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TYPES D’APPRENTISSAGE

• L’apprentissage supervisé est lorsqu’on a une cible à 
prédire

‣ classification : la cible est un indice de classe t ∈{1, ... , K}
- exemple : reconnaissance de caractères

✓ x : vecteur des intensités de tous les pixels de l’image

✓ t : identité du caractère

‣ régression : la cible est un nombre réel t ∈ ℝ
- exemple : prédiction de la valeur d’une action à la bourse

✓ x : vecteur contenant l’information sur l’activité économique de la journée

✓ t : valeur d’une action à la bourse le lendemain

2
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CLASSIFICATION

• On chercher à  diviser l’espace des entrées x en 

différentes régions de décision 

‣ chaque région de décision       est associée à une classe 

‣ les frontières entre les régions sont des surfaces de décision

3

surface de décision, région de décision
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Figure 4.3 Illustration of the decision regions for a mul-
ticlass linear discriminant, with the decision
boundaries shown in red. If two points xA

and xB both lie inside the same decision re-
gion Rk, then any point bx that lies on the line
connecting these two points must also lie in
Rk, and hence the decision region must be
singly connected and convex.
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where 0 ! λ ! 1. From the linearity of the discriminant functions, it follows that

yk(x̂) = λyk(xA) + (1 − λ)yk(xB). (4.12)

Because both xA and xB lie inside Rk, it follows that yk(xA) > yj(xA), and
yk(xB) > yj(xB), for all j ̸= k, and hence yk(x̂) > yj(x̂), and so x̂ also lies
inside Rk. Thus Rk is singly connected and convex.

Note that for two classes, we can either employ the formalism discussed here,
based on two discriminant functions y1(x) and y2(x), or else use the simpler but
equivalent formulation described in Section 4.1.1 based on a single discriminant
function y(x).

We now explore three approaches to learning the parameters of linear discrimi-
nant functions, based on least squares, Fisher’s linear discriminant, and the percep-
tron algorithm.

4.1.3 Least squares for classification
In Chapter 3, we considered models that were linear functions of the parame-

ters, and we saw that the minimization of a sum-of-squares error function led to a
simple closed-form solution for the parameter values. It is therefore tempting to see
if we can apply the same formalism to classification problems. Consider a general
classification problem with K classes, with a 1-of-K binary coding scheme for the
target vector t. One justification for using least squares in such a context is that it
approximates the conditional expectation E[t|x] of the target values given the input
vector. For the binary coding scheme, this conditional expectation is given by the
vector of posterior class probabilities. Unfortunately, however, these probabilities
are typically approximated rather poorly, indeed the approximations can have values
outside the range (0, 1), due to the limited flexibility of a linear model as we shall
see shortly.

Each class Ck is described by its own linear model so that

yk(x) = wT
k x + wk0 (4.13)

where k = 1, . . . , K. We can conveniently group these together using vector nota-
tion so that

y(x) = W̃Tx̃ (4.14)

CkRk
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CLASSIFICATION

• Cas spécial : classification binaire

‣ classe      correspond à t = 1

‣ classe      correspond à t = 0 (ou t = -1)

• Cas spécial : classification linéaire

‣ la surface de décision entre chaque paire de régions de décision est 
linéaire, i.e. un hyperplan (droite pour D=2)

‣ on dit qu’un problème est linéairement séparable si une 
surface linéaire permet de classifier parfaitement

4

classification binaire, séparabilité linéaire
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FONCTION DISCRIMINANTE

• On souhaite apprendre une fonction discriminante 
qui prend x en entrée et donne sa classe      en sortie

• Dans le cas binaire, on va s’intéresser aux fonctions 
discriminantes qui :

1. calculent une transformation linéaire de l’entrée

2. retourne      si y(x)≥0 ou retourne      sinon
5

fonction discriminante, vecteur de poids, biais

Ck

C1 C2
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(McCullagh and Nelder, 1989). Note, however, that in contrast to the models used
for regression, they are no longer linear in the parameters due to the presence of the
nonlinear function f(·). This will lead to more complex analytical and computa-
tional properties than for linear regression models. Nevertheless, these models are
still relatively simple compared to the more general nonlinear models that will be
studied in subsequent chapters.

The algorithms discussed in this chapter will be equally applicable if we first
make a fixed nonlinear transformation of the input variables using a vector of basis
functions φ(x) as we did for regression models in Chapter 3. We begin by consider-
ing classification directly in the original input space x, while in Section 4.3 we shall
find it convenient to switch to a notation involving basis functions for consistency
with later chapters.

4.1. Discriminant Functions

A discriminant is a function that takes an input vector x and assigns it to one of K
classes, denoted Ck. In this chapter, we shall restrict attention to linear discriminants,
namely those for which the decision surfaces are hyperplanes. To simplify the dis-
cussion, we consider first the case of two classes and then investigate the extension
to K > 2 classes.

4.1.1 Two classes
The simplest representation of a linear discriminant function is obtained by tak-

ing a linear function of the input vector so that

y(x) = wTx + w0 (4.4)

where w is called a weight vector, and w0 is a bias (not to be confused with bias in
the statistical sense). The negative of the bias is sometimes called a threshold. An
input vector x is assigned to class C1 if y(x) ! 0 and to class C2 otherwise. The cor-
responding decision boundary is therefore defined by the relation y(x) = 0, which
corresponds to a (D − 1)-dimensional hyperplane within the D-dimensional input
space. Consider two points xA and xB both of which lie on the decision surface.
Because y(xA) = y(xB) = 0, we have wT(xA−xB) = 0 and hence the vector w is
orthogonal to every vector lying within the decision surface, and so w determines the
orientation of the decision surface. Similarly, if x is a point on the decision surface,
then y(x) = 0, and so the normal distance from the origin to the decision surface is
given by

wTx
∥w∥ = − w0

∥w∥ . (4.5)

We therefore see that the bias parameter w0 determines the location of the decision
surface. These properties are illustrated for the case of D = 2 in Figure 4.1.

Furthermore, we note that the value of y(x) gives a signed measure of the per-
pendicular distance r of the point x from the decision surface. To see this, consider

vecteur de poids biais
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Figure 4.1 Illustration of the geometry of a
linear discriminant function in two dimensions.
The decision surface, shown in red, is perpen-
dicular to w, and its displacement from the
origin is controlled by the bias parameter w0.
Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given
by y(x)/∥w∥.
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an arbitrary point x and let x⊥ be its orthogonal projection onto the decision surface,
so that

x = x⊥ + r
w
∥w∥ . (4.6)

Multiplying both sides of this result by wT and adding w0, and making use of y(x) =
wTx + w0 and y(x⊥) = wTx⊥ + w0 = 0, we have

r =
y(x)
∥w∥ . (4.7)

This result is illustrated in Figure 4.1.
As with the linear regression models in Chapter 3, it is sometimes convenient

to use a more compact notation in which we introduce an additional dummy ‘input’
value x0 = 1 and then define w̃ = (w0,w) and x̃ = (x0,x) so that

y(x) = w̃Tx̃. (4.8)

In this case, the decision surfaces are D-dimensional hyperplanes passing through
the origin of the D + 1-dimensional expanded input space.

4.1.2 Multiple classes
Now consider the extension of linear discriminants to K > 2 classes. We might

be tempted be to build a K-class discriminant by combining a number of two-class
discriminant functions. However, this leads to some serious difficulties (Duda and
Hart, 1973) as we now show.

Consider the use of K−1 classifiers each of which solves a two-class problem of
separating points in a particular class Ck from points not in that class. This is known
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an
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SÉPARABILITÉ LINÉAIRE

• Est-ce que l’hypothèse de séparabilité linéaire est 
raisonnable ?

‣ en haute dimensionnalité (grande valeur de D), possiblement !

• Théorème : soit D+1 entrées xn, on peut toujours les 

séparer linéairement en 2 classes, quelque soit la valeur de 
leurs cibles tn

• On peut également utiliser une représentation          qui 
elle est non-linéaire

7

séparabilité linéaire
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Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,

Condition : 
chaque sous-ensemble de

D entrées est 
linéairement indépendant
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FONCTION DISCRIMINANTE

• Idéalement, on voudrait entraîner y(x) en minimisant 

directement le taux d’erreur de classification sur 
l’ensemble d’entraînement

‣ malheureusement, on peut démontrer que c’est un problème 
NP-difficile

• On va donc devoir attaquer le problème indirectement

‣ ceci va donner lieu à différents algorithmes d’apprentissage

8

entraînement
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MÉTHODE DES MOINDRES CARRÉS

• On va traiter la classification comme un problème de 
régression

‣ on pourrait prédire directement la valeur de la cible 
(t = 1 vs. t = -1)

‣ si y(x)≥0 on classifie dans      sinon

• On parle de moindres carrés puisque la régression 
minimise la différence au carré entre t et y(x)

10

méthode des moindres carrés

C1 C2



Sujets: 

HUGO LAROCHELLE

RÉGULARISATION

• On peut montrer que la solution (maximum a posteriori) 
est alors :

‣ dans le cas λ = 0, on retrouve la solution tu maximum de 
vraisemblance

‣ si λ > 0, permet également d’avoir une solution plus stable 
numériquement (si         n’est pas inversible)

11

régularisation, weight decay, régression de Ridge
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q = 0.5 q = 1 q = 2 q = 4

Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter q.

zero. It has the advantage that the error function remains a quadratic function of
w, and so its exact minimizer can be found in closed form. Specifically, setting the
gradient of (3.27) with respect to w to zero, and solving for w as before, we obtain

w =
(
λI + ΦTΦ

)−1
ΦTt. (3.28)

This represents a simple extension of the least-squares solution (3.15).
A more general regularizer is sometimes used, for which the regularized error

takes the form
1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2

M∑

j=1

|wj |q (3.29)

where q = 2 corresponds to the quadratic regularizer (3.27). Figure 3.3 shows con-
tours of the regularization function for different values of q.

The case of q = 1 is know as the lasso in the statistics literature (Tibshirani,
1996). It has the property that if λ is sufficiently large, some of the coefficients
wj are driven to zero, leading to a sparse model in which the corresponding basis
functions play no role. To see this, we first note that minimizing (3.29) is equivalent
to minimizing the unregularized sum-of-squares error (3.12) subject to the constraintExercise 3.5

M∑

j=1

|wj |q ! η (3.30)

for an appropriate value of the parameter η, where the two approaches can be related
using Lagrange multipliers. The origin of the sparsity can be seen from Figure 3.4,Appendix E
which shows that the minimum of the error function, subject to the constraint (3.30).
As λ is increased, so an increasing number of parameters are driven to zero.

Regularization allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting the effective model complexity.
However, the problem of determining the optimal model complexity is then shifted
from one of finding the appropriate number of basis functions to one of determining
a suitable value of the regularization coefficient λ. We shall return to the issue of
model complexity later in this chapter.
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MÉTHODE DES MOINDRES CARRÉS

• Pour la cas à plus de deux classes, on va traiter la 
classification comme un problème de régression à 
prédiction multiple

‣ la cible va être un vecteur binaire indiquant à quelle classe 
appartient l’entrée

‣ exemple : s’il y a K=5 classes et qu’une entrée est de la classe

‣ on classifie dans la classe      dont la valeur de            est la plus 
élevée 
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ways of using target values to represent class labels. For probabilistic models, the
most convenient, in the case of two-class problems, is the binary representation in
which there is a single target variable t ∈ {0, 1} such that t = 1 represents class C1

and t = 0 represents class C2. We can interpret the value of t as the probability that
the class is C1, with the values of probability taking only the extreme values of 0 and
1. For K > 2 classes, it is convenient to use a 1-of-K coding scheme in which t is
a vector of length K such that if the class is Cj , then all elements tk of t are zero
except element tj , which takes the value 1. For instance, if we have K = 5 classes,
then a pattern from class 2 would be given the target vector

t = (0, 1, 0, 0, 0)T. (4.1)

Again, we can interpret the value of tk as the probability that the class is Ck. For
nonprobabilistic models, alternative choices of target variable representation will
sometimes prove convenient.

In Chapter 1, we identified three distinct approaches to the classification prob-
lem. The simplest involves constructing a discriminant function that directly assigns
each vector x to a specific class. A more powerful approach, however, models the
conditional probability distribution p(Ck|x) in an inference stage, and then subse-
quently uses this distribution to make optimal decisions. By separating inference
and decision, we gain numerous benefits, as discussed in Section 1.5.4. There are
two different approaches to determining the conditional probabilities p(Ck|x). One
technique is to model them directly, for example by representing them as parametric
models and then optimizing the parameters using a training set. Alternatively, we
can adopt a generative approach in which we model the class-conditional densities
given by p(x|Ck), together with the prior probabilities p(Ck) for the classes, and then
we compute the required posterior probabilities using Bayes’ theorem

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (4.2)

We shall discuss examples of all three approaches in this chapter.
In the linear regression models considered in Chapter 3, the model prediction

y(x,w) was given by a linear function of the parameters w. In the simplest case,
the model is also linear in the input variables and therefore takes the form y(x) =
wTx+w0, so that y is a real number. For classification problems, however, we wish
to predict discrete class labels, or more generally posterior probabilities that lie in
the range (0, 1). To achieve this, we consider a generalization of this model in which
we transform the linear function of w using a nonlinear function f( · ) so that

y(x) = f
(
wTx + w0

)
. (4.3)

In the machine learning literature f( · ) is known as an activation function, whereas
its inverse is called a link function in the statistics literature. The decision surfaces
correspond to y(x) = constant, so that wTx + w0 = constant and hence the deci-
sion surfaces are linear functions of x, even if the function f(·) is nonlinear. For this
reason, the class of models described by (4.3) are called generalized linear models

C2

Ck y(x)k
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and decision, we gain numerous benefits, as discussed in Section 1.5.4. There are
two different approaches to determining the conditional probabilities p(Ck|x). One
technique is to model them directly, for example by representing them as parametric
models and then optimizing the parameters using a training set. Alternatively, we
can adopt a generative approach in which we model the class-conditional densities
given by p(x|Ck), together with the prior probabilities p(Ck) for the classes, and then
we compute the required posterior probabilities using Bayes’ theorem

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (4.2)

We shall discuss examples of all three approaches in this chapter.
In the linear regression models considered in Chapter 3, the model prediction

y(x,w) was given by a linear function of the parameters w. In the simplest case,
the model is also linear in the input variables and therefore takes the form y(x) =
wTx+w0, so that y is a real number. For classification problems, however, we wish
to predict discrete class labels, or more generally posterior probabilities that lie in
the range (0, 1). To achieve this, we consider a generalization of this model in which
we transform the linear function of w using a nonlinear function f( · ) so that

y(x) = f
(
wTx + w0

)
. (4.3)

In the machine learning literature f( · ) is known as an activation function, whereas
its inverse is called a link function in the statistics literature. The decision surfaces
correspond to y(x) = constant, so that wTx + w0 = constant and hence the deci-
sion surfaces are linear functions of x, even if the function f(·) is nonlinear. For this
reason, the class of models described by (4.3) are called generalized linear models

C2

Ck y(x)k
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Figure 3.4 Plot of the contours
of the unregularized error function
(blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer q = 2 on the left and the lasso
regularizer q = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w⋆.
The lasso gives a sparse solution in
which w⋆

1 = 0.

w1

w2

w⋆

w1

w2

w⋆

For the remainder of this chapter we shall focus on the quadratic regularizer
(3.27) both for its practical importance and its analytical tractability.

3.1.5 Multiple outputs
So far, we have considered the case of a single target variable t. In some applica-

tions, we may wish to predict K > 1 target variables, which we denote collectively
by the target vector t. This could be done by introducing a different set of basis func-
tions for each component of t, leading to multiple, independent regression problems.
However, a more interesting, and more common, approach is to use the same set of
basis functions to model all of the components of the target vector so that

y(x,w) = WTφ(x) (3.31)

where y is a K-dimensional column vector, W is an M × K matrix of parameters,
and φ(x) is an M -dimensional column vector with elements φj(x), with φ0(x) = 1
as before. Suppose we take the conditional distribution of the target vector to be an
isotropic Gaussian of the form

p(t|x,W, β) = N (t|WTφ(x), β−1I). (3.32)

If we have a set of observations t1, . . . , tN , we can combine these into a matrix T
of size N × K such that the nth row is given by tT

n . Similarly, we can combine the
input vectors x1, . . . ,xN into a matrix X. The log likelihood function is then given
by

ln p(T|X,W, β) =
N∑

n=1

lnN (tn|WTφ(xn), β−1I)

=
NK

2
ln

(
β

2π

)
− β

2

N∑

n=1

∥∥tn − WTφ(xn)
∥∥2

. (3.33)

RAPPEL
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For the remainder of this chapter we shall focus on the quadratic regularizer
(3.27) both for its practical importance and its analytical tractability.

3.1.5 Multiple outputs
So far, we have considered the case of a single target variable t. In some applica-

tions, we may wish to predict K > 1 target variables, which we denote collectively
by the target vector t. This could be done by introducing a different set of basis func-
tions for each component of t, leading to multiple, independent regression problems.
However, a more interesting, and more common, approach is to use the same set of
basis functions to model all of the components of the target vector so that

y(x,w) = WTφ(x) (3.31)

where y is a K-dimensional column vector, W is an M × K matrix of parameters,
and φ(x) is an M -dimensional column vector with elements φj(x), with φ0(x) = 1
as before. Suppose we take the conditional distribution of the target vector to be an
isotropic Gaussian of the form

p(t|x,W, β) = N (t|WTφ(x), β−1I). (3.32)

If we have a set of observations t1, . . . , tN , we can combine these into a matrix T
of size N × K such that the nth row is given by tT

n . Similarly, we can combine the
input vectors x1, . . . ,xN into a matrix X. The log likelihood function is then given
by

ln p(T|X,W, β) =
N∑

n=1

lnN (tn|WTφ(xn), β−1I)

=
NK

2
ln

(
β

2π

)
− β

2

N∑
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∥∥2

. (3.33)
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As before, we can maximize this function with respect to W, giving

WML =
(
ΦTΦ

)−1
ΦTT. (3.34)

If we examine this result for each target variable tk, we have

wk =
(
ΦTΦ

)−1
ΦTtk = Φ†tk (3.35)

where tk is an N -dimensional column vector with components tnk for n = 1, . . . N .
Thus the solution to the regression problem decouples between the different target
variables, and we need only compute a single pseudo-inverse matrix Φ†, which is
shared by all of the vectors wk.

The extension to general Gaussian noise distributions having arbitrary covari-
ance matrices is straightforward. Again, this leads to a decoupling into K inde-Exercise 3.6
pendent regression problems. This result is unsurprising because the parameters W
define only the mean of the Gaussian noise distribution, and we know from Sec-
tion 2.3.4 that the maximum likelihood solution for the mean of a multivariate Gaus-
sian is independent of the covariance. From now on, we shall therefore consider a
single target variable t for simplicity.

3.2. The Bias-Variance Decomposition

So far in our discussion of linear models for regression, we have assumed that the
form and number of basis functions are both fixed. As we have seen in Chapter 1,
the use of maximum likelihood, or equivalently least squares, can lead to severe
over-fitting if complex models are trained using data sets of limited size. However,
limiting the number of basis functions in order to avoid over-fitting has the side
effect of limiting the flexibility of the model to capture interesting and important
trends in the data. Although the introduction of regularization terms can control
over-fitting for models with many parameters, this raises the question of how to
determine a suitable value for the regularization coefficient λ. Seeking the solution
that minimizes the regularized error function with respect to both the weight vector
w and the regularization coefficient λ is clearly not the right approach since this
leads to the unregularized solution with λ = 0.

As we have seen in earlier chapters, the phenomenon of over-fitting is really an
unfortunate property of maximum likelihood and does not arise when we marginalize
over parameters in a Bayesian setting. In this chapter, we shall consider the Bayesian
view of model complexity in some depth. Before doing so, however, it is instructive
to consider a frequentist viewpoint of the model complexity issue, known as the bias-
variance trade-off. Although we shall introduce this concept in the context of linear
basis function models, where it is easy to illustrate the ideas using simple examples,
the discussion has more general applicability.

In Section 1.5.5, when we discussed decision theory for regression problems,
we considered various loss functions each of which leads to a corresponding optimal
prediction once we are given the conditional distribution p(t|x). A popular choice is
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will be simply

E[t|x] =
∫

tp(t|x) dt = y(x,w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t1, . . . , tN . We group the target variables {tn} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that
these data points are drawn independently from the distribution (3.8), we obtain the
following expression for the likelihood function, which is a function of the adjustable
parameters w and β, in the form

p(t|X,w, β) =
N∏

n=1

N (tn|wTφ(xn), β−1) (3.10)

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the input
variables. Thus x will always appear in the set of conditioning variables, and so
from now on we will drop the explicit x from expressions such as p(t|x,w, β) in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

ln p(t|w, β) =
N∑

n=1

lnN (tn|wTφ(xn), β−1)

=
N

2
ln β − N

2
ln(2π) − βED(w) (3.11)

where the sum-of-squares error function is defined by

ED(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2. (3.12)

Having written down the likelihood function, we can use maximum likelihood to
determine w and β. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

∇ ln p(t|w, β) =
N∑

n=1

{
tn − wTφ(xn)

}
φ(xn)T. (3.13)
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Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(×), green (+), and blue (◦). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
that the region of input space assigned to the green class is too small and so most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
correct classification of the training data.

dimensional input vector x and project it down to one dimension using

y = wTx. (4.20)

If we place a threshold on y and classify y ! −w0 as class C1, and otherwise class
C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N1 points
of class C1 and N2 points of class C2, so that the mean vectors of the two classes are
given by

m1 =
1

N1

∑

n∈ C1

xn, m2 =
1

N2

∑

n∈ C2

xn. (4.21)

The simplest measure of the separation of the classes, when projected onto w, is the
separation of the projected class means. This suggests that we might choose w so as
to maximize

m2 − m1 = wT(m2 − m1) (4.22)

where
mk = wTmk (4.23)
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dimensional input vector x and project it down to one dimension using

y = wTx. (4.20)

If we place a threshold on y and classify y ! −w0 as class C1, and otherwise class
C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N1 points
of class C1 and N2 points of class C2, so that the mean vectors of the two classes are
given by

m1 =
1

N1

∑

n∈ C1

xn, m2 =
1

N2

∑

n∈ C2

xn. (4.21)

The simplest measure of the separation of the classes, when projected onto w, is the
separation of the projected class means. This suggests that we might choose w so as
to maximize

m2 − m1 = wT(m2 − m1) (4.22)

where
mk = wTmk (4.23)
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dimensional input vector x and project it down to one dimension using

y = wTx. (4.20)

If we place a threshold on y and classify y ! −w0 as class C1, and otherwise class
C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
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dimensional input vector x and project it down to one dimension using

y = wTx. (4.20)

If we place a threshold on y and classify y ! −w0 as class C1, and otherwise class
C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N1 points
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given by
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y = wTx. (4.20)

If we place a threshold on y and classify y ! −w0 as class C1, and otherwise class
C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N1 points
of class C1 and N2 points of class C2, so that the mean vectors of the two classes are
given by
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separation of the projected class means. This suggests that we might choose w so as
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where
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• Jusqu’à maintenant, le problème est mal posé

‣ il suffit d’augmenter w infiniment pour maximiser

‣ on pourrait imposer que w soit de norme 1, mais ceci n’est pas 
entièrement satisfaisant

• En plus, on va tenter de réduire les variances intra-
classe des entrées projetées
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Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.

is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
i w2

i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑

n∈Ck

(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by

J(w) =
(m2 − m1)2

s2
1 + s2

2

. (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5
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• On combine ces idées en maximisant plutôt 

• On peut montrer que la solution est telle que

où la matrice de covariance intra-classe est
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is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
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i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑

n∈Ck

(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by

J(w) =
(m2 − m1)2

s2
1 + s2

2

. (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5

4.1. Discriminant Functions 189

J(w) =
wTSBw
wTSWw

(4.26)

where SB is the between-class covariance matrix and is given by

SB = (m2 − m1)(m2 − m1)T (4.27)

and SW is the total within-class covariance matrix, given by

SW =
∑

n∈C1

(xn − m1)(xn − m1)T +
∑

n∈C2

(xn − m2)(xn − m2)T. (4.28)

Differentiating (4.26) with respect to w, we find that J(w) is maximized when

(wTSBw)SWw = (wTSWw)SBw. (4.29)

From (4.27), we see that SBw is always in the direction of (m2−m1). Furthermore,
we do not care about the magnitude of w, only its direction, and so we can drop the
scalar factors (wTSBw) and (wTSWw). Multiplying both sides of (4.29) by S−1

W
we then obtain

w ∝ S−1
W (m2 − m1). (4.30)

Note that if the within-class covariance is isotropic, so that SW is proportional to the
unit matrix, we find that w is proportional to the difference of the class means, as
discussed above.

The result (4.30) is known as Fisher’s linear discriminant, although strictly it
is not a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used
to construct a discriminant, by choosing a threshold y0 so that we classify a new
point as belonging to C1 if y(x) ! y0 and classify it as belonging to C2 otherwise.
For example, we can model the class-conditional densities p(y|Ck) using Gaussian
distributions and then use the techniques of Section 1.2.4 to find the parameters
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap-
proximations to the projected classes, the formalism of Section 1.5.1 then gives an
expression for the optimal threshold. Some justification for the Gaussian assumption
comes from the central limit theorem by noting that y = wTx is the sum of a set of
random variables.

4.1.5 Relation to least squares
The least-squares approach to the determination of a linear discriminant was

based on the goal of making the model predictions as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maximum
class separation in the output space. It is interesting to see the relationship between
these two approaches. In particular, we shall show that, for the two-class problem,
the Fisher criterion can be obtained as a special case of least squares.

So far we have considered 1-of-K coding for the target values. If, however, we
adopt a slightly different target coding scheme, then the least-squares solution for

w / S�1
W (m1 �m2)
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• On combine ces idées en maximisant plutôt 

• On peut montrer que la solution est telle que

où la matrice de covariance intra-classe est
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Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.
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is not a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used
to construct a discriminant, by choosing a threshold y0 so that we classify a new
point as belonging to C1 if y(x) ! y0 and classify it as belonging to C2 otherwise.
For example, we can model the class-conditional densities p(y|Ck) using Gaussian
distributions and then use the techniques of Section 1.2.4 to find the parameters
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap-
proximations to the projected classes, the formalism of Section 1.5.1 then gives an
expression for the optimal threshold. Some justification for the Gaussian assumption
comes from the central limit theorem by noting that y = wTx is the sum of a set of
random variables.
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The least-squares approach to the determination of a linear discriminant was

based on the goal of making the model predictions as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maximum
class separation in the output space. It is interesting to see the relationship between
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resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
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is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
i w2

i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑

n∈Ck

(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by
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We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5

Sans minimisation
intra-classe

Avec minimisation
intra-classe

w / S�1
W (m1 �m2)w / (m1 �m2)
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• Une fois w calculé, il suffit de trouver un seuil de classification

‣ un chois possible est 

• On peut voir l’analyse discriminante linéaire comme un cas 
particulier des moindres carrés

‣ voir section 4.1.5

• Il est possible de généraliser au cas à plus de 2 classes

‣ voir section 4.1.6
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Apprentissage automatique
Classification linéaire - approche probabiliste générative
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approche probabiliste

• Prenons plutôt une approche probabiliste

‣ on suppose que nos données ont été générées d’un modèle 
probabiliste donné

‣ on cherche les paramètres de ce modèle qui maximisent la 
vraisemblance des données d’entraînement 

• Deux options :

‣ approche générative : on choisit un modèle pour p(x,t)

‣ approche discriminante : on choisit un modèle pour p(t|x)
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‣ on suppose que nos données ont été générées d’un modèle 
probabiliste donné

‣ on cherche les paramètres de ce modèle qui maximisent la 
vraisemblance des données d’entraînement 

• Deux options :

‣ approche générative : on choisit un modèle pour p(x,t)

‣ approche discriminante : on choisit un modèle pour p(t|x)
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APPROCHE PROBABILISTE GÉNÉRATIVE

• On va supposer que les données ont été générées selon le 
processus suivant (cas binaire) :

‣ pour n = 1 ... N

- assigne tn=1 avec probabilité                  et tn=0 avec probabilité      

- si tn=1, génère xn de la loi de probabilité                =

- sinon (tn=0), génère xn de la loi de probabilité                = 

‣ En mots : les entrées sont des échantillons d’une loi gaussienne, mais 
de moyennes différentes pour les différentes classes
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in
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Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.
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denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence
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4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.
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• La probabilité des données d’entraînement devient

• Pour entraîner le classifieur, on cherche les paramètres 
maximise la (log-)vraisemblance
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4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in

⇡ ⇡
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the log likelihood function that depend on π are

N∑

n=1

{tn lnπ + (1 − tn) ln(1 − π)} . (4.72)

Setting the derivative with respect to π equal to zero and rearranging, we obtain

π =
1
N

N∑

n=1

tn =
N1

N
=

N1

N1 + N2
(4.73)

where N1 denotes the total number of data points in class C1, and N2 denotes the total
number of data points in class C2. Thus the maximum likelihood estimate for π is
simply the fraction of points in class C1 as expected. This result is easily generalized
to the multiclass case where again the maximum likelihood estimate of the prior
probability associated with class Ck is given by the fraction of the training set points
assigned to that class.Exercise 4.9

Now consider the maximization with respect to µ1. Again we can pick out of
the log likelihood function those terms that depend on µ1 giving

N∑

n=1

tn lnN (xn|µ1,Σ) = −1
2

N∑

n=1

tn(xn − µ1)
TΣ−1(xn − µ1) + const. (4.74)

Setting the derivative with respect to µ1 to zero and rearranging, we obtain

µ1 =
1

N1

N∑

n=1

tnxn (4.75)

which is simply the mean of all the input vectors xn assigned to class C1. By a
similar argument, the corresponding result for µ2 is given by

µ2 =
1

N2

N∑

n=1

(1 − tn)xn (4.76)

which again is the mean of all the input vectors xn assigned to class C2.
Finally, consider the maximum likelihood solution for the shared covariance

matrix Σ. Picking out the terms in the log likelihood function that depend on Σ, we
have

−1
2

N∑

n=1

tn ln |Σ|− 1
2

N∑

n=1

tn(xn − µ1)
TΣ−1(xn − µ1)

−1
2

N∑

n=1

(1 − tn) ln |Σ|− 1
2

N∑

n=1

(1 − tn)(xn − µ2)
TΣ−1(xn − µ2)

= −N

2
ln |Σ|− N

2
Tr

{
Σ−1S

}
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in
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the log likelihood function that depend on π are

N∑

n=1

{tn lnπ + (1 − tn) ln(1 − π)} . (4.72)

Setting the derivative with respect to π equal to zero and rearranging, we obtain

π =
1
N

N∑

n=1

tn =
N1

N
=

N1

N1 + N2
(4.73)

where N1 denotes the total number of data points in class C1, and N2 denotes the total
number of data points in class C2. Thus the maximum likelihood estimate for π is
simply the fraction of points in class C1 as expected. This result is easily generalized
to the multiclass case where again the maximum likelihood estimate of the prior
probability associated with class Ck is given by the fraction of the training set points
assigned to that class.Exercise 4.9

Now consider the maximization with respect to µ1. Again we can pick out of
the log likelihood function those terms that depend on µ1 giving

N∑

n=1

tn lnN (xn|µ1,Σ) = −1
2

N∑

n=1

tn(xn − µ1)
TΣ−1(xn − µ1) + const. (4.74)

Setting the derivative with respect to µ1 to zero and rearranging, we obtain

µ1 =
1

N1

N∑

n=1

tnxn (4.75)

which is simply the mean of all the input vectors xn assigned to class C1. By a
similar argument, the corresponding result for µ2 is given by

µ2 =
1

N2

N∑

n=1

(1 − tn)xn (4.76)

which again is the mean of all the input vectors xn assigned to class C2.
Finally, consider the maximum likelihood solution for the shared covariance

matrix Σ. Picking out the terms in the log likelihood function that depend on Σ, we
have
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in

µ1 µ1
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the log likelihood function that depend on π are

N∑

n=1

{tn lnπ + (1 − tn) ln(1 − π)} . (4.72)

Setting the derivative with respect to π equal to zero and rearranging, we obtain

π =
1
N

N∑

n=1

tn =
N1

N
=

N1

N1 + N2
(4.73)

where N1 denotes the total number of data points in class C1, and N2 denotes the total
number of data points in class C2. Thus the maximum likelihood estimate for π is
simply the fraction of points in class C1 as expected. This result is easily generalized
to the multiclass case where again the maximum likelihood estimate of the prior
probability associated with class Ck is given by the fraction of the training set points
assigned to that class.Exercise 4.9

Now consider the maximization with respect to µ1. Again we can pick out of
the log likelihood function those terms that depend on µ1 giving

N∑

n=1

tn lnN (xn|µ1,Σ) = −1
2

N∑

n=1

tn(xn − µ1)
TΣ−1(xn − µ1) + const. (4.74)

Setting the derivative with respect to µ1 to zero and rearranging, we obtain

µ1 =
1

N1

N∑

n=1

tnxn (4.75)

which is simply the mean of all the input vectors xn assigned to class C1. By a
similar argument, the corresponding result for µ2 is given by

µ2 =
1

N2

N∑

n=1

(1 − tn)xn (4.76)

which again is the mean of all the input vectors xn assigned to class C2.
Finally, consider the maximum likelihood solution for the shared covariance

matrix Σ. Picking out the terms in the log likelihood function that depend on Σ, we
have
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in

µ1
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the log likelihood function that depend on π are

N∑

n=1

{tn lnπ + (1 − tn) ln(1 − π)} . (4.72)

Setting the derivative with respect to π equal to zero and rearranging, we obtain

π =
1
N

N∑

n=1

tn =
N1

N
=

N1

N1 + N2
(4.73)

where N1 denotes the total number of data points in class C1, and N2 denotes the total
number of data points in class C2. Thus the maximum likelihood estimate for π is
simply the fraction of points in class C1 as expected. This result is easily generalized
to the multiclass case where again the maximum likelihood estimate of the prior
probability associated with class Ck is given by the fraction of the training set points
assigned to that class.Exercise 4.9

Now consider the maximization with respect to µ1. Again we can pick out of
the log likelihood function those terms that depend on µ1 giving

N∑

n=1

tn lnN (xn|µ1,Σ) = −1
2

N∑

n=1

tn(xn − µ1)
TΣ−1(xn − µ1) + const. (4.74)

Setting the derivative with respect to µ1 to zero and rearranging, we obtain

µ1 =
1

N1

N∑

n=1

tnxn (4.75)

which is simply the mean of all the input vectors xn assigned to class C1. By a
similar argument, the corresponding result for µ2 is given by

µ2 =
1

N2

N∑

n=1

(1 − tn)xn (4.76)

which again is the mean of all the input vectors xn assigned to class C2.
Finally, consider the maximum likelihood solution for the shared covariance

matrix Σ. Picking out the terms in the log likelihood function that depend on Σ, we
have
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in
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the log likelihood function that depend on π are

N∑

n=1

{tn lnπ + (1 − tn) ln(1 − π)} . (4.72)

Setting the derivative with respect to π equal to zero and rearranging, we obtain

π =
1
N

N∑

n=1

tn =
N1

N
=

N1

N1 + N2
(4.73)

where N1 denotes the total number of data points in class C1, and N2 denotes the total
number of data points in class C2. Thus the maximum likelihood estimate for π is
simply the fraction of points in class C1 as expected. This result is easily generalized
to the multiclass case where again the maximum likelihood estimate of the prior
probability associated with class Ck is given by the fraction of the training set points
assigned to that class.Exercise 4.9

Now consider the maximization with respect to µ1. Again we can pick out of
the log likelihood function those terms that depend on µ1 giving

N∑

n=1

tn lnN (xn|µ1,Σ) = −1
2

N∑

n=1

tn(xn − µ1)
TΣ−1(xn − µ1) + const. (4.74)

Setting the derivative with respect to µ1 to zero and rearranging, we obtain

µ1 =
1

N1

N∑

n=1

tnxn (4.75)

which is simply the mean of all the input vectors xn assigned to class C1. By a
similar argument, the corresponding result for µ2 is given by

µ2 =
1

N2

N∑

n=1

(1 − tn)xn (4.76)

which again is the mean of all the input vectors xn assigned to class C2.
Finally, consider the maximum likelihood solution for the shared covariance

matrix Σ. Picking out the terms in the log likelihood function that depend on Σ, we
have
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where we have defined

S =
N1

N
S1 +

N2

N
S2 (4.78)

S1 =
1

N1

∑

n∈C1

(xn − µ1)(xn − µ1)
T (4.79)

S2 =
1

N2

∑

n∈C2

(xn − µ2)(xn − µ2)
T. (4.80)

Using the standard result for the maximum likelihood solution for a Gaussian distri-
bution, we see that Σ = S, which represents a weighted average of the covariance
matrices associated with each of the two classes separately.

This result is easily extended to the K class problem to obtain the corresponding
maximum likelihood solutions for the parameters in which each class-conditional
density is Gaussian with a shared covariance matrix. Note that the approach of fittingExercise 4.10
Gaussian distributions to the classes is not robust to outliers, because the maximum
likelihood estimation of a Gaussian is not robust.Section 2.3.7

4.2.3 Discrete features
Let us now consider the case of discrete feature values xi. For simplicity, we

begin by looking at binary feature values xi ∈ {0, 1} and discuss the extension to
more general discrete features shortly. If there are D inputs, then a general distribu-
tion would correspond to a table of 2D numbers for each class, containing 2D − 1
independent variables (due to the summation constraint). Because this grows expo-
nentially with the number of features, we might seek a more restricted representa-
tion. Here we will make the naive Bayes assumption in which the feature values areSection 8.2.2
treated as independent, conditioned on the class Ck. Thus we have class-conditional
distributions of the form

p(x|Ck) =
D∏

i=1

µxi
ki(1 − µki)1−xi (4.81)

which contain D independent parameters for each class. Substituting into (4.63) then
gives

ak(x) =
D∑

i=1

{xi ln µki + (1 − xi) ln(1 − µki)} + ln p(Ck) (4.82)

which again are linear functions of the input values xi. For the case of K = 2 classes,
we can alternatively consider the logistic sigmoid formulation given by (4.57). Anal-
ogous results are obtained for discrete variables each of which can take M > 2
states.Exercise 4.11

4.2.4 Exponential family
As we have seen, for both Gaussian distributed and discrete inputs, the posterior

class probabilities are given by generalized linear models with logistic sigmoid (K =
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S2 =
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∑
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(xn − µ2)(xn − µ2)
T. (4.80)

Using the standard result for the maximum likelihood solution for a Gaussian distri-
bution, we see that Σ = S, which represents a weighted average of the covariance
matrices associated with each of the two classes separately.

This result is easily extended to the K class problem to obtain the corresponding
maximum likelihood solutions for the parameters in which each class-conditional
density is Gaussian with a shared covariance matrix. Note that the approach of fittingExercise 4.10
Gaussian distributions to the classes is not robust to outliers, because the maximum
likelihood estimation of a Gaussian is not robust.Section 2.3.7

4.2.3 Discrete features
Let us now consider the case of discrete feature values xi. For simplicity, we

begin by looking at binary feature values xi ∈ {0, 1} and discuss the extension to
more general discrete features shortly. If there are D inputs, then a general distribu-
tion would correspond to a table of 2D numbers for each class, containing 2D − 1
independent variables (due to the summation constraint). Because this grows expo-
nentially with the number of features, we might seek a more restricted representa-
tion. Here we will make the naive Bayes assumption in which the feature values areSection 8.2.2
treated as independent, conditioned on the class Ck. Thus we have class-conditional
distributions of the form

p(x|Ck) =
D∏

i=1

µxi
ki(1 − µki)1−xi (4.81)

which contain D independent parameters for each class. Substituting into (4.63) then
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ak(x) =
D∑

i=1

{xi ln µki + (1 − xi) ln(1 − µki)} + ln p(Ck) (4.82)

which again are linear functions of the input values xi. For the case of K = 2 classes,
we can alternatively consider the logistic sigmoid formulation given by (4.57). Anal-
ogous results are obtained for discrete variables each of which can take M > 2
states.Exercise 4.11
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Figure 4.9 Plot of the logistic sigmoid function
σ(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function Φ(λa), for λ2 = π/8,
shown in dashed blue, where Φ(a)
is defined by (4.114). The scal-
ing factor π/8 is chosen so that the
derivatives of the two curves are
equal for a = 0.
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approach in which we model the class-conditional densities p(x|Ck), as well as the
class priors p(Ck), and then use these to compute posterior probabilities p(Ck|x)
through Bayes’ theorem.

Consider first of all the case of two classes. The posterior probability for class
C1 can be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a) (4.57)

where we have defined

a = ln
p(x|C1)p(C1)
p(x|C2)p(C2)

(4.58)

and σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
(4.59)

which is plotted in Figure 4.9. The term ‘sigmoid’ means S-shaped. This type of
function is sometimes also called a ‘squashing function’ because it maps the whole
real axis into a finite interval. The logistic sigmoid has been encountered already
in earlier chapters and plays an important role in many classification algorithms. It
satisfies the following symmetry property

σ(−a) = 1 − σ(a) (4.60)

as is easily verified. The inverse of the logistic sigmoid is given by

a = ln
( σ

1 − σ

)
(4.61)

and is known as the logit function. It represents the log of the ratio of probabilities
ln [p(C1|x)/p(C2|x)] for the two classes, also known as the log odds.
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in
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Note that in (4.57) we have simply rewritten the posterior probabilities in an
equivalent form, and so the appearance of the logistic sigmoid may seem rather vac-
uous. However, it will have significance provided a(x) takes a simple functional
form. We shall shortly consider situations in which a(x) is a linear function of x, in
which case the posterior probability is governed by a generalized linear model.

For the case of K > 2 classes, we have

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(4.62)

which is known as the normalized exponential and can be regarded as a multiclass
generalization of the logistic sigmoid. Here the quantities ak are defined by

ak = ln p(x|Ck)p(Ck). (4.63)

The normalized exponential is also known as the softmax function, as it represents
a smoothed version of the ‘max’ function because, if ak ≫ aj for all j ̸= k, then
p(Ck|x) ≃ 1, and p(Cj |x) ≃ 0.

We now investigate the consequences of choosing specific forms for the class-
conditional densities, looking first at continuous input variables x and then dis-
cussing briefly the case of discrete inputs.

4.2.1 Continuous inputs
Let us assume that the class-conditional densities are Gaussian and then explore

the resulting form for the posterior probabilities. To start with, we shall assume that
all classes share the same covariance matrix. Thus the density for class Ck is given
by

p(x|Ck) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µk)TΣ−1(x − µk)

}
. (4.64)

Consider first the case of two classes. From (4.57) and (4.58), we have

p(C1|x) = σ(wTx + w0) (4.65)

where we have defined

w = Σ−1(µ1 − µ2) (4.66)

w0 = −1
2
µT

1 Σ−1µ1 +
1
2
µT

2 Σ−1µ2 + ln
p(C1)
p(C2)

. (4.67)

We see that the quadratic terms in x from the exponents of the Gaussian densities
have cancelled (due to the assumption of common covariance matrices) leading to
a linear function of x in the argument of the logistic sigmoid. This result is illus-
trated for the case of a two-dimensional input space x in Figure 4.10. The resulting
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n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in
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the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.
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likelihood function. Consider first the maximization with respect to π. The terms in
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Note that in (4.57) we have simply rewritten the posterior probabilities in an
equivalent form, and so the appearance of the logistic sigmoid may seem rather vac-
uous. However, it will have significance provided a(x) takes a simple functional
form. We shall shortly consider situations in which a(x) is a linear function of x, in
which case the posterior probability is governed by a generalized linear model.

For the case of K > 2 classes, we have

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(4.62)

which is known as the normalized exponential and can be regarded as a multiclass
generalization of the logistic sigmoid. Here the quantities ak are defined by

ak = ln p(x|Ck)p(Ck). (4.63)

The normalized exponential is also known as the softmax function, as it represents
a smoothed version of the ‘max’ function because, if ak ≫ aj for all j ̸= k, then
p(Ck|x) ≃ 1, and p(Cj |x) ≃ 0.

We now investigate the consequences of choosing specific forms for the class-
conditional densities, looking first at continuous input variables x and then dis-
cussing briefly the case of discrete inputs.

4.2.1 Continuous inputs
Let us assume that the class-conditional densities are Gaussian and then explore

the resulting form for the posterior probabilities. To start with, we shall assume that
all classes share the same covariance matrix. Thus the density for class Ck is given
by

p(x|Ck) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µk)TΣ−1(x − µk)

}
. (4.64)

Consider first the case of two classes. From (4.57) and (4.58), we have

p(C1|x) = σ(wTx + w0) (4.65)

where we have defined

w = Σ−1(µ1 − µ2) (4.66)

w0 = −1
2
µT

1 Σ−1µ1 +
1
2
µT

2 Σ−1µ2 + ln
p(C1)
p(C2)

. (4.67)

We see that the quadratic terms in x from the exponents of the Gaussian densities
have cancelled (due to the assumption of common covariance matrices) leading to
a linear function of x in the argument of the logistic sigmoid. This result is illus-
trated for the case of a two-dimensional input space x in Figure 4.10. The resulting
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• Puisque                  , alors la règle              ≥ 0.5 est 
équivalente à                      ≥ 0

• On retrouve donc la forme d’un classifieur linéaire
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Figure 4.9 Plot of the logistic sigmoid function
σ(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function Φ(λa), for λ2 = π/8,
shown in dashed blue, where Φ(a)
is defined by (4.114). The scal-
ing factor π/8 is chosen so that the
derivatives of the two curves are
equal for a = 0.
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approach in which we model the class-conditional densities p(x|Ck), as well as the
class priors p(Ck), and then use these to compute posterior probabilities p(Ck|x)
through Bayes’ theorem.

Consider first of all the case of two classes. The posterior probability for class
C1 can be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a) (4.57)

where we have defined

a = ln
p(x|C1)p(C1)
p(x|C2)p(C2)

(4.58)

and σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
(4.59)

which is plotted in Figure 4.9. The term ‘sigmoid’ means S-shaped. This type of
function is sometimes also called a ‘squashing function’ because it maps the whole
real axis into a finite interval. The logistic sigmoid has been encountered already
in earlier chapters and plays an important role in many classification algorithms. It
satisfies the following symmetry property

σ(−a) = 1 − σ(a) (4.60)

as is easily verified. The inverse of the logistic sigmoid is given by

a = ln
( σ

1 − σ

)
(4.61)

and is known as the logit function. It represents the log of the ratio of probabilities
ln [p(C1|x)/p(C2|x)] for the two classes, also known as the log odds.
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• On peut généraliser au cas à multiples classes

‣ voir fin des sections 4.2 et 4.2.1

• On peut généraliser à des lois              et               autre 
que gaussiennes

‣ observations binaires, voir section 4.2.3

‣ cas général (famille exponentielle), voir section 4.2.4
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in
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the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence
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Thus the likelihood function is given by
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where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
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approche probabiliste

• Prenons plutôt une approche probabiliste

‣ on suppose que nos données ont été générées d’un modèle 
probabiliste donné

‣ on cherche les paramètres de ce modèle qui maximisent la 
vraisemblance des données d’entraînement 

• Deux options :

‣ approche générative : on choisit un modèle pour p(x,t)

‣ approche discriminante : on choisit un modèle pour p(t|x)
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• Dans le cas génératif, on a vu que la probabilité de classifier 
dans la classe      prend la forme 

• Dans le cas discriminant, l’idée est d’utiliser directement 
cette forme comme modèle de p(t|x)

‣ plutôt que maximiser la probabilité jointe p(x,t), on maximise la 
probabilité conditionnelle p(t|x)

‣ on appel ce modèle la régression logistique
39
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Note that in (4.57) we have simply rewritten the posterior probabilities in an
equivalent form, and so the appearance of the logistic sigmoid may seem rather vac-
uous. However, it will have significance provided a(x) takes a simple functional
form. We shall shortly consider situations in which a(x) is a linear function of x, in
which case the posterior probability is governed by a generalized linear model.

For the case of K > 2 classes, we have

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(4.62)

which is known as the normalized exponential and can be regarded as a multiclass
generalization of the logistic sigmoid. Here the quantities ak are defined by

ak = ln p(x|Ck)p(Ck). (4.63)

The normalized exponential is also known as the softmax function, as it represents
a smoothed version of the ‘max’ function because, if ak ≫ aj for all j ̸= k, then
p(Ck|x) ≃ 1, and p(Cj |x) ≃ 0.

We now investigate the consequences of choosing specific forms for the class-
conditional densities, looking first at continuous input variables x and then dis-
cussing briefly the case of discrete inputs.

4.2.1 Continuous inputs
Let us assume that the class-conditional densities are Gaussian and then explore

the resulting form for the posterior probabilities. To start with, we shall assume that
all classes share the same covariance matrix. Thus the density for class Ck is given
by

p(x|Ck) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µk)TΣ−1(x − µk)

}
. (4.64)

Consider first the case of two classes. From (4.57) and (4.58), we have

p(C1|x) = σ(wTx + w0) (4.65)

where we have defined

w = Σ−1(µ1 − µ2) (4.66)

w0 = −1
2
µT

1 Σ−1µ1 +
1
2
µT

2 Σ−1µ2 + ln
p(C1)
p(C2)

. (4.67)

We see that the quadratic terms in x from the exponents of the Gaussian densities
have cancelled (due to the assumption of common covariance matrices) leading to
a linear function of x in the argument of the logistic sigmoid. This result is illus-
trated for the case of a two-dimensional input space x in Figure 4.10. The resulting

C1
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• Cas discriminant : on cherche directement w qui maximise
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in
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For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN )T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

yn = p(C1|xn)
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• On peut facilement remplacer la représentation de l’entrée  
à l’aide de fonctions de bases (comme pour la régression)

• Si les fonctions de bases sont non-linéaires, peut rendre les 
classes linéairement séparables
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basis functions is typically set to a constant, say φ0(x) = 1, so that the correspond-
ing parameter w0 plays the role of a bias. For the remainder of this chapter, we shall
include a fixed basis function transformation φ(x), as this will highlight some useful
similarities to the regression models discussed in Chapter 3.

For many problems of practical interest, there is significant overlap between
the class-conditional densities p(x|Ck). This corresponds to posterior probabilities
p(Ck|x), which, for at least some values of x, are not 0 or 1. In such cases, the opti-
mal solution is obtained by modelling the posterior probabilities accurately and then
applying standard decision theory, as discussed in Chapter 1. Note that nonlinear
transformations φ(x) cannot remove such class overlap. Indeed, they can increase
the level of overlap, or create overlap where none existed in the original observation
space. However, suitable choices of nonlinearity can make the process of modelling
the posterior probabilities easier.

Such fixed basis function models have important limitations, and these will beSection 3.6
resolved in later chapters by allowing the basis functions themselves to adapt to the
data. Notwithstanding these limitations, models with fixed nonlinear basis functions
play an important role in applications, and a discussion of such models will intro-
duce many of the key concepts needed for an understanding of their more complex
counterparts.

4.3.2 Logistic regression
We begin our treatment of generalized linear models by considering the problem

of two-class classification. In our discussion of generative approaches in Section 4.2,
we saw that under rather general assumptions, the posterior probability of class C1

can be written as a logistic sigmoid acting on a linear function of the feature vector
φ so that

p(C1|φ) = y(φ) = σ
(
wTφ

)
(4.87)

with p(C2|φ) = 1 − p(C1|φ). Here σ(·) is the logistic sigmoid function defined by
(4.59). In the terminology of statistics, this model is known as logistic regression,
although it should be emphasized that this is a model for classification rather than
regression.

For an M -dimensional feature space φ, this model has M adjustable parameters.
By contrast, if we had fitted Gaussian class conditional densities using maximum
likelihood, we would have used 2M parameters for the means and M(M + 1)/2
parameters for the (shared) covariance matrix. Together with the class prior p(C1),
this gives a total of M(M +5)/2+1 parameters, which grows quadratically with M ,
in contrast to the linear dependence on M of the number of parameters in logistic
regression. For large values of M , there is a clear advantage in working with the
logistic regression model directly.

We now use maximum likelihood to determine the parameters of the logistic
regression model. To do this, we shall make use of the derivative of the logistic sig-
moid function, which can conveniently be expressed in terms of the sigmoid function
itselfExercise 4.12

dσ

da
= σ(1 − σ). (4.88)

    est équivalent à        �(x)�
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Figure 4.12 Illustration of the role of nonlinear basis functions in linear classification models. The left plot
shows the original input space (x1, x2) together with data points from two classes labelled red and blue. Two
‘Gaussian’ basis functions φ1(x) and φ2(x) are defined in this space with centres shown by the green crosses
and with contours shown by the green circles. The right-hand plot shows the corresponding feature space
(φ1, φ2) together with the linear decision boundary obtained given by a logistic regression model of the form
discussed in Section 4.3.2. This corresponds to a nonlinear decision boundary in the original input space,
shown by the black curve in the left-hand plot.

Bayes’ theorem, represents an example of generative modelling, because we could
take such a model and generate synthetic data by drawing values of x from the
marginal distribution p(x). In the direct approach, we are maximizing a likelihood
function defined through the conditional distribution p(Ck|x), which represents a
form of discriminative training. One advantage of the discriminative approach is
that there will typically be fewer adaptive parameters to be determined, as we shall
see shortly. It may also lead to improved predictive performance, particularly when
the class-conditional density assumptions give a poor approximation to the true dis-
tributions.

4.3.1 Fixed basis functions
So far in this chapter, we have considered classification models that work di-

rectly with the original input vector x. However, all of the algorithms are equally
applicable if we first make a fixed nonlinear transformation of the inputs using a
vector of basis functions φ(x). The resulting decision boundaries will be linear in
the feature space φ, and these correspond to nonlinear decision boundaries in the
original x space, as illustrated in Figure 4.12. Classes that are linearly separable
in the feature space φ(x) need not be linearly separable in the original observation
space x. Note that as in our discussion of linear models for regression, one of the

x

�espace représenté par espace représenté par

2 fonctions de 
bases gaussiennes     
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or feature extraction, to the original data variables. If the original variables com-
prise the vector x, then the features can be expressed in terms of the basis functions
{φj(x)}.

By using nonlinear basis functions, we allow the function y(x,w) to be a non-
linear function of the input vector x. Functions of the form (3.2) are called linear
models, however, because this function is linear in w. It is this linearity in the pa-
rameters that will greatly simplify the analysis of this class of models. However, it
also leads to some significant limitations, as we discuss in Section 3.6.

The example of polynomial regression considered in Chapter 1 is a particular
example of this model in which there is a single input variable x, and the basis func-
tions take the form of powers of x so that φj(x) = xj . One limitation of polynomial
basis functions is that they are global functions of the input variable, so that changes
in one region of input space affect all other regions. This can be resolved by dividing
the input space up into regions and fit a different polynomial in each region, leading
to spline functions (Hastie et al., 2001).

There are many other possible choices for the basis functions, for example

φj(x) = exp
{
−(x − µj)2

2s2

}
(3.4)

where the µj govern the locations of the basis functions in input space, and the pa-
rameter s governs their spatial scale. These are usually referred to as ‘Gaussian’
basis functions, although it should be noted that they are not required to have a prob-
abilistic interpretation, and in particular the normalization coefficient is unimportant
because these basis functions will be multiplied by adaptive parameters wj .

Another possibility is the sigmoidal basis function of the form

φj(x) = σ
(x − µj

s

)
(3.5)

where σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
. (3.6)

Equivalently, we can use the ‘tanh’ function because this is related to the logistic
sigmoid by tanh(a) = 2σ(a) − 1, and so a general linear combination of logistic
sigmoid functions is equivalent to a general linear combination of ‘tanh’ functions.
These various choices of basis function are illustrated in Figure 3.1.

Yet another possible choice of basis function is the Fourier basis, which leads to
an expansion in sinusoidal functions. Each basis function represents a specific fre-
quency and has infinite spatial extent. By contrast, basis functions that are localized
to finite regions of input space necessarily comprise a spectrum of different spatial
frequencies. In many signal processing applications, it is of interest to consider ba-
sis functions that are localized in both space and frequency, leading to a class of
functions known as wavelets. These are also defined to be mutually orthogonal, to
simplify their application. Wavelets are most applicable when the input values live

�j

µ1

µ2
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• Maximiser la vraisemblance est équivalent à minimiser la log-
vraisemblance négative

• Malheureusement, minimiser cette fonction ne se fait pas 
analytiquement

‣ on va devoir trouver le minimum de façon numérique
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For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN )T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

{
cross-entropie (binaire)
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• Descente de gradient 

‣ initialise la valeur de w aléatoirement
‣ durant I itérations

- déplace w dans la direction opposée du gradient,
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• On peut montrer que le gradient est simplement

où 

• Le nombre d’itérations (I) de descente de gradient est un 
hyper-paramètre

‣ on utilise un ensemble de validation pour déterminer quand arrêter
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∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.
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• La descente de gradient stochastique est souvent préférée 
en pratique, parce que plus rapide à converger

‣ on met à jour w individuellement pour chaque exemple 

‣ voir section 3.1.3 (description pour la régression)

• On peut aussi généraliser au cas à multiples classes

‣ voir section 4.3.4
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CLASSIFICATION À MULTIPLES CLASSES

• Il est possible d’utiliser plusieurs classifieurs binaires pour 
résoudre un problème de classification à plus de 2 classes

• Approche one-versus-rest : 

‣ entraîne K-1 classifieurs, chacun distinguant les entrées d’une classe 
vs. les entrées de toutes les autres classes

• Approche one-versus-one :

‣ entraîne K(K-1)/2 classifieurs, chacun distinguant les entrées d’une 
classe vs. les entrées d’une seule autre classe
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Figure 4.2 Attempting to construct a K class discriminant from a set of two class discriminants leads to am-
biguous regions, shown in green. On the left is an example involving the use of two discriminants designed to
distinguish points in class Ck from points not in class Ck. On the right is an example involving three discriminant
functions each of which is used to separate a pair of classes Ck and Cj .

example involving three classes where this approach leads to regions of input space
that are ambiguously classified.

An alternative is to introduce K(K − 1)/2 binary discriminant functions, one
for every possible pair of classes. This is known as a one-versus-one classifier. Each
point is then classified according to a majority vote amongst the discriminant func-
tions. However, this too runs into the problem of ambiguous regions, as illustrated
in the right-hand diagram of Figure 4.2.

We can avoid these difficulties by considering a single K-class discriminant
comprising K linear functions of the form

yk(x) = wT
k x + wk0 (4.9)

and then assigning a point x to class Ck if yk(x) > yj(x) for all j ̸= k. The decision
boundary between class Ck and class Cj is therefore given by yk(x) = yj(x) and
hence corresponds to a (D − 1)-dimensional hyperplane defined by

(wk − wj)Tx + (wk0 − wj0) = 0. (4.10)

This has the same form as the decision boundary for the two-class case discussed in
Section 4.1.1, and so analogous geometrical properties apply.

The decision regions of such a discriminant are always singly connected and
convex. To see this, consider two points xA and xB both of which lie inside decision
region Rk, as illustrated in Figure 4.3. Any point x̂ that lies on the line connecting
xA and xB can be expressed in the form

x̂ = λxA + (1 − λ)xB (4.11)
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point is then classified according to a majority vote amongst the discriminant func-
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comprising K linear functions of the form
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and then assigning a point x to class Ck if yk(x) > yj(x) for all j ̸= k. The decision
boundary between class Ck and class Cj is therefore given by yk(x) = yj(x) and
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(wk − wj)Tx + (wk0 − wj0) = 0. (4.10)

This has the same form as the decision boundary for the two-class case discussed in
Section 4.1.1, and so analogous geometrical properties apply.

The decision regions of such a discriminant are always singly connected and
convex. To see this, consider two points xA and xB both of which lie inside decision
region Rk, as illustrated in Figure 4.3. Any point x̂ that lies on the line connecting
xA and xB can be expressed in the form

x̂ = λxA + (1 − λ)xB (4.11)
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• Il est possible de résoudre les ambiguïtés en pondérant les 
votes des classifieurs binaires

‣ cas probabiliste : pondérer par la probabilité

• L’idéal serait d’utiliser la version de l’algorithme adaptée à 
la classification à multiples classes directement
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Figure 4.9 Plot of the logistic sigmoid function
σ(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function Φ(λa), for λ2 = π/8,
shown in dashed blue, where Φ(a)
is defined by (4.114). The scal-
ing factor π/8 is chosen so that the
derivatives of the two curves are
equal for a = 0.
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approach in which we model the class-conditional densities p(x|Ck), as well as the
class priors p(Ck), and then use these to compute posterior probabilities p(Ck|x)
through Bayes’ theorem.

Consider first of all the case of two classes. The posterior probability for class
C1 can be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a) (4.57)

where we have defined

a = ln
p(x|C1)p(C1)
p(x|C2)p(C2)

(4.58)

and σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
(4.59)

which is plotted in Figure 4.9. The term ‘sigmoid’ means S-shaped. This type of
function is sometimes also called a ‘squashing function’ because it maps the whole
real axis into a finite interval. The logistic sigmoid has been encountered already
in earlier chapters and plays an important role in many classification algorithms. It
satisfies the following symmetry property

σ(−a) = 1 − σ(a) (4.60)

as is easily verified. The inverse of the logistic sigmoid is given by

a = ln
( σ

1 − σ

)
(4.61)

and is known as the logit function. It represents the log of the ratio of probabilities
ln [p(C1|x)/p(C2|x)] for the two classes, also known as the log odds.
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MÉTHODE DES MOINDRES CARRÉS

• Modèle :                                       

• Entraînement :                                              (t = 1 vs. t = -1)

(maximum de vraisemblance si λ=0 ou maximum a posteriori si λ>0)

• Hyper-paramètre : λ

• Prédiction :      si y(x,w)≥0, sinon 
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

on a regular lattice, such as the successive time points in a temporal sequence, or the
pixels in an image. Useful texts on wavelets include Ogden (1997), Mallat (1999),
and Vidakovic (1999).

Most of the discussion in this chapter, however, is independent of the particular
choice of basis function set, and so for most of our discussion we shall not specify
the particular form of the basis functions, except for the purposes of numerical il-
lustration. Indeed, much of our discussion will be equally applicable to the situation
in which the vector φ(x) of basis functions is simply the identity φ(x) = x. Fur-
thermore, in order to keep the notation simple, we shall focus on the case of a single
target variable t. However, in Section 3.1.5, we consider briefly the modifications
needed to deal with multiple target variables.

3.1.1 Maximum likelihood and least squares
In Chapter 1, we fitted polynomial functions to data sets by minimizing a sum-

of-squares error function. We also showed that this error function could be motivated
as the maximum likelihood solution under an assumed Gaussian noise model. Let
us return to this discussion and consider the least squares approach, and its relation
to maximum likelihood, in more detail.

As before, we assume that the target variable t is given by a deterministic func-
tion y(x,w) with additive Gaussian noise so that

t = y(x,w) + ϵ (3.7)

where ϵ is a zero mean Gaussian random variable with precision (inverse variance)
β. Thus we can write

p(t|x,w, β) = N (t|y(x,w), β−1). (3.8)

Recall that, if we assume a squared loss function, then the optimal prediction, for a
new value of x, will be given by the conditional mean of the target variable. In theSection 1.5.5
case of a Gaussian conditional distribution of the form (3.8), the conditional mean
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q = 0.5 q = 1 q = 2 q = 4

Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter q.

zero. It has the advantage that the error function remains a quadratic function of
w, and so its exact minimizer can be found in closed form. Specifically, setting the
gradient of (3.27) with respect to w to zero, and solving for w as before, we obtain

w =
(
λI + ΦTΦ

)−1
ΦTt. (3.28)

This represents a simple extension of the least-squares solution (3.15).
A more general regularizer is sometimes used, for which the regularized error

takes the form
1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2

M∑

j=1

|wj |q (3.29)

where q = 2 corresponds to the quadratic regularizer (3.27). Figure 3.3 shows con-
tours of the regularization function for different values of q.

The case of q = 1 is know as the lasso in the statistics literature (Tibshirani,
1996). It has the property that if λ is sufficiently large, some of the coefficients
wj are driven to zero, leading to a sparse model in which the corresponding basis
functions play no role. To see this, we first note that minimizing (3.29) is equivalent
to minimizing the unregularized sum-of-squares error (3.12) subject to the constraintExercise 3.5

M∑

j=1

|wj |q ! η (3.30)

for an appropriate value of the parameter η, where the two approaches can be related
using Lagrange multipliers. The origin of the sparsity can be seen from Figure 3.4,Appendix E
which shows that the minimum of the error function, subject to the constraint (3.30).
As λ is increased, so an increasing number of parameters are driven to zero.

Regularization allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting the effective model complexity.
However, the problem of determining the optimal model complexity is then shifted
from one of finding the appropriate number of basis functions to one of determining
a suitable value of the regularization coefficient λ. We shall return to the issue of
model complexity later in this chapter.

y(x,w) = w

T
x+ w0

C1 C2
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J(w) =
wTSBw
wTSWw

(4.26)

where SB is the between-class covariance matrix and is given by

SB = (m2 − m1)(m2 − m1)T (4.27)

and SW is the total within-class covariance matrix, given by

SW =
∑

n∈C1

(xn − m1)(xn − m1)T +
∑

n∈C2

(xn − m2)(xn − m2)T. (4.28)

Differentiating (4.26) with respect to w, we find that J(w) is maximized when

(wTSBw)SWw = (wTSWw)SBw. (4.29)

From (4.27), we see that SBw is always in the direction of (m2−m1). Furthermore,
we do not care about the magnitude of w, only its direction, and so we can drop the
scalar factors (wTSBw) and (wTSWw). Multiplying both sides of (4.29) by S−1

W
we then obtain

w ∝ S−1
W (m2 − m1). (4.30)

Note that if the within-class covariance is isotropic, so that SW is proportional to the
unit matrix, we find that w is proportional to the difference of the class means, as
discussed above.

The result (4.30) is known as Fisher’s linear discriminant, although strictly it
is not a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used
to construct a discriminant, by choosing a threshold y0 so that we classify a new
point as belonging to C1 if y(x) ! y0 and classify it as belonging to C2 otherwise.
For example, we can model the class-conditional densities p(y|Ck) using Gaussian
distributions and then use the techniques of Section 1.2.4 to find the parameters
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap-
proximations to the projected classes, the formalism of Section 1.5.1 then gives an
expression for the optimal threshold. Some justification for the Gaussian assumption
comes from the central limit theorem by noting that y = wTx is the sum of a set of
random variables.

4.1.5 Relation to least squares
The least-squares approach to the determination of a linear discriminant was

based on the goal of making the model predictions as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maximum
class separation in the output space. It is interesting to see the relationship between
these two approaches. In particular, we shall show that, for the two-class problem,
the Fisher criterion can be obtained as a special case of least squares.

So far we have considered 1-of-K coding for the target values. If, however, we
adopt a slightly different target coding scheme, then the least-squares solution for
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Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(×), green (+), and blue (◦). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
that the region of input space assigned to the green class is too small and so most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
correct classification of the training data.

dimensional input vector x and project it down to one dimension using

y = wTx. (4.20)

If we place a threshold on y and classify y ! −w0 as class C1, and otherwise class
C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N1 points
of class C1 and N2 points of class C2, so that the mean vectors of the two classes are
given by

m1 =
1

N1

∑

n∈ C1

xn, m2 =
1

N2

∑

n∈ C2

xn. (4.21)

The simplest measure of the separation of the classes, when projected onto w, is the
separation of the projected class means. This suggests that we might choose w so as
to maximize

m2 − m1 = wT(m2 − m1) (4.22)

where
mk = wTmk (4.23)

w S�1
W (m1 �m2)
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Note that in (4.57) we have simply rewritten the posterior probabilities in an
equivalent form, and so the appearance of the logistic sigmoid may seem rather vac-
uous. However, it will have significance provided a(x) takes a simple functional
form. We shall shortly consider situations in which a(x) is a linear function of x, in
which case the posterior probability is governed by a generalized linear model.

For the case of K > 2 classes, we have

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(4.62)

which is known as the normalized exponential and can be regarded as a multiclass
generalization of the logistic sigmoid. Here the quantities ak are defined by

ak = ln p(x|Ck)p(Ck). (4.63)

The normalized exponential is also known as the softmax function, as it represents
a smoothed version of the ‘max’ function because, if ak ≫ aj for all j ̸= k, then
p(Ck|x) ≃ 1, and p(Cj |x) ≃ 0.

We now investigate the consequences of choosing specific forms for the class-
conditional densities, looking first at continuous input variables x and then dis-
cussing briefly the case of discrete inputs.

4.2.1 Continuous inputs
Let us assume that the class-conditional densities are Gaussian and then explore

the resulting form for the posterior probabilities. To start with, we shall assume that
all classes share the same covariance matrix. Thus the density for class Ck is given
by

p(x|Ck) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µk)TΣ−1(x − µk)

}
. (4.64)

Consider first the case of two classes. From (4.57) and (4.58), we have

p(C1|x) = σ(wTx + w0) (4.65)

where we have defined

w = Σ−1(µ1 − µ2) (4.66)

w0 = −1
2
µT

1 Σ−1µ1 +
1
2
µT

2 Σ−1µ2 + ln
p(C1)
p(C2)

. (4.67)

We see that the quadratic terms in x from the exponents of the Gaussian densities
have cancelled (due to the assumption of common covariance matrices) leading to
a linear function of x in the argument of the logistic sigmoid. This result is illus-
trated for the case of a two-dimensional input space x in Figure 4.10. The resulting
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the log likelihood function that depend on π are

N∑

n=1

{tn lnπ + (1 − tn) ln(1 − π)} . (4.72)

Setting the derivative with respect to π equal to zero and rearranging, we obtain

π =
1
N

N∑

n=1

tn =
N1

N
=

N1

N1 + N2
(4.73)

where N1 denotes the total number of data points in class C1, and N2 denotes the total
number of data points in class C2. Thus the maximum likelihood estimate for π is
simply the fraction of points in class C1 as expected. This result is easily generalized
to the multiclass case where again the maximum likelihood estimate of the prior
probability associated with class Ck is given by the fraction of the training set points
assigned to that class.Exercise 4.9

Now consider the maximization with respect to µ1. Again we can pick out of
the log likelihood function those terms that depend on µ1 giving

N∑

n=1

tn lnN (xn|µ1,Σ) = −1
2

N∑

n=1

tn(xn − µ1)
TΣ−1(xn − µ1) + const. (4.74)

Setting the derivative with respect to µ1 to zero and rearranging, we obtain

µ1 =
1

N1

N∑

n=1

tnxn (4.75)

which is simply the mean of all the input vectors xn assigned to class C1. By a
similar argument, the corresponding result for µ2 is given by

µ2 =
1

N2

N∑

n=1

(1 − tn)xn (4.76)

which again is the mean of all the input vectors xn assigned to class C2.
Finally, consider the maximum likelihood solution for the shared covariance

matrix Σ. Picking out the terms in the log likelihood function that depend on Σ, we
have

−1
2

N∑

n=1

tn ln |Σ|− 1
2

N∑

n=1

tn(xn − µ1)
TΣ−1(xn − µ1)

−1
2

N∑

n=1

(1 − tn) ln |Σ|− 1
2

N∑

n=1

(1 − tn)(xn − µ2)
TΣ−1(xn − µ2)

= −N

2
ln |Σ|− N

2
Tr

{
Σ−1S

}
(4.77)
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where we have defined

S =
N1

N
S1 +

N2

N
S2 (4.78)

S1 =
1

N1

∑

n∈C1

(xn − µ1)(xn − µ1)
T (4.79)

S2 =
1

N2

∑

n∈C2

(xn − µ2)(xn − µ2)
T. (4.80)

Using the standard result for the maximum likelihood solution for a Gaussian distri-
bution, we see that Σ = S, which represents a weighted average of the covariance
matrices associated with each of the two classes separately.

This result is easily extended to the K class problem to obtain the corresponding
maximum likelihood solutions for the parameters in which each class-conditional
density is Gaussian with a shared covariance matrix. Note that the approach of fittingExercise 4.10
Gaussian distributions to the classes is not robust to outliers, because the maximum
likelihood estimation of a Gaussian is not robust.Section 2.3.7

4.2.3 Discrete features
Let us now consider the case of discrete feature values xi. For simplicity, we

begin by looking at binary feature values xi ∈ {0, 1} and discuss the extension to
more general discrete features shortly. If there are D inputs, then a general distribu-
tion would correspond to a table of 2D numbers for each class, containing 2D − 1
independent variables (due to the summation constraint). Because this grows expo-
nentially with the number of features, we might seek a more restricted representa-
tion. Here we will make the naive Bayes assumption in which the feature values areSection 8.2.2
treated as independent, conditioned on the class Ck. Thus we have class-conditional
distributions of the form

p(x|Ck) =
D∏

i=1

µxi
ki(1 − µki)1−xi (4.81)

which contain D independent parameters for each class. Substituting into (4.63) then
gives

ak(x) =
D∑

i=1

{xi ln µki + (1 − xi) ln(1 − µki)} + ln p(Ck) (4.82)

which again are linear functions of the input values xi. For the case of K = 2 classes,
we can alternatively consider the logistic sigmoid formulation given by (4.57). Anal-
ogous results are obtained for discrete variables each of which can take M > 2
states.Exercise 4.11

4.2.4 Exponential family
As we have seen, for both Gaussian distributed and discrete inputs, the posterior

class probabilities are given by generalized linear models with logistic sigmoid (K =

p(C1) =
N1

N
= 1� p(C2)
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in
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set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in

200 4. LINEAR MODELS FOR CLASSIFICATION

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by
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Note that in (4.57) we have simply rewritten the posterior probabilities in an
equivalent form, and so the appearance of the logistic sigmoid may seem rather vac-
uous. However, it will have significance provided a(x) takes a simple functional
form. We shall shortly consider situations in which a(x) is a linear function of x, in
which case the posterior probability is governed by a generalized linear model.

For the case of K > 2 classes, we have

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(4.62)

which is known as the normalized exponential and can be regarded as a multiclass
generalization of the logistic sigmoid. Here the quantities ak are defined by

ak = ln p(x|Ck)p(Ck). (4.63)

The normalized exponential is also known as the softmax function, as it represents
a smoothed version of the ‘max’ function because, if ak ≫ aj for all j ̸= k, then
p(Ck|x) ≃ 1, and p(Cj |x) ≃ 0.

We now investigate the consequences of choosing specific forms for the class-
conditional densities, looking first at continuous input variables x and then dis-
cussing briefly the case of discrete inputs.

4.2.1 Continuous inputs
Let us assume that the class-conditional densities are Gaussian and then explore

the resulting form for the posterior probabilities. To start with, we shall assume that
all classes share the same covariance matrix. Thus the density for class Ck is given
by

p(x|Ck) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µk)TΣ−1(x − µk)

}
. (4.64)

Consider first the case of two classes. From (4.57) and (4.58), we have

p(C1|x) = σ(wTx + w0) (4.65)

where we have defined

w = Σ−1(µ1 − µ2) (4.66)

w0 = −1
2
µT

1 Σ−1µ1 +
1
2
µT

2 Σ−1µ2 + ln
p(C1)
p(C2)

. (4.67)

We see that the quadratic terms in x from the exponents of the Gaussian densities
have cancelled (due to the assumption of common covariance matrices) leading to
a linear function of x in the argument of the logistic sigmoid. This result is illus-
trated for the case of a two-dimensional input space x in Figure 4.10. The resulting

w w � ⌘
X

n

(yn � tn)�n
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

boundary. In Section 7.1.2, we shall consider several alternative error functions for
classification and we shall see that they do not suffer from this difficulty.

However, problems with least squares can be more severe than simply lack of
robustness, as illustrated in Figure 4.5. This shows a synthetic data set drawn from
three classes in a two-dimensional input space (x1, x2), having the property that lin-
ear decision boundaries can give excellent separation between the classes. Indeed,
the technique of logistic regression, described later in this chapter, gives a satisfac-
tory solution as seen in the right-hand plot. However, the least-squares solution gives
poor results, with only a small region of the input space assigned to the green class.

The failure of least squares should not surprise us when we recall that it cor-
responds to maximum likelihood under the assumption of a Gaussian conditional
distribution, whereas binary target vectors clearly have a distribution that is far from
Gaussian. By adopting more appropriate probabilistic models, we shall obtain clas-
sification techniques with much better properties than least squares. For the moment,
however, we continue to explore alternative nonprobabilistic methods for setting the
parameters in the linear classification models.

4.1.4 Fisher’s linear discriminant
One way to view a linear classification model is in terms of dimensionality

reduction. Consider first the case of two classes, and suppose we take the D-
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