ŷ(x) optimale on commence par noter que :

• Ainsi :
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Figure 1.28 The regression function y(x),
which minimizes the expected
squared loss, is given by the
mean of the conditional distri-
bution p(t|x).

t

xx0

y(x0)

y(x)

p(t|x0)

which is the conditional average of t conditioned on x and is known as the regression
function. This result is illustrated in Figure 1.28. It can readily be extended to mul-
tiple target variables represented by the vector t, in which case the optimal solution
is the conditional average y(x) = Et[t|x].Exercise 1.25

We can also derive this result in a slightly different way, which will also shed
light on the nature of the regression problem. Armed with the knowledge that the
optimal solution is the conditional expectation, we can expand the square term as
follows

{y(x) − t}2 = {y(x) − E[t|x] + E[t|x] − t}2

= {y(x) − E[t|x]}2 + 2{y(x) − E[t|x]}{E[t|x] − t} + {E[t|x] − t}2

where, to keep the notation uncluttered, we use E[t|x] to denote Et[t|x]. Substituting
into the loss function and performing the integral over t, we see that the cross-term
vanishes and we obtain an expression for the loss function in the form

E[L] =
∫

{y(x) − E[t|x]}2 p(x) dx +
∫

{E[t|x] − t}2p(x) dx. (1.90)

The function y(x) we seek to determine enters only in the first term, which will be
minimized when y(x) is equal to E[t|x], in which case this term will vanish. This
is simply the result that we derived previously and that shows that the optimal least
squares predictor is given by the conditional mean. The second term is the variance
of the distribution of t, averaged over x. It represents the intrinsic variability of
the target data and can be regarded as noise. Because it is independent of y(x), it
represents the irreducible minimum value of the loss function.

As with the classification problem, we can either determine the appropriate prob-
abilities and then use these to make optimal decisions, or we can build models that
make decisions directly. Indeed, we can identify three distinct approaches to solving
regression problems given, in order of decreasing complexity, by:

(a) First solve the inference problem of determining the joint density p(x, t). Then
normalize to find the conditional density p(t|x), and finally marginalize to find
the conditional mean given by (1.89).

^
^ ^
Z Z

{ŷ(x)� t}2p(x, t)dxdt =
Z Z

{ŷ(x)� E[t|x]}2p(x, t)dxdt

+

Z Z
2{ŷ(x)� E[t|x]}{E[t|x]� t}p(x, t)dxdt

+

Z Z
{E[t|x]� t}2p(x, t)dxdt

^
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• Ensuite, on remarque que :
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=

Z Z
2{ŷ(x)� E[t|x]}{E[t|x]� t}p(t|x)p(x)dtdx

Z Z
2{ŷ(x)� E[t|x]}{E[t|x]� t}p(x, t)dxdt

=

Z
2{ŷ(x)� E[t|x]}p(x)

✓Z
{E[t|x]� t}p(t|x)dt

◆
dx

=

Z
2{ŷ(x)� E[t|x]}p(x)

✓
E[t|x]�

Z
t p(t|x)dt

◆
dx = 0
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• Donc on a que :

• Le mininum est donc atteint lorsque 
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Z Z
{ŷ(x)� t}2p(x, t)dxdt =

Z Z
{ŷ(x)� E[t|x]}2p(x, t)dxdt

+

Z Z
2{ŷ(x)� E[t|x]}{E[t|x]� t}p(x, t)dxdt

+

Z Z
{E[t|x]� t}2p(x, t)dxdt

ŷ(x) = E[t|x]
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• Puisqu’on ne connaît pas la vraie distribution p(x,t) 
(et donc ni p(t|x), ni          ), le mieux qu’on puisse faire 

est d’utiliser notre modèle de p(t|x)

• Donc, si on veut une petite perte de la différence au carré 
(en espérance), prédire la moyenne est un bon choix selon 
la théorie de la décision
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E[t|x]

ŷ(x) = E[t|x] = y(x,w)
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• Pour d’autres choix de perte, la décision optimale sera 
différente

‣ pour la perte L(t,ŷ(x)) = |ŷ(x)-t|, la décision ŷ(x) devrait être la 
médiane de p(t|x,w)

• Par chance, la médiane d’une gaussienne est aussi la 
moyenne!

‣ pour d’autres choix de modèle probabiliste p(t|x,w), ce pourrait ne 
pas être le cas 
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• Analysons la performance espérée de généralisation d’un 
modèle donné            de régression :

où p(x,t) est la vraie distribution des exemples (x,t)

• Changement à la notation : on note explicitement selon 
quelles variables aléatoires on fait l’espérance, en ajoutant 
l’information en indice
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E(x,t)[L(t, y(x,w))] =

Z Z
{y(x,w)� t}2p(x, t)dxdt

y(x,w)
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• Analysons la performance espérée de généralisation d’un 
modèle donné            de régression :

où p(x,t) est la vraie distribution des exemples (x,t)

• On s’intéresse plus spécifiquement au cas où le modèle w 

est celui obtenu après s’être entraîné sur 

‣ en régression linéaire, lorsque
40
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D

E(x,t)[L(t, y(x,w))] =

Z Z
{y(x,w)� t}2p(x, t)dxdt
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q = 0.5 q = 1 q = 2 q = 4

Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter q.

zero. It has the advantage that the error function remains a quadratic function of
w, and so its exact minimizer can be found in closed form. Specifically, setting the
gradient of (3.27) with respect to w to zero, and solving for w as before, we obtain

w =
(
λI + ΦTΦ

)−1
ΦTt. (3.28)

This represents a simple extension of the least-squares solution (3.15).
A more general regularizer is sometimes used, for which the regularized error

takes the form
1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2

M∑

j=1

|wj |q (3.29)

where q = 2 corresponds to the quadratic regularizer (3.27). Figure 3.3 shows con-
tours of the regularization function for different values of q.

The case of q = 1 is know as the lasso in the statistics literature (Tibshirani,
1996). It has the property that if λ is sufficiently large, some of the coefficients
wj are driven to zero, leading to a sparse model in which the corresponding basis
functions play no role. To see this, we first note that minimizing (3.29) is equivalent
to minimizing the unregularized sum-of-squares error (3.12) subject to the constraintExercise 3.5

M∑

j=1

|wj |q ! η (3.30)

for an appropriate value of the parameter η, where the two approaches can be related
using Lagrange multipliers. The origin of the sparsity can be seen from Figure 3.4,Appendix E
which shows that the minimum of the error function, subject to the constraint (3.30).
As λ is increased, so an increasing number of parameters are driven to zero.

Regularization allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting the effective model complexity.
However, the problem of determining the optimal model complexity is then shifted
from one of finding the appropriate number of basis functions to one of determining
a suitable value of the regularization coefficient λ. We shall return to the issue of
model complexity later in this chapter.

y(x,w)
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the squared loss function, for which the optimal prediction is given by the conditional
expectation, which we denote by h(x) and which is given by

h(x) = E[t|x] =
∫

tp(t|x) dt. (3.36)

At this point, it is worth distinguishing between the squared loss function arising
from decision theory and the sum-of-squares error function that arose in the maxi-
mum likelihood estimation of model parameters. We might use more sophisticated
techniques than least squares, for example regularization or a fully Bayesian ap-
proach, to determine the conditional distribution p(t|x). These can all be combined
with the squared loss function for the purpose of making predictions.

We showed in Section 1.5.5 that the expected squared loss can be written in the
form

E[L] =
∫

{y(x) − h(x)}2 p(x) dx +
∫

{h(x) − t}2p(x, t) dxdt. (3.37)

Recall that the second term, which is independent of y(x), arises from the intrinsic
noise on the data and represents the minimum achievable value of the expected loss.
The first term depends on our choice for the function y(x), and we will seek a so-
lution for y(x) which makes this term a minimum. Because it is nonnegative, the
smallest that we can hope to make this term is zero. If we had an unlimited supply of
data (and unlimited computational resources), we could in principle find the regres-
sion function h(x) to any desired degree of accuracy, and this would represent the
optimal choice for y(x). However, in practice we have a data set D containing only
a finite number N of data points, and consequently we do not know the regression
function h(x) exactly.

If we model the h(x) using a parametric function y(x,w) governed by a pa-
rameter vector w, then from a Bayesian perspective the uncertainty in our model is
expressed through a posterior distribution over w. A frequentist treatment, however,
involves making a point estimate of w based on the data set D, and tries instead
to interpret the uncertainty of this estimate through the following thought experi-
ment. Suppose we had a large number of data sets each of size N and each drawn
independently from the distribution p(t,x). For any given data set D, we can run
our learning algorithm and obtain a prediction function y(x;D). Different data sets
from the ensemble will give different functions and consequently different values of
the squared loss. The performance of a particular learning algorithm is then assessed
by taking the average over this ensemble of data sets.

Consider the integrand of the first term in (3.37), which for a particular data set
D takes the form

{y(x;D) − h(x)}2. (3.38)

Because this quantity will be dependent on the particular data set D, we take its aver-
age over the ensemble of data sets. If we add and subtract the quantity ED[y(x;D)]
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inside the braces, and then expand, we obtain

{y(x;D) − ED[y(x;D)] + ED[y(x;D)] − h(x)}2

= {y(x;D) − ED[y(x;D)]}2 + {ED[y(x;D)] − h(x)}2

+2{y(x;D) − ED[y(x;D)]}{ED[y(x;D)] − h(x)}. (3.39)

We now take the expectation of this expression with respect to D and note that the
final term will vanish, giving

ED
[
{y(x;D) − h(x)}2

]

= {ED[y(x;D)] − h(x)}2

︸ ︷︷ ︸
(bias)2

+ ED
[
{y(x;D) − ED[y(x;D)]}2

]
︸ ︷︷ ︸

variance

. (3.40)

We see that the expected squared difference between y(x;D) and the regression
function h(x) can be expressed as the sum of two terms. The first term, called the
squared bias, represents the extent to which the average prediction over all data sets
differs from the desired regression function. The second term, called the variance,
measures the extent to which the solutions for individual data sets vary around their
average, and hence this measures the extent to which the function y(x;D) is sensitive
to the particular choice of data set. We shall provide some intuition to support these
definitions shortly when we consider a simple example.

So far, we have considered a single input value x. If we substitute this expansion
back into (3.37), we obtain the following decomposition of the expected squared loss

expected loss = (bias)2 + variance + noise (3.41)

where

(bias)2 =
∫

{ED[y(x;D)] − h(x)}2p(x) dx (3.42)

variance =
∫

ED
[
{y(x;D) − ED[y(x;D)]}2

]
p(x) dx (3.43)

noise =
∫

{h(x) − t}2p(x, t) dxdt (3.44)

and the bias and variance terms now refer to integrated quantities.
Our goal is to minimize the expected loss, which we have decomposed into the

sum of a (squared) bias, a variance, and a constant noise term. As we shall see, there
is a trade-off between bias and variance, with very flexible models having low bias
and high variance, and relatively rigid models having high bias and low variance.
The model with the optimal predictive capability is the one that leads to the best
balance between bias and variance. This is illustrated by considering the sinusoidal
data set from Chapter 1. Here we generate 100 data sets, each containing N = 25Appendix A
data points, independently from the sinusoidal curve h(x) = sin(2πx). The data
sets are indexed by l = 1, . . . , L, where L = 100, and for each data set D(l) we
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inside the braces, and then expand, we obtain

{y(x;D) − ED[y(x;D)] + ED[y(x;D)] − h(x)}2

= {y(x;D) − ED[y(x;D)]}2 + {ED[y(x;D)] − h(x)}2

+2{y(x;D) − ED[y(x;D)]}{ED[y(x;D)] − h(x)}. (3.39)

We now take the expectation of this expression with respect to D and note that the
final term will vanish, giving

ED
[
{y(x;D) − h(x)}2

]

= {ED[y(x;D)] − h(x)}2

︸ ︷︷ ︸
(bias)2

+ ED
[
{y(x;D) − ED[y(x;D)]}2

]
︸ ︷︷ ︸

variance

. (3.40)

We see that the expected squared difference between y(x;D) and the regression
function h(x) can be expressed as the sum of two terms. The first term, called the
squared bias, represents the extent to which the average prediction over all data sets
differs from the desired regression function. The second term, called the variance,
measures the extent to which the solutions for individual data sets vary around their
average, and hence this measures the extent to which the function y(x;D) is sensitive
to the particular choice of data set. We shall provide some intuition to support these
definitions shortly when we consider a simple example.

So far, we have considered a single input value x. If we substitute this expansion
back into (3.37), we obtain the following decomposition of the expected squared loss

expected loss = (bias)2 + variance + noise (3.41)

where

(bias)2 =
∫

{ED[y(x;D)] − h(x)}2p(x) dx (3.42)

variance =
∫

ED
[
{y(x;D) − ED[y(x;D)]}2

]
p(x) dx (3.43)

noise =
∫

{h(x) − t}2p(x, t) dxdt (3.44)

and the bias and variance terms now refer to integrated quantities.
Our goal is to minimize the expected loss, which we have decomposed into the

sum of a (squared) bias, a variance, and a constant noise term. As we shall see, there
is a trade-off between bias and variance, with very flexible models having low bias
and high variance, and relatively rigid models having high bias and low variance.
The model with the optimal predictive capability is the one that leads to the best
balance between bias and variance. This is illustrated by considering the sinusoidal
data set from Chapter 1. Here we generate 100 data sets, each containing N = 25Appendix A
data points, independently from the sinusoidal curve h(x) = sin(2πx). The data
sets are indexed by l = 1, . . . , L, where L = 100, and for each data set D(l) we
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inside the braces, and then expand, we obtain

{y(x;D) − ED[y(x;D)] + ED[y(x;D)] − h(x)}2

= {y(x;D) − ED[y(x;D)]}2 + {ED[y(x;D)] − h(x)}2

+2{y(x;D) − ED[y(x;D)]}{ED[y(x;D)] − h(x)}. (3.39)

We now take the expectation of this expression with respect to D and note that the
final term will vanish, giving

ED
[
{y(x;D) − h(x)}2

]

= {ED[y(x;D)] − h(x)}2

︸ ︷︷ ︸
(bias)2

+ ED
[
{y(x;D) − ED[y(x;D)]}2

]
︸ ︷︷ ︸

variance

. (3.40)

We see that the expected squared difference between y(x;D) and the regression
function h(x) can be expressed as the sum of two terms. The first term, called the
squared bias, represents the extent to which the average prediction over all data sets
differs from the desired regression function. The second term, called the variance,
measures the extent to which the solutions for individual data sets vary around their
average, and hence this measures the extent to which the function y(x;D) is sensitive
to the particular choice of data set. We shall provide some intuition to support these
definitions shortly when we consider a simple example.

So far, we have considered a single input value x. If we substitute this expansion
back into (3.37), we obtain the following decomposition of the expected squared loss

expected loss = (bias)2 + variance + noise (3.41)

where

(bias)2 =
∫

{ED[y(x;D)] − h(x)}2p(x) dx (3.42)

variance =
∫

ED
[
{y(x;D) − ED[y(x;D)]}2

]
p(x) dx (3.43)

noise =
∫

{h(x) − t}2p(x, t) dxdt (3.44)

and the bias and variance terms now refer to integrated quantities.
Our goal is to minimize the expected loss, which we have decomposed into the

sum of a (squared) bias, a variance, and a constant noise term. As we shall see, there
is a trade-off between bias and variance, with very flexible models having low bias
and high variance, and relatively rigid models having high bias and low variance.
The model with the optimal predictive capability is the one that leads to the best
balance between bias and variance. This is illustrated by considering the sinusoidal
data set from Chapter 1. Here we generate 100 data sets, each containing N = 25Appendix A
data points, independently from the sinusoidal curve h(x) = sin(2πx). The data
sets are indexed by l = 1, . . . , L, where L = 100, and for each data set D(l) we
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inside the braces, and then expand, we obtain

{y(x;D) − ED[y(x;D)] + ED[y(x;D)] − h(x)}2

= {y(x;D) − ED[y(x;D)]}2 + {ED[y(x;D)] − h(x)}2

+2{y(x;D) − ED[y(x;D)]}{ED[y(x;D)] − h(x)}. (3.39)

We now take the expectation of this expression with respect to D and note that the
final term will vanish, giving

ED
[
{y(x;D) − h(x)}2

]

= {ED[y(x;D)] − h(x)}2

︸ ︷︷ ︸
(bias)2

+ ED
[
{y(x;D) − ED[y(x;D)]}2

]
︸ ︷︷ ︸

variance

. (3.40)

We see that the expected squared difference between y(x;D) and the regression
function h(x) can be expressed as the sum of two terms. The first term, called the
squared bias, represents the extent to which the average prediction over all data sets
differs from the desired regression function. The second term, called the variance,
measures the extent to which the solutions for individual data sets vary around their
average, and hence this measures the extent to which the function y(x;D) is sensitive
to the particular choice of data set. We shall provide some intuition to support these
definitions shortly when we consider a simple example.

So far, we have considered a single input value x. If we substitute this expansion
back into (3.37), we obtain the following decomposition of the expected squared loss

expected loss = (bias)2 + variance + noise (3.41)

where

(bias)2 =
∫

{ED[y(x;D)] − h(x)}2p(x) dx (3.42)

variance =
∫

ED
[
{y(x;D) − ED[y(x;D)]}2

]
p(x) dx (3.43)

noise =
∫

{h(x) − t}2p(x, t) dxdt (3.44)

and the bias and variance terms now refer to integrated quantities.
Our goal is to minimize the expected loss, which we have decomposed into the

sum of a (squared) bias, a variance, and a constant noise term. As we shall see, there
is a trade-off between bias and variance, with very flexible models having low bias
and high variance, and relatively rigid models having high bias and low variance.
The model with the optimal predictive capability is the one that leads to the best
balance between bias and variance. This is illustrated by considering the sinusoidal
data set from Chapter 1. Here we generate 100 data sets, each containing N = 25Appendix A
data points, independently from the sinusoidal curve h(x) = sin(2πx). The data
sets are indexed by l = 1, . . . , L, where L = 100, and for each data set D(l) we

À quel point le modèle «moyen» donné par l’algorithme 
d’apprentissage sera proche du meilleur modèle possible 

             , i.e. est-ce que l’algorithme 
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the squared loss function, for which the optimal prediction is given by the conditional
expectation, which we denote by h(x) and which is given by

h(x) = E[t|x] =
∫

tp(t|x) dt. (3.36)

At this point, it is worth distinguishing between the squared loss function arising
from decision theory and the sum-of-squares error function that arose in the maxi-
mum likelihood estimation of model parameters. We might use more sophisticated
techniques than least squares, for example regularization or a fully Bayesian ap-
proach, to determine the conditional distribution p(t|x). These can all be combined
with the squared loss function for the purpose of making predictions.

We showed in Section 1.5.5 that the expected squared loss can be written in the
form

E[L] =
∫

{y(x) − h(x)}2 p(x) dx +
∫

{h(x) − t}2p(x, t) dxdt. (3.37)

Recall that the second term, which is independent of y(x), arises from the intrinsic
noise on the data and represents the minimum achievable value of the expected loss.
The first term depends on our choice for the function y(x), and we will seek a so-
lution for y(x) which makes this term a minimum. Because it is nonnegative, the
smallest that we can hope to make this term is zero. If we had an unlimited supply of
data (and unlimited computational resources), we could in principle find the regres-
sion function h(x) to any desired degree of accuracy, and this would represent the
optimal choice for y(x). However, in practice we have a data set D containing only
a finite number N of data points, and consequently we do not know the regression
function h(x) exactly.

If we model the h(x) using a parametric function y(x,w) governed by a pa-
rameter vector w, then from a Bayesian perspective the uncertainty in our model is
expressed through a posterior distribution over w. A frequentist treatment, however,
involves making a point estimate of w based on the data set D, and tries instead
to interpret the uncertainty of this estimate through the following thought experi-
ment. Suppose we had a large number of data sets each of size N and each drawn
independently from the distribution p(t,x). For any given data set D, we can run
our learning algorithm and obtain a prediction function y(x;D). Different data sets
from the ensemble will give different functions and consequently different values of
the squared loss. The performance of a particular learning algorithm is then assessed
by taking the average over this ensemble of data sets.

Consider the integrand of the first term in (3.37), which for a particular data set
D takes the form

{y(x;D) − h(x)}2. (3.38)

Because this quantity will be dependent on the particular data set D, we take its aver-
age over the ensemble of data sets. If we add and subtract the quantity ED[y(x;D)]
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inside the braces, and then expand, we obtain

{y(x;D) − ED[y(x;D)] + ED[y(x;D)] − h(x)}2

= {y(x;D) − ED[y(x;D)]}2 + {ED[y(x;D)] − h(x)}2

+2{y(x;D) − ED[y(x;D)]}{ED[y(x;D)] − h(x)}. (3.39)

We now take the expectation of this expression with respect to D and note that the
final term will vanish, giving

ED
[
{y(x;D) − h(x)}2

]

= {ED[y(x;D)] − h(x)}2

︸ ︷︷ ︸
(bias)2

+ ED
[
{y(x;D) − ED[y(x;D)]}2

]
︸ ︷︷ ︸

variance

. (3.40)

We see that the expected squared difference between y(x;D) and the regression
function h(x) can be expressed as the sum of two terms. The first term, called the
squared bias, represents the extent to which the average prediction over all data sets
differs from the desired regression function. The second term, called the variance,
measures the extent to which the solutions for individual data sets vary around their
average, and hence this measures the extent to which the function y(x;D) is sensitive
to the particular choice of data set. We shall provide some intuition to support these
definitions shortly when we consider a simple example.

So far, we have considered a single input value x. If we substitute this expansion
back into (3.37), we obtain the following decomposition of the expected squared loss

expected loss = (bias)2 + variance + noise (3.41)

where

(bias)2 =
∫

{ED[y(x;D)] − h(x)}2p(x) dx (3.42)

variance =
∫

ED
[
{y(x;D) − ED[y(x;D)]}2

]
p(x) dx (3.43)

noise =
∫

{h(x) − t}2p(x, t) dxdt (3.44)

and the bias and variance terms now refer to integrated quantities.
Our goal is to minimize the expected loss, which we have decomposed into the

sum of a (squared) bias, a variance, and a constant noise term. As we shall see, there
is a trade-off between bias and variance, with very flexible models having low bias
and high variance, and relatively rigid models having high bias and low variance.
The model with the optimal predictive capability is the one that leads to the best
balance between bias and variance. This is illustrated by considering the sinusoidal
data set from Chapter 1. Here we generate 100 data sets, each containing N = 25Appendix A
data points, independently from the sinusoidal curve h(x) = sin(2πx). The data
sets are indexed by l = 1, . . . , L, where L = 100, and for each data set D(l) we
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inside the braces, and then expand, we obtain

{y(x;D) − ED[y(x;D)] + ED[y(x;D)] − h(x)}2

= {y(x;D) − ED[y(x;D)]}2 + {ED[y(x;D)] − h(x)}2

+2{y(x;D) − ED[y(x;D)]}{ED[y(x;D)] − h(x)}. (3.39)

We now take the expectation of this expression with respect to D and note that the
final term will vanish, giving

ED
[
{y(x;D) − h(x)}2

]

= {ED[y(x;D)] − h(x)}2

︸ ︷︷ ︸
(bias)2

+ ED
[
{y(x;D) − ED[y(x;D)]}2

]
︸ ︷︷ ︸

variance

. (3.40)

We see that the expected squared difference between y(x;D) and the regression
function h(x) can be expressed as the sum of two terms. The first term, called the
squared bias, represents the extent to which the average prediction over all data sets
differs from the desired regression function. The second term, called the variance,
measures the extent to which the solutions for individual data sets vary around their
average, and hence this measures the extent to which the function y(x;D) is sensitive
to the particular choice of data set. We shall provide some intuition to support these
definitions shortly when we consider a simple example.

So far, we have considered a single input value x. If we substitute this expansion
back into (3.37), we obtain the following decomposition of the expected squared loss

expected loss = (bias)2 + variance + noise (3.41)

where

(bias)2 =
∫

{ED[y(x;D)] − h(x)}2p(x) dx (3.42)

variance =
∫

ED
[
{y(x;D) − ED[y(x;D)]}2

]
p(x) dx (3.43)

noise =
∫

{h(x) − t}2p(x, t) dxdt (3.44)

and the bias and variance terms now refer to integrated quantities.
Our goal is to minimize the expected loss, which we have decomposed into the

sum of a (squared) bias, a variance, and a constant noise term. As we shall see, there
is a trade-off between bias and variance, with very flexible models having low bias
and high variance, and relatively rigid models having high bias and low variance.
The model with the optimal predictive capability is the one that leads to the best
balance between bias and variance. This is illustrated by considering the sinusoidal
data set from Chapter 1. Here we generate 100 data sets, each containing N = 25Appendix A
data points, independently from the sinusoidal curve h(x) = sin(2πx). The data
sets are indexed by l = 1, . . . , L, where L = 100, and for each data set D(l) we

À quel point le modèle donné par l’algorithme 
d’apprentissage varie d’un ensemble d’entraînement à l’autre
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inside the braces, and then expand, we obtain

{y(x;D) − ED[y(x;D)] + ED[y(x;D)] − h(x)}2

= {y(x;D) − ED[y(x;D)]}2 + {ED[y(x;D)] − h(x)}2

+2{y(x;D) − ED[y(x;D)]}{ED[y(x;D)] − h(x)}. (3.39)

We now take the expectation of this expression with respect to D and note that the
final term will vanish, giving

ED
[
{y(x;D) − h(x)}2

]

= {ED[y(x;D)] − h(x)}2

︸ ︷︷ ︸
(bias)2

+ ED
[
{y(x;D) − ED[y(x;D)]}2

]
︸ ︷︷ ︸

variance

. (3.40)

We see that the expected squared difference between y(x;D) and the regression
function h(x) can be expressed as the sum of two terms. The first term, called the
squared bias, represents the extent to which the average prediction over all data sets
differs from the desired regression function. The second term, called the variance,
measures the extent to which the solutions for individual data sets vary around their
average, and hence this measures the extent to which the function y(x;D) is sensitive
to the particular choice of data set. We shall provide some intuition to support these
definitions shortly when we consider a simple example.

So far, we have considered a single input value x. If we substitute this expansion
back into (3.37), we obtain the following decomposition of the expected squared loss

expected loss = (bias)2 + variance + noise (3.41)

where

(bias)2 =
∫

{ED[y(x;D)] − h(x)}2p(x) dx (3.42)

variance =
∫

ED
[
{y(x;D) − ED[y(x;D)]}2

]
p(x) dx (3.43)

noise =
∫

{h(x) − t}2p(x, t) dxdt (3.44)

and the bias and variance terms now refer to integrated quantities.
Our goal is to minimize the expected loss, which we have decomposed into the

sum of a (squared) bias, a variance, and a constant noise term. As we shall see, there
is a trade-off between bias and variance, with very flexible models having low bias
and high variance, and relatively rigid models having high bias and low variance.
The model with the optimal predictive capability is the one that leads to the best
balance between bias and variance. This is illustrated by considering the sinusoidal
data set from Chapter 1. Here we generate 100 data sets, each containing N = 25Appendix A
data points, independently from the sinusoidal curve h(x) = sin(2πx). The data
sets are indexed by l = 1, . . . , L, where L = 100, and for each data set D(l) we
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inside the braces, and then expand, we obtain

{y(x;D) − ED[y(x;D)] + ED[y(x;D)] − h(x)}2

= {y(x;D) − ED[y(x;D)]}2 + {ED[y(x;D)] − h(x)}2

+2{y(x;D) − ED[y(x;D)]}{ED[y(x;D)] − h(x)}. (3.39)

We now take the expectation of this expression with respect to D and note that the
final term will vanish, giving

ED
[
{y(x;D) − h(x)}2

]

= {ED[y(x;D)] − h(x)}2

︸ ︷︷ ︸
(bias)2

+ ED
[
{y(x;D) − ED[y(x;D)]}2

]
︸ ︷︷ ︸

variance

. (3.40)

We see that the expected squared difference between y(x;D) and the regression
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measures the extent to which the solutions for individual data sets vary around their
average, and hence this measures the extent to which the function y(x;D) is sensitive
to the particular choice of data set. We shall provide some intuition to support these
definitions shortly when we consider a simple example.
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where
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∫
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[
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]
p(x) dx (3.43)
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and the bias and variance terms now refer to integrated quantities.
Our goal is to minimize the expected loss, which we have decomposed into the

sum of a (squared) bias, a variance, and a constant noise term. As we shall see, there
is a trade-off between bias and variance, with very flexible models having low bias
and high variance, and relatively rigid models having high bias and low variance.
The model with the optimal predictive capability is the one that leads to the best
balance between bias and variance. This is illustrated by considering the sinusoidal
data set from Chapter 1. Here we generate 100 data sets, each containing N = 25Appendix A
data points, independently from the sinusoidal curve h(x) = sin(2πx). The data
sets are indexed by l = 1, . . . , L, where L = 100, and for each data set D(l) we

À quel point il y a du bruit dans la cible à prédire, i.e.
à que point elle varie autour de son espérance conditionnelle

(ne dépend pas de l’algorithme d’apprentissage)



Sujets: 

HUGO LAROCHELLE

DÉCOMPOSITION BIAIS-VARIANCE

• On bon algorithme d’apprentissage aura un bon 
compromis entre son biais et sa variance

‣ si la capacité augmente, le biais diminue et la variance augmente

‣ si on régularise, la variance diminue, mais le biais augmente

• La décomposition biais-variance illustre donc plus 
formellement les phénomène de sur-apprentissage et sous-
appprentissage

‣ pas assez de capacité ⟹ biais très élevé ⟹ mauvaise généralisation

‣ trop de capacité ⟹ variance très élevée ⟹ mauvaise généralisation
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bruit



Apprentissage automatique
Régression linéaire - résumé



Sujets: 

HUGO LAROCHELLE

RÉGRESSION LINÉAIRE

• Modèle : 

• Entraînement : 
(maximum de vraisemblance si λ=0 ou maximum a posteriori si λ>0)

• Hyper-paramètre : λ

• Prédiction : y(x,w)
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résumé de la régression linéaire
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Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

on a regular lattice, such as the successive time points in a temporal sequence, or the
pixels in an image. Useful texts on wavelets include Ogden (1997), Mallat (1999),
and Vidakovic (1999).

Most of the discussion in this chapter, however, is independent of the particular
choice of basis function set, and so for most of our discussion we shall not specify
the particular form of the basis functions, except for the purposes of numerical il-
lustration. Indeed, much of our discussion will be equally applicable to the situation
in which the vector φ(x) of basis functions is simply the identity φ(x) = x. Fur-
thermore, in order to keep the notation simple, we shall focus on the case of a single
target variable t. However, in Section 3.1.5, we consider briefly the modifications
needed to deal with multiple target variables.

3.1.1 Maximum likelihood and least squares
In Chapter 1, we fitted polynomial functions to data sets by minimizing a sum-

of-squares error function. We also showed that this error function could be motivated
as the maximum likelihood solution under an assumed Gaussian noise model. Let
us return to this discussion and consider the least squares approach, and its relation
to maximum likelihood, in more detail.

As before, we assume that the target variable t is given by a deterministic func-
tion y(x,w) with additive Gaussian noise so that

t = y(x,w) + ϵ (3.7)

where ϵ is a zero mean Gaussian random variable with precision (inverse variance)
β. Thus we can write

p(t|x,w, β) = N (t|y(x,w), β−1). (3.8)

Recall that, if we assume a squared loss function, then the optimal prediction, for a
new value of x, will be given by the conditional mean of the target variable. In theSection 1.5.5
case of a Gaussian conditional distribution of the form (3.8), the conditional mean
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Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter q.

zero. It has the advantage that the error function remains a quadratic function of
w, and so its exact minimizer can be found in closed form. Specifically, setting the
gradient of (3.27) with respect to w to zero, and solving for w as before, we obtain

w =
(
λI + ΦTΦ

)−1
ΦTt. (3.28)

This represents a simple extension of the least-squares solution (3.15).
A more general regularizer is sometimes used, for which the regularized error

takes the form
1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2

M∑

j=1

|wj |q (3.29)

where q = 2 corresponds to the quadratic regularizer (3.27). Figure 3.3 shows con-
tours of the regularization function for different values of q.

The case of q = 1 is know as the lasso in the statistics literature (Tibshirani,
1996). It has the property that if λ is sufficiently large, some of the coefficients
wj are driven to zero, leading to a sparse model in which the corresponding basis
functions play no role. To see this, we first note that minimizing (3.29) is equivalent
to minimizing the unregularized sum-of-squares error (3.12) subject to the constraintExercise 3.5

M∑

j=1

|wj |q ! η (3.30)

for an appropriate value of the parameter η, where the two approaches can be related
using Lagrange multipliers. The origin of the sparsity can be seen from Figure 3.4,Appendix E
which shows that the minimum of the error function, subject to the constraint (3.30).
As λ is increased, so an increasing number of parameters are driven to zero.

Regularization allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting the effective model complexity.
However, the problem of determining the optimal model complexity is then shifted
from one of finding the appropriate number of basis functions to one of determining
a suitable value of the regularization coefficient λ. We shall return to the issue of
model complexity later in this chapter.


