

TYPES D'APPRENTISSAGE

Sujets: apprentissage supervisé, classification, régression

- L'apprentissage supervisé est lorsqu'on a une cible à prédire
 - **classification :** la cible est un indice de classe $t \in \{1, ..., K\}$
 - exemple : reconnaissance de caractères -
 - \checkmark x : vecteur des intensités de tous les pixels de l'image
 - \checkmark t:identité du caractère
 - **régression :** la cible est un nombre réel $t \in \mathbb{R}$
 - exemple : prédiction de la valeur d'une action à la bourse
 - ✓ x : vecteur contenant l'information sur l'activité économique de la journée
 - \checkmark t:valeur d'une action à la bourse le lendemain

TYPES D'APPRENTISSAGE

Sujets: apprentissage supervisé, classification, régression

- L'apprentissage supervisé est lorsqu'on a une cible à prédire
 - **classification :** la cible est un indice de classe $t \in \{1, ..., K\}$
 - exemple : reconnaissance de caractères -
 - \checkmark x : vecteur des intensités de tous les pixels de l'image
 - \checkmark t:identité du caractère
 - **régression :** la cible est un nombre réel $t \in \mathbb{R}$
 - exemple : prédiction de la valeur d'une action à la bourse
 - ✓ x : vecteur contenant l'information sur l'activité économique de la journée
 - \checkmark t:valeur d'une action à la bourse le lendemain

CLASSIFICATION

Sujets: surface de décision, région de décision

- On chercher à diviser l'espace des entrées x en différentes régions de décision
 - + chaque région de décision \mathcal{R}_k est associée à une classe \mathcal{C}_k
 - Ies frontières entre les régions sont des surfaces de décision

CLASSIFICATION

 \mathcal{R}_1

Sujets: classification binaire, séparabilité linéaire

- Cas spécial : classification binaire
 - classe C_1 correspond à t=1
 - classe C_2 correspond à t = 0 (ou t = -1)

• Cas spécial : classification linéaire

- la surface de décision entre chaque paire de régions de décision est linéaire, i.e. un hyperplan (droite pour D=2)
- on dit qu'un problème est linéairement séparable si une surface linéaire permet de classifier parfaitement

 \mathcal{R}_2

FONCTION DISCRIMINANTE

Sujets: fonction discriminante, vecteur de poids, biais

- On souhaite apprendre une **fonction discriminante** qui prend x en entrée et donne sa classe \mathcal{C}_k en sortie
- Dans le cas binaire, on va s'intéresser aux fonctions discriminantes qui :
 - I. calculent une transformation linéaire de l'entrée

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$$

vecteur de poids biais

5

2. retourne C_1 si $y(\mathbf{x}) \ge 0$ ou retourne C_2 sinon HUGO LAROCHELLE

FONCTION DISCRIMINANTE

Sujets: fonction discriminante, vecteur de poids, biais

Séparabilité Linéaire

Sujets: séparabilité linéaire

- Est-ce que l'hypothèse de séparabilité linéaire est raisonnable?
 - en haute dimensionnalité (grande valeur de D), possiblement !
- Théorème : soit D+1 entrées \mathbf{x}_n , on peut toujours les séparer linéairement en 2 classes, quelque soit la valeur de leurs cibles t_n
- On peut également utiliser une représentation $\phi(\mathbf{x})$ qui elle est non-linéaire

Condition :

chaque sous-ensemble de D entrées est linéairement indépendant

FONCTION DISCRIMINANTE

Sujets: entraînement

- Idéalement, on voudrait entraîner $y(\mathbf{x})$ en minimisant directement le taux d'erreur de classification sur l'ensemble d'entraînement
 - malheureusement, on peut démontrer que c'est un problème **NP-difficile**

- On va donc devoir attaquer le problème indirectement
 - ceci va donner lieu à différents algorithmes d'apprentissage

Méthode des Moindres Carrés

Sujets: méthode des moindres carrés

- On va traiter la classification comme un problème de régression
 - on pourrait prédire directement la valeur de la cible (t = 1 vs. t = -1)
 - ▶ si $y(\mathbf{x}) \ge 0$ on classifie dans \mathcal{C}_1 sinon \mathcal{C}_2

• On parle de **moindres carrés** puisque la régression minimise la différence au carré entre t et $y(\mathbf{x})$

RÉGULARISATION

Sujets: régularisation, weight decay, régression de Ridge

• On peut montrer que la solution (maximum a posteriori) est alors :

$$\mathbf{w} = \left(\lambda \mathbf{I} + \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}$$

- dans le cas $\lambda = 0$, on retrouve la solution tu maximum de vraisemblance
- si $\lambda > 0$, permet également d'avoir une solution plus stable numériquement (si $\Phi^{T}\Phi$ n'est pas inversible)

Méthode des Moindres Carrés

Sujets: méthode des moindres carrés

- Pour la cas à plus de deux classes, on va traiter la classification comme un problème de régression à prédiction multiple
 - Ia cible va être un vecteur binaire indiquant à quelle classe appartient l'entrée
 - exemple : s'il y a K=5 classes et qu'une entrée est de la classe \mathcal{C}_2

$$\mathbf{t} = (0, 1, 0, 0, 0)^{\mathrm{T}}$$

on classifie dans la classe \mathcal{C}_k dont la valeur de $y(\mathbf{x})_k$ est la plus élevée

Méthode des Moindres Carrés

Sujets: méthode des moindres carrés

- Pour la cas à plus de deux classes, on va traiter la classification comme un problème de régression à prédiction multiple
 - Ia cible va être un vecteur binaire indiquant à quelle classe appartient l'entrée
 - exemple : s'il y a K=5 classes et qu'une entrée est de la classe (2)

$$\mathbf{t} = (0, 1, 0, 0, 0)^{\mathrm{T}}$$

on classifie dans la classe \mathcal{C}_k dont la valeur de $y(\mathbf{x})_k$ est la plus élevée

PRÉDICTIONS MULTIPLES

Sujets: modèle pour prédictions multiples

• Le modèle doit maintenant prédire un vecteur :

$$\mathbf{y}(\mathbf{x}, \mathbf{w}) = \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

où W est une matrice $M \times K$

• Chaque colonne de W peut être vu comme le vecteur \mathbf{w}_k du modèle $y(\mathbf{x}, \mathbf{w}_k)$ pour la k^{e} cible

PRÉDICTIONS MULTIPLES

Sujets: modèle pour prédictions multiples

• Le modèle doit maintenant prédire un vecteur :

$$\mathbf{y}(\mathbf{x}, \mathbf{w}) = \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

où W est une matrice $M \times K$

• Chaque colonne de \mathbf{W} peut être vu comme le vecteur \mathbf{w}_k du modèle $y(\mathbf{x}, \mathbf{w}_k)$ pour la k^{e} cible classe

MAXIMUM DE VRAISEMBLANCE

Sujets: formulation probabiliste pour prédictions multiples

• On peut démontrer que le maximum de vraisemblance est :

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{T}$$

• On peut voir le résultat comme la concaténation (colonne par colonne) des solutions pour chaque tâche

$$\mathbf{w}_k = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}
ight)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}_k$$

où t_k = $(t_{1,k}, ..., t_{N,k})^{T}$

Sujets: analyse discriminante linéaire

• En classification binaire, on cherche en fait une projection

$$y = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

telle que le seuil $y \ge -w_0$ sépare bien le plus d'entrées projetées possible

Sujets: analyse discriminante linéaire

• L'analyse discriminante linéaire cherche plutôt à bien séparer la projection de moyennes, i.e. on maximise :

$$\mathbf{w}^{\mathrm{T}}(\mathbf{m}_2 - \mathbf{m}_1)$$

où $m_k = \mathbf{w}^{\mathrm{T}} \mathbf{m}_k$ et

$$\mathbf{m}_1 = \frac{1}{N_1} \sum_{n \in \mathcal{C}_1} \mathbf{x}_n, \qquad \mathbf{m}_2 = \frac{1}{N_2} \sum_{n \in \mathcal{C}_2} \mathbf{x}_n$$

Sujets: variance intra-classe

- Jusqu'à maintenant, le problème est mal posé
 - il suffit d'augmenter w infiniment pour maximiser
 - on pourrait imposer que w soit de norme 1, mais ceci n'est pas entièrement satisfaisant
- En plus, on va tenter de réduire les variances intraclasse des entrées projetées

$$s_k^2 = \sum_{n \in \mathcal{C}_k} (y_n - m_k)^2$$

Sujets: variance intra-classe, inter-classe

• On combine ces idées en maximisant plutôt

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$

• On peut montrer que la solution est telle que

$$\mathbf{w} \propto \mathbf{S}_{\mathrm{W}}^{-1}(\mathbf{m}_1-\mathbf{m}_2)$$

où la matrice de covariance intra-classe est

$$\mathbf{S}_{\mathrm{W}} = \sum_{n \in \mathcal{C}_1} (\mathbf{x}_n - \mathbf{m}_1) (\mathbf{x}_n - \mathbf{m}_1)^{\mathrm{T}} + \sum_{n \in \mathcal{C}_2} (\mathbf{x}_n - \mathbf{m}_2) (\mathbf{x}_n - \mathbf{m}_2)^{\mathrm{T}}$$

Sujets: variance intra-classe, inter-classe

On combine ces idées en maximisant plutôt

équivalent à une variance inter-classe

• On peut montrer que la solution est telle que

 $J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$

$$\mathbf{w} \propto \mathbf{S}_{\mathrm{W}}^{-1}(\mathbf{m}_1-\mathbf{m}_2)$$

où la matrice de covariance intra-classe est

$$\mathbf{S}_{\mathrm{W}} = \sum_{n \in \mathcal{C}_1} (\mathbf{x}_n - \mathbf{m}_1) (\mathbf{x}_n - \mathbf{m}_1)^{\mathrm{T}} + \sum_{n \in \mathcal{C}_2} (\mathbf{x}_n - \mathbf{m}_2) (\mathbf{x}_n - \mathbf{m}_2)^{\mathrm{T}}$$

Sujets: analyse discriminante linéaire

Sujets: analyse discriminante linéaire

- Une fois w calculé, il suffit de trouver un seuil de classification
 - un chois possible est $(\mathbf{w}^{\mathrm{T}}\mathbf{m}_1 + \mathbf{w}^{\mathrm{T}}\mathbf{m}_2)/2$
- On peut voir l'analyse discriminante linéaire comme un cas particulier des moindres carrés
 - voir section 4.1.5
- Il est possible de généraliser au cas à plus de 2 classes
 - voir section 4.1.6

Apprentissage automatique Classification linéaire - approche probabiliste générative

APPROCHE PROBABILISTE

Sujets: approche probabiliste

- Prenons plutôt une approche probabiliste
 - on suppose que nos données ont été générées d'un modèle probabiliste donné
 - on cherche les paramètres de ce modèle qui maximisent la vraisemblance des données d'entraînement
- Deux options :
 - **approche générative :** on choisit un modèle pour $p(\mathbf{x},t)$
 - **approche discriminante :** on choisit un modèle pour $p(t|\mathbf{x})$

APPROCHE PROBABILISTE

Sujets: approche probabiliste

- Prenons plutôt une approche probabiliste
 - on suppose que nos données ont été générées d'un modèle probabiliste donné
 - on cherche les paramètres de ce modèle qui maximisent la vraisemblance des données d'entraînement
- Deux options :
 - approche générative : on choisit un modèle pour $p(\mathbf{x},t)$
 - approche discriminante : on choisit un modèle pour $p(t|\mathbf{x})$

Sujets: approche probabiliste générative

- On va supposer que les données ont été générées selon le processus suivant (cas binaire) :
 - pour $n = 1 \dots N$
 - assigne $t_n=1$ avec probabilité $p(\mathcal{C}_1) = \pi$ et $t_n=0$ avec probabilité $p(\mathcal{C}_2) = 1 \pi$
 - si $t_n=1$, génère \mathbf{x}_n de la loi de probabilité $p(\mathbf{x}_n | \mathcal{C}_1) = \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma})$
 - sinon ($t_n=0$), génère \mathbf{x}_n de la loi de probabilité $p(\mathbf{x}_n | \mathcal{C}_2) = \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_2, \boldsymbol{\Sigma})$

En mots : les entrées sont des échantillons d'une loi gaussienne, mais de moyennes différentes pour les différentes classes

Sujets: maximum de vraisemblance

• La probabilité des données d'entraînement devient

$$p(\mathbf{t}|\pi, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \left[\pi \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma})\right]^{t_n} \left[(1 + \mathbf{n}_1)^{T_n} \right]^{t_n}$$

• Pour entraîner le classifieur, on cherche les paramètres $(\pi, \mu_1, \mu_2, \Sigma)$ maximise la (log-)vraisemblance

Sujets: maximum de vraisemblance

• La probabilité des données d'entraînement devient

$$p(\mathbf{t}|\pi, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \left[\pi \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) \right]^{t_n} \left[(1 + 1)^{t_n} \right]^{t_n}$$

• Cas π : on prend le logarithme et garde les termes avec π

$$\sum_{n=1}^{N} \{ t_n \ln \pi + (1 - t_n) \ln(1 - \pi) \}$$

HUGO LAROCHELLE

Sujets: maximum de vraisemblance

• La probabilité des données d'entraînement devient

$$p(\mathbf{t}|\pi, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \left[\pi \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) \right]^{t_n} \left[(1 + 1)^{t_n} \right]^{t_n}$$

• Cas π : puis cherche le maximum en annulant la dérivée

Sujets: maximum de vraisemblance

• La probabilité des données d'entraînement devient

$$p(\mathbf{t}|\pi, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \left[\pi \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma})\right]^{t_n} \left[(1 + 1)^{t_n} \right]^{t_n}$$

• Cas μ_1 : on prend le logarithme et garde les termes avec μ_1

$$\sum_{n=1}^{N} t_n \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) = -\frac{1}{2} \sum_{n=1}^{N} t_n (\mathbf{x}_n - \boldsymbol{\mu}_1)^{\mathrm{T}}$$

HUGO LAROCHELLE

$(-\pi)\mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_2,\boldsymbol{\Sigma})]^{1-t_n}$

 $\Sigma^{-1}(\mathbf{x}_n - \boldsymbol{\mu}_1) + \text{const}$

Sujets: maximum de vraisemblance

• La probabilité des données d'entraînement devient

$$p(\mathbf{t}|\pi, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \left[\pi \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma})\right]^{t_n} \left[(1 + \mathbf{n}_1)^{T_n} \right]^{t_n}$$

• Cas μ_1 : puis cherche le maximum en annulant la dérivée

$$\boldsymbol{\mu}_1 = \frac{1}{N_1} \sum_{n=1}^N t_n \mathbf{x}_n$$

HUGO LAROCHELLE

Sujets: maximum de vraisemblance

• La probabilité des données d'entraînement devient

$$p(\mathbf{t}|\pi, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \left[\pi \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma})\right]^{t_n} \left[(1 + \mathbf{n}_1)^{T_n} \right]^{t_n}$$

• Cas μ_2 : de façon similaire, on obtient pour μ_2

$$\boldsymbol{\mu}_{2} = \frac{1}{N_{2}} \sum_{n=1}^{N} (1 - t_{n}) \mathbf{x}_{n}$$

HUGO LAROCHELLE

Sujets: maximum de vraisemblance

• Cas Σ : plus compliqué à démontrer, mais on obtient

covariance empirique de classe \mathcal{C}_1

covariance empirique de classe \mathcal{C}_2

Sujets: règle de Bayes

• Une fois $\pi, \mu_1, \mu_2, \Sigma$ calculés, on peut classifier de nouvelles entrées à l'aide de la règle de Bayes

$$p(\mathcal{C}_1|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1) + p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

• Si $p(\mathcal{C}_1|\mathbf{x}) \ge 0.5$, on classifie dans la classe \mathcal{C}_1 , sinon on classifie dans la classe \mathcal{C}_2

Sujets: fonction sigmoïde

• On peut aussi écrire

$$p(\mathcal{C}_{1}|\mathbf{x}) = \frac{1}{1 + \exp(-a)} = \sigma(a)$$

où
$$a = \ln \frac{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}{p(\mathbf{x}|\mathcal{C}_{2})p(\mathcal{C}_{2})} \quad \sigma(a) = \frac{1}{1 + \exp(-a)}$$

Sujets: forme classification linéaire

• Dans le cas où $p(\mathbf{x}_n | C_1)$ et $p(\mathbf{x}_n | C_2)$ sont gaussiennes

$$p(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})$$

$$w_{0} = -\frac{1}{2}\boldsymbol{\mu}_{1}^{\mathrm{T}} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_{1} + \frac{1}{2} \boldsymbol{\mu}_{2}^{\mathrm{T}} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_{2} + \ln \frac{p(\boldsymbol{\mu}_{1})}{p(\boldsymbol{\mu}_{2})}$$

Sujets: forme classification linéaire

• Dans le cas où $p(\mathbf{x}_n | C_1)$ et $p(\mathbf{x}_n | C_2)$ sont gaussiennes

$$p(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}) \qquad \pi \\ w_{0} = -\frac{1}{2}\boldsymbol{\mu}_{1}^{\mathrm{T}} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_{1} + \frac{1}{2} \boldsymbol{\mu}_{2}^{\mathrm{T}} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_{2} + \ln \frac{p(\boldsymbol{\mu}_{1})}{p(\boldsymbol{\mu}_{2})} \\ 1 - \pi \\ \text{Hugo Larochelle} \end{cases}$$

Sujets: forme classification linéaire

• Puisque $\sigma(0) = 0.5$, alors la règle $p(C_1 | \mathbf{x}) \ge 0.5$ est équivalente à $\mathbf{w}^T \mathbf{x} + w_0 \ge 0$

• On retrouve donc la forme d'un classifieur linéaire

Sujets: extensions

- On peut généraliser au cas à multiples classes
 - voir fin des sections 4.2 et 4.2.1

- On peut généraliser à des lois $p(\mathbf{x}_n | \mathcal{C}_1)$ et $p(\mathbf{x}_n | \mathcal{C}_2)$ autre que gaussiennes
 - observations binaires, voir section 4.2.3
 - cas général (famille exponentielle), voir section 4.2.4

Apprentissage automatique Classification linéaire - approche probabiliste discriminante

APPROCHE PROBABILISTE

Sujets: approche probabiliste

- Prenons plutôt une approche probabiliste
 - on suppose que nos données ont été générées d'un modèle probabiliste donné
 - on cherche les paramètres de ce modèle qui maximisent la vraisemblance des données d'entraînement
- Deux options :
 - **approche générative :** on choisit un modèle pour $p(\mathbf{x},t)$
 - **approche discriminante :** on choisit un modèle pour $p(t|\mathbf{x})$

APPROCHE PROBABILISTE

Sujets: approche probabiliste

- Prenons plutôt une approche probabiliste
 - on suppose que nos données ont été générées d'un modèle probabiliste donné
 - on cherche les paramètres de ce modèle qui maximisent la vraisemblance des données d'entraînement
- Deux options :
 - approche générative : on choisit un modèle pour $p(\mathbf{x},t)$

• approche discriminante : on choisit un modèle pour $p(t|\mathbf{x})$

Sujets: approche probabiliste discriminante, régression logistique

• Dans le cas génératif, on a vu que la probabilité de classifier dans la classe C_1 prend la forme

$$p(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$

- Dans le cas discriminant, l'idée est d'utiliser directement cette forme comme modèle de $p(t|\mathbf{x})$
 - plutôt que maximiser la probabilité jointe $p(\mathbf{x},t)$, on maximise la probabilité conditionnelle $p(t|\mathbf{x})$
 - on appel ce modèle la **régression logistique** HUGO LAROCHELLE

39

Sujets: maximum de vraisemblance

• Cas génératif : on cherche $(\pi, \mu_1, \mu_2, \Sigma)$ qui maximise

$$p(\mathbf{t}|\pi, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \left[\pi \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma})
ight]^{t_n} \left[(1 + n)^{t_n} \right]^{t_n}$$

• Cas discriminant : on cherche directement w qui maximise

$$p(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} y_n^{t_n} \{1 - y_n\}^{1-t_n}$$

où
$$y_n = p(\mathcal{C}_1 | \mathbf{x}_n)$$

HUGO LAROCHELLE

Sujets: fonctions de bases

• On peut facilement remplacer la représentation de l'entrée à l'aide de fonctions de bases (comme pour la régression)

$$p(\mathcal{C}_1|\boldsymbol{\phi}) = y(\boldsymbol{\phi}) = \sigma\left(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}\right)$$

• Si les fonctions de bases sont non-linéaires, peut rendre les classes linéairement séparables

Sujets: fonctions de bases

HUGO LAROCHELLE

2 fonctions de bases gaussiennes ϕ_j

 $-\frac{(x-\mu_j)^2}{2s^2}$ $\exp <$

Sujets: cross-entropie

• Maximiser la vraisemblance est équivalent à minimiser la logvraisemblance négative

$$E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln y_n \}$$

cross-entropie (binaire)

- Malheureusement, minimiser cette fonction ne se fait pas analytiquement
 - on va devoir trouver le minimum de façon numérique

HUGO LAROCHELLE

$\mathbf{n}(1-y_n)\}$

Sujets: descente de gradient

• Descente de gradient

- initialise la valeur de w aléatoirement
- durant I itérations
 - déplace w dans la direction opposée du gradient, $\mathbf{w} \leftarrow \mathbf{w} \eta \nabla E(\mathbf{w})$

Sujets: descente de gradient

• On peut montrer que le gradient est simplement

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n$$

où $y_n = p(\mathcal{C}_1 | \boldsymbol{\phi}_n)$

45

- Le nombre d'itérations (I) de descente de gradient est un hyper-paramètre
 - on utilise un ensemble de validation pour déterminer quand arrêter HUGO LAROCHELLE

Sujets: extensions

- La descente de gradient stochastique est souvent préférée en pratique, parce que plus rapide à converger
 - on met à jour w individuellement pour chaque exemple
 - voir section 3.1.3 (description pour la régression)

- On peut aussi généraliser au cas à multiples classes
 - voir section 4.3.4

Sujets: classification à multiples classes

- Il est possible d'utiliser plusieurs classifieurs binaires pour résoudre un problème de classification à plus de 2 classes
- Approche one-versus-rest :
 - entraîne K-1 classifieurs, chacun distinguant les entrées d'une classe vs. les entrées de toutes les autres classes
- Approche one-versus-one :
 - entraîne K(K-1)/2 classifieurs, chacun distinguant les entrées d'une classe vs. les entrées d'une seule autre classe

Sujets: one-versus-rest

Sujets: one-versus-one

Sujets: classification à multiples classes

- Il est possible de résoudre les ambiguïtés en pondérant les votes des classifieurs binaires
 - + cas probabiliste : pondérer par la probabilité $p(C_1|\mathbf{x})$

• L'idéal serait d'utiliser la version de l'algorithme adaptée à la classification à multiples classes directement

Méthode des Moindres Carrés

Sujets: résumé de la méthode des moindres carrés

• Modèle : $y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x} + w_0$

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

- Entraînement : $\mathbf{w} = \left(\lambda \mathbf{I} + \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}$ (t = 1 vs. t = -1)(maximum de vraisemblance si $\lambda = 0$ ou maximum a posteriori si $\lambda > 0$)
- Hyper-paramètre : λ
- Prédiction : C_1 si $y(\mathbf{x}, \mathbf{w}) \ge 0$, sinon C_2

Sujets: résumé de l'analyse discriminante

• Modèle : $y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$

• Entraînement :

 $\mathbf{v} \mathbf{w} \leftarrow \overline{||\mathbf{w}||}$

$$\mathbf{m}_1 = rac{1}{N_1} \sum_{n \in \mathcal{C}_1} \mathbf{x}_n, \qquad \mathbf{m}_2 =$$
 $\mathbf{S}_{\mathrm{W}} = \sum_{n \in \mathcal{C}_1} (\mathbf{x}_n - \mathbf{m}_1) (\mathbf{x}_n - \mathbf{m}_1)$

•
$$\mathbf{w} \leftarrow \mathbf{S}_{\mathrm{W}}^{-1}(\mathbf{m}_1 - \mathbf{m}_2)$$

• \mathbf{w}

•
$$w_0 = (\mathbf{w}^{\mathrm{T}} \mathbf{m}_1 + \mathbf{w}^{\mathrm{T}} \mathbf{m}_2)/2$$

• Prédiction : C_1 si $y(\mathbf{x}, \mathbf{w}) \ge 0$, sinon C_2

Sujets: résumé de l'approche probabiliste générative

• Modèle : $y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0$ $p(\mathbf{x}_n, \mathcal{C}_1) = \pi \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma})$ $p(\mathbf{x}_n, \mathcal{C}_2) = (1 - \pi) \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_2, \boldsymbol{\Sigma})$

$$\boldsymbol{\mu}_{1} = \frac{1}{N_{1}} \sum_{n=1}^{N} t_{n} \mathbf{x}_{n} \qquad \boldsymbol{\mu}_{2} = \frac{1}{N_{2}} \sum_{n=1}^{N} (1 - t_{n}) \mathbf{x}_{n}$$
$$\boldsymbol{\Sigma} = \frac{N_{1}}{N} \mathbf{S}_{1} + \frac{N_{2}}{N} \mathbf{S}_{2} \qquad p(\mathcal{C}_{1}) = \frac{N_{1}}{N} = 1 - p(\mathcal{C}_{2})$$

• Entraînement : (t = 1 vs. t = 0)

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

$$w_0 = -\frac{1}{2}\boldsymbol{\mu}_1^{\mathrm{T}} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_1 + \frac{1}{2} \boldsymbol{\mu}_2^{\mathrm{T}} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_2 + \ln \frac{p(\mathcal{C}_2)}{p(\mathcal{C}_2)}$$

• Prédiction : C_1 si $y(\mathbf{x}, \mathbf{w}) \ge 0$, sinon C_2 ⁵⁵ Hugo Larochelle</sup>

$$\frac{1}{2}$$

Sujets: résumé de l'approche probabiliste discriminante (régression logistique)

• Modèle : $y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$

$$p(\mathcal{C}_1 | \mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0)$$

- Entraînement : descente de gradient t = 1 vs. t = 0)
 - initialise la valeur de w aléatoirement
 - durant I itérations

-
$$\mathbf{w} \leftarrow \mathbf{w} - \eta \sum_{n} (y_n - t_n) \phi_n$$

• Prédiction : C_1 si $y(\mathbf{x}, \mathbf{w}) \ge 0$, sinon C_2 HUGO LAROCHELLE 56

MOINDRES CARRÉSVS. RÉGRESSION LOGISTIQUE

Sujets: moindres carrés vs. régression logistique

• Les résultats pourront être différents entre les algorithmes

moindres carrés

rég. logistique