
Apprentissage automatique
Méthodes à noyaux - motivation

Sujets:

HUGO LAROCHELLE

MODÉLISATION NON-LINÉAIRE

• On a vu plusieurs algorithmes qui produisent des modèles
linéaires (régression ou classification)

• Malheureusement, pas tous les problèmes peuvent être
résolus avec un modèle linéaire

• Par contre, on peut obtenir des modèles non-linéaires à
l’aide de fonctions de base non-linéaires

2

prédicteur non-linéaire

Sujets:

HUGO LAROCHELLE

FONCTION DE BASE

• Exemple : fonctions de bases polynomiales (1D)

• On retrouve alors la régression polynomiale

3

fonctions de base polynomiales

�j(x) = x

j

1.1. Example: Polynomial Curve Fitting 7

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w⋆)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.

RAPPEL

Sujets:

HUGO LAROCHELLE

APPROCHE PROBABILISTE DISCRIMINANTE

4

fonctions de bases
204 4. LINEAR MODELS FOR CLASSIFICATION

x1

x2

−1 0 1

−1

0

1

φ1

φ2

0 0.5 1

0

0.5

1

Figure 4.12 Illustration of the role of nonlinear basis functions in linear classification models. The left plot
shows the original input space (x1, x2) together with data points from two classes labelled red and blue. Two
‘Gaussian’ basis functions φ1(x) and φ2(x) are defined in this space with centres shown by the green crosses
and with contours shown by the green circles. The right-hand plot shows the corresponding feature space
(φ1, φ2) together with the linear decision boundary obtained given by a logistic regression model of the form
discussed in Section 4.3.2. This corresponds to a nonlinear decision boundary in the original input space,
shown by the black curve in the left-hand plot.

Bayes’ theorem, represents an example of generative modelling, because we could
take such a model and generate synthetic data by drawing values of x from the
marginal distribution p(x). In the direct approach, we are maximizing a likelihood
function defined through the conditional distribution p(Ck|x), which represents a
form of discriminative training. One advantage of the discriminative approach is
that there will typically be fewer adaptive parameters to be determined, as we shall
see shortly. It may also lead to improved predictive performance, particularly when
the class-conditional density assumptions give a poor approximation to the true dis-
tributions.

4.3.1 Fixed basis functions
So far in this chapter, we have considered classification models that work di-

rectly with the original input vector x. However, all of the algorithms are equally
applicable if we first make a fixed nonlinear transformation of the inputs using a
vector of basis functions φ(x). The resulting decision boundaries will be linear in
the feature space φ, and these correspond to nonlinear decision boundaries in the
original x space, as illustrated in Figure 4.12. Classes that are linearly separable
in the feature space φ(x) need not be linearly separable in the original observation
space x. Note that as in our discussion of linear models for regression, one of the

x

�espace représenté par espace représenté par

2 fonctions de
bases gaussiennes

3.1. Linear Basis Function Models 139

or feature extraction, to the original data variables. If the original variables com-
prise the vector x, then the features can be expressed in terms of the basis functions
{φj(x)}.

By using nonlinear basis functions, we allow the function y(x,w) to be a non-
linear function of the input vector x. Functions of the form (3.2) are called linear
models, however, because this function is linear in w. It is this linearity in the pa-
rameters that will greatly simplify the analysis of this class of models. However, it
also leads to some significant limitations, as we discuss in Section 3.6.

The example of polynomial regression considered in Chapter 1 is a particular
example of this model in which there is a single input variable x, and the basis func-
tions take the form of powers of x so that φj(x) = xj . One limitation of polynomial
basis functions is that they are global functions of the input variable, so that changes
in one region of input space affect all other regions. This can be resolved by dividing
the input space up into regions and fit a different polynomial in each region, leading
to spline functions (Hastie et al., 2001).

There are many other possible choices for the basis functions, for example

φj(x) = exp
{
−(x − µj)2

2s2

}
(3.4)

where the µj govern the locations of the basis functions in input space, and the pa-
rameter s governs their spatial scale. These are usually referred to as ‘Gaussian’
basis functions, although it should be noted that they are not required to have a prob-
abilistic interpretation, and in particular the normalization coefficient is unimportant
because these basis functions will be multiplied by adaptive parameters wj .

Another possibility is the sigmoidal basis function of the form

φj(x) = σ
(x − µj

s

)
(3.5)

where σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
. (3.6)

Equivalently, we can use the ‘tanh’ function because this is related to the logistic
sigmoid by tanh(a) = 2σ(a) − 1, and so a general linear combination of logistic
sigmoid functions is equivalent to a general linear combination of ‘tanh’ functions.
These various choices of basis function are illustrated in Figure 3.1.

Yet another possible choice of basis function is the Fourier basis, which leads to
an expansion in sinusoidal functions. Each basis function represents a specific fre-
quency and has infinite spatial extent. By contrast, basis functions that are localized
to finite regions of input space necessarily comprise a spectrum of different spatial
frequencies. In many signal processing applications, it is of interest to consider ba-
sis functions that are localized in both space and frequency, leading to a class of
functions known as wavelets. These are also defined to be mutually orthogonal, to
simplify their application. Wavelets are most applicable when the input values live

�j

µ1

µ2

RAPPEL

Sujets:

HUGO LAROCHELLE

MÉTHODES À NOYAUX

• On va maintenant voir une façon très simple d’introduire
des fonctions de bases non-linéaires dans un modèle
linéaire

‣ les fonctions de bases vont être définies implicitement (pas besoin
de représenter explicitement en mémoire !)

‣ on aura seulement à calculer une comparaison entre les
entrées et

• La fonction est appelée un noyau
‣ les algorithmes utilisant un noyau sont appelées

méthodes à noyaux

5

noyau, méthodes à noyaux

�(x)

k(x,x0)
x

x

0

k(x,x0)

Apprentissage automatique
Méthodes à noyaux - représentation duale (régression)

Sujets:

HUGO LAROCHELLE

RÉGRESSION

• Revenons au problème de la régression (régularisée) :

• Si on fixe le gradient par rapport à w à 0, on observe que

7

régression

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

Sujets:

HUGO LAROCHELLE

• Donc, la solution w est simplement une somme pondérée
des entrées xn dans l’ensemble d’entraînement

où chaque an est la contribution de à la solution

• Idée : plutôt qu’optimiser par rapport à w, optimisons

par rapport à a

RÉGRESSION

8

régression

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

�(xn)

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

Sujets:

HUGO LAROCHELLE

• Si on remplace w par , on peut démontrer qu’on

obtient

• C’est la représentation duale de J(w)

REPRÉSENTATION DUALE

9

représentation duale

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

Sujets:

HUGO LAROCHELLE

• Si on remplace w par , on peut démontrer qu’on

obtient

• On va aussi noter

• La matrice de Gram K contient tous les

de l’ensemble d’entraînement

REPRÉSENTATION DUALE

10

représentation duale, matrice de Gram

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

Sujets:

HUGO LAROCHELLE

• Si on remplace w par , on peut démontrer qu’on

obtient

• En fixant à 0 les gradients par rapport à a, on obtient

REPRÉSENTATION DUALE

11

représentation duale

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

Sujets:

HUGO LAROCHELLE

• Pour faire une prédiction :

où

REPRÉSENTATION DUALE

12

représentation duale

294 6. KERNEL METHODS

If we substitute this back into the linear regression model, we obtain the following
prediction for a new input x

y(x) = wTφ(x) = aTΦφ(x) = k(x)T (K + λIN)−1 t (6.9)

where we have defined the vector k(x) with elements kn(x) = k(xn,x). Thus we
see that the dual formulation allows the solution to the least-squares problem to be
expressed entirely in terms of the kernel function k(x,x′). This is known as a dual
formulation because, by noting that the solution for a can be expressed as a linear
combination of the elements of φ(x), we recover the original formulation in terms of
the parameter vector w. Note that the prediction at x is given by a linear combinationExercise 6.1
of the target values from the training set. In fact, we have already obtained this result,
using a slightly different notation, in Section 3.3.3.

In the dual formulation, we determine the parameter vector a by inverting an
N ×N matrix, whereas in the original parameter space formulation we had to invert
an M × M matrix in order to determine w. Because N is typically much larger
than M , the dual formulation does not seem to be particularly useful. However, the
advantage of the dual formulation, as we shall see, is that it is expressed entirely in
terms of the kernel function k(x,x′). We can therefore work directly in terms of
kernels and avoid the explicit introduction of the feature vector φ(x), which allows
us implicitly to use feature spaces of high, even infinite, dimensionality.

The existence of a dual representation based on the Gram matrix is a property of
many linear models, including the perceptron. In Section 6.4, we will develop a dual-Exercise 6.2
ity between probabilistic linear models for regression and the technique of Gaussian
processes. Duality will also play an important role when we discuss support vector
machines in Chapter 7.

6.2. Constructing Kernels

In order to exploit kernel substitution, we need to be able to construct valid kernel
functions. One approach is to choose a feature space mapping φ(x) and then use
this to find the corresponding kernel, as is illustrated in Figure 6.1. Here the kernel
function is defined for a one-dimensional input space by

k(x, x′) = φ(x)Tφ(x′) =
M∑

i=1

φi(x)φi(x′) (6.10)

where φi(x) are the basis functions.
An alternative approach is to construct kernel functions directly. In this case,

we must ensure that the function we choose is a valid kernel, in other words that it
corresponds to a scalar product in some (perhaps infinite dimensional) feature space.
As a simple example, consider a kernel function given by

k(x, z) =
(
xTz

)2
. (6.11)

k(x) = (k(x1,x), . . . , k(xN ,x))T

Sujets:

HUGO LAROCHELLE

• Algorithme de régression à noyau

‣ entraînement :

‣ prédiction :

• Pour exécuter cet algorithme, on a seulement besoin de
calculer les produits scalaires du noyau

• Par contre, on doit toujours avoir accès aux entrées de
l’ensemble d’entraînement

RÉGRESSION À NOYAU

13

régression à noyau

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)
y(x) = k(x)Ta

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

Apprentissage automatique
Méthodes à noyaux - astuce du noyau

Sujets:

HUGO LAROCHELLE

• Algorithme de régression à noyau

‣ entraînement :

‣ prédiction :

• Pour exécuter cet algorithme, on a seulement besoin de
calculer les produits scalaires du noyau

RÉGRESSION À NOYAU

15

régression à noyau

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)
y(x) = k(x)Ta

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

Sujets:

HUGO LAROCHELLE

• L’astuce du noyau vise à exploiter cet observation

‣ peut-on définir des noyaux tels que calculer k(xn,xm) est plus
efficace que de calculer et et ensuite
faire ?

ASTUCE DU NOYAU

16

astuce du noyau

�(xn) �(xm)
�(xn)

T�(xm)

Sujets:

HUGO LAROCHELLE

• La réponse est oui !

• Exemple (D=2):

ASTUCE DU NOYAU

17

astuce du noyau

6.2. Constructing Kernels 295

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
0

0.25

0.5

0.75

1

−1 0 1
0

0.25

0.5

0.75

1

−1 0 1

0

0.02

0.04

−1 0 1

0

0.02

0.04

−1 0 1

0

0.02

0.04

Figure 6.1 Illustration of the construction of kernel functions starting from a corresponding set of basis func-
tions. In each column the lower plot shows the kernel function k(x, x′) defined by (6.10) plotted as a function of
x for x′ = 0, while the upper plot shows the corresponding basis functions given by polynomials (left column),
‘Gaussians’ (centre column), and logistic sigmoids (right column).

If we take the particular case of a two-dimensional input space x = (x1, x2) we
can expand out the terms and thereby identify the corresponding nonlinear feature
mapping

k(x, z) =
(
xTz

)2 = (x1z1 + x2z2)2

= x2
1z

2
1 + 2x1z1x2z2 + x2

2z
2
2

= (x2
1,
√

2x1x2, x
2
2)(z

2
1 ,
√

2z1z2, z
2
2)

T

= φ(x)Tφ(z). (6.12)

We see that the feature mapping takes the form φ(x) = (x2
1,
√

2x1x2, x2
2)T and

therefore comprises all possible second order terms, with a specific weighting be-
tween them.

More generally, however, we need a simple way to test whether a function con-
stitutes a valid kernel without having to construct the function φ(x) explicitly. A
necessary and sufficient condition for a function k(x,x′) to be a valid kernel (Shawe-
Taylor and Cristianini, 2004) is that the Gram matrix K, whose elements are given by
k(xn,xm), should be positive semidefinite for all possible choices of the set {xn}.
Note that a positive semidefinite matrix is not the same thing as a matrix whose
elements are nonnegative.Appendix C

One powerful technique for constructing new kernels is to build them out of
simpler kernels as building blocks. This can be done using the following properties:

3 multiplications et 1 addition

2 fois 4 multiplications (construire et)
suivi de 3 multiplications et 2 additions (produit scalaire)

�(x) �(z)

Sujets:

HUGO LAROCHELLE

• Une forme générale est le noyau polynomial

où c est une constante >0

• On peut montrer que le implicite contient tous les
produits possibles entre au plus M éléments de x

NOYAU POLYNOMIAL

18

noyau polynomial

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

�(x) = (c0,

�(x)

Sujets:

HUGO LAROCHELLE

• Une forme générale est le noyau polynomial

où c est une constante >0

• On peut montrer que le implicite contient tous les
produits possibles entre au plus M éléments de x

NOYAU POLYNOMIAL

18

noyau polynomial

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

�(x) = (c0, c1x1, . . . , cDxD,

�(x)

Sujets:

HUGO LAROCHELLE

• Une forme générale est le noyau polynomial

où c est une constante >0

• On peut montrer que le implicite contient tous les
produits possibles entre au plus M éléments de x

NOYAU POLYNOMIAL

18

noyau polynomial

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

�(x) = (c0, c1x1, . . . , cDxD,

c11x
2
1, c12x1x2, . . . ,

�(x)

Sujets:

HUGO LAROCHELLE

• Une forme générale est le noyau polynomial

où c est une constante >0

• On peut montrer que le implicite contient tous les
produits possibles entre au plus M éléments de x

NOYAU POLYNOMIAL

18

noyau polynomial

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

�(x) = (c0, c1x1, . . . , cDxD,

c11x
2
1, c12x1x2, . . . ,

c111x
3
1, c112x

2
1x2, c123x1x2x3, . . .)

�(x)

Sujets:

HUGO LAROCHELLE

MALÉDICTION DE LA DIMENSIONNALITÉ

• Notre modèle de régression aura plus de paramètres

‣ pour M = 3 ,on a maintenant 1 + D + D
2 + D

3 paramètres

• De façon générale, augmente selon O(D
M) !

‣ pour D=100, M=3, on a déjà plus d’un million de paramètres

19

nombre de paramètres

36 1. INTRODUCTION

extend this approach to deal with input spaces having several variables. If we have
D input variables, then a general polynomial with coefficients up to order 3 would
take the form

y(x,w) = w0 +
D∑

i=1

wixi +
D∑

i=1

D∑

j=1

wijxixj +
D∑

i=1

D∑

j=1

D∑

k=1

wijkxixjxk. (1.74)

As D increases, so the number of independent coefficients (not all of the coefficients
are independent due to interchange symmetries amongst the x variables) grows pro-
portionally to D3. In practice, to capture complex dependencies in the data, we may
need to use a higher-order polynomial. For a polynomial of order M , the growth in
the number of coefficients is like DM . Although this is now a power law growth,Exercise 1.16
rather than an exponential growth, it still points to the method becoming rapidly
unwieldy and of limited practical utility.

Our geometrical intuitions, formed through a life spent in a space of three di-
mensions, can fail badly when we consider spaces of higher dimensionality. As a
simple example, consider a sphere of radius r = 1 in a space of D dimensions, and
ask what is the fraction of the volume of the sphere that lies between radius r = 1−ϵ
and r = 1. We can evaluate this fraction by noting that the volume of a sphere of
radius r in D dimensions must scale as rD, and so we write

VD(r) = KDrD (1.75)

where the constant KD depends only on D. Thus the required fraction is given byExercise 1.18

VD(1) − VD(1 − ϵ)
VD(1)

= 1 − (1 − ϵ)D (1.76)

which is plotted as a function of ϵ for various values of D in Figure 1.22. We see
that, for large D, this fraction tends to 1 even for small values of ϵ. Thus, in spaces
of high dimensionality, most of the volume of a sphere is concentrated in a thin shell
near the surface!

As a further example, of direct relevance to pattern recognition, consider the
behaviour of a Gaussian distribution in a high-dimensional space. If we transform
from Cartesian to polar coordinates, and then integrate out the directional variables,
we obtain an expression for the density p(r) as a function of radius r from the origin.Exercise 1.20
Thus p(r)δr is the probability mass inside a thin shell of thickness δr located at
radius r. This distribution is plotted, for various values of D, in Figure 1.23, and we
see that for large D the probability mass of the Gaussian is concentrated in a thin
shell.

The severe difficulty that can arise in spaces of many dimensions is sometimes
called the curse of dimensionality (Bellman, 1961). In this book, we shall make ex-
tensive use of illustrative examples involving input spaces of one or two dimensions,
because this makes it particularly easy to illustrate the techniques graphically. The
reader should be warned, however, that not all intuitions developed in spaces of low
dimensionality will generalize to spaces of many dimensions.

RAPPEL

Sujets:

HUGO LAROCHELLE

MALÉDICTION DE LA DIMENSIONNALITÉ

• Notre modèle de régression aura plus de paramètres

‣ pour M = 3 ,on a maintenant 1 + D + D
2 + D

3 paramètres

• De façon générale, augmente selon O(D
M) !

‣ pour D=100, M=3, on a déjà plus d’un million de paramètres

19

nombre de paramètres

36 1. INTRODUCTION

extend this approach to deal with input spaces having several variables. If we have
D input variables, then a general polynomial with coefficients up to order 3 would
take the form

y(x,w) = w0 +
D∑

i=1

wixi +
D∑

i=1

D∑

j=1

wijxixj +
D∑

i=1

D∑

j=1

D∑

k=1

wijkxixjxk. (1.74)

As D increases, so the number of independent coefficients (not all of the coefficients
are independent due to interchange symmetries amongst the x variables) grows pro-
portionally to D3. In practice, to capture complex dependencies in the data, we may
need to use a higher-order polynomial. For a polynomial of order M , the growth in
the number of coefficients is like DM . Although this is now a power law growth,Exercise 1.16
rather than an exponential growth, it still points to the method becoming rapidly
unwieldy and of limited practical utility.

Our geometrical intuitions, formed through a life spent in a space of three di-
mensions, can fail badly when we consider spaces of higher dimensionality. As a
simple example, consider a sphere of radius r = 1 in a space of D dimensions, and
ask what is the fraction of the volume of the sphere that lies between radius r = 1−ϵ
and r = 1. We can evaluate this fraction by noting that the volume of a sphere of
radius r in D dimensions must scale as rD, and so we write

VD(r) = KDrD (1.75)

where the constant KD depends only on D. Thus the required fraction is given byExercise 1.18

VD(1) − VD(1 − ϵ)
VD(1)

= 1 − (1 − ϵ)D (1.76)

which is plotted as a function of ϵ for various values of D in Figure 1.22. We see
that, for large D, this fraction tends to 1 even for small values of ϵ. Thus, in spaces
of high dimensionality, most of the volume of a sphere is concentrated in a thin shell
near the surface!

As a further example, of direct relevance to pattern recognition, consider the
behaviour of a Gaussian distribution in a high-dimensional space. If we transform
from Cartesian to polar coordinates, and then integrate out the directional variables,
we obtain an expression for the density p(r) as a function of radius r from the origin.Exercise 1.20
Thus p(r)δr is the probability mass inside a thin shell of thickness δr located at
radius r. This distribution is plotted, for various values of D, in Figure 1.23, and we
see that for large D the probability mass of the Gaussian is concentrated in a thin
shell.

The severe difficulty that can arise in spaces of many dimensions is sometimes
called the curse of dimensionality (Bellman, 1961). In this book, we shall make ex-
tensive use of illustrative examples involving input spaces of one or two dimensions,
because this makes it particularly easy to illustrate the techniques graphically. The
reader should be warned, however, that not all intuitions developed in spaces of low
dimensionality will generalize to spaces of many dimensions.

RAPPEL

Sujets:

HUGO LAROCHELLE

MALÉDICTION DE LA DIMENSIONNALITÉ

• Notre modèle de régression aura plus de paramètres

‣ pour M = 3 ,on a maintenant 1 + D + D
2 + D

3 paramètres

• De façon générale, augmente selon O(D
M) !

‣ pour D=100, M=3, on a déjà plus d’un million de paramètres

19

nombre de paramètres

36 1. INTRODUCTION

extend this approach to deal with input spaces having several variables. If we have
D input variables, then a general polynomial with coefficients up to order 3 would
take the form

y(x,w) = w0 +
D∑

i=1

wixi +
D∑

i=1

D∑

j=1

wijxixj +
D∑

i=1

D∑

j=1

D∑

k=1

wijkxixjxk. (1.74)

As D increases, so the number of independent coefficients (not all of the coefficients
are independent due to interchange symmetries amongst the x variables) grows pro-
portionally to D3. In practice, to capture complex dependencies in the data, we may
need to use a higher-order polynomial. For a polynomial of order M , the growth in
the number of coefficients is like DM . Although this is now a power law growth,Exercise 1.16
rather than an exponential growth, it still points to the method becoming rapidly
unwieldy and of limited practical utility.

Our geometrical intuitions, formed through a life spent in a space of three di-
mensions, can fail badly when we consider spaces of higher dimensionality. As a
simple example, consider a sphere of radius r = 1 in a space of D dimensions, and
ask what is the fraction of the volume of the sphere that lies between radius r = 1−ϵ
and r = 1. We can evaluate this fraction by noting that the volume of a sphere of
radius r in D dimensions must scale as rD, and so we write

VD(r) = KDrD (1.75)

where the constant KD depends only on D. Thus the required fraction is given byExercise 1.18

VD(1) − VD(1 − ϵ)
VD(1)

= 1 − (1 − ϵ)D (1.76)

which is plotted as a function of ϵ for various values of D in Figure 1.22. We see
that, for large D, this fraction tends to 1 even for small values of ϵ. Thus, in spaces
of high dimensionality, most of the volume of a sphere is concentrated in a thin shell
near the surface!

As a further example, of direct relevance to pattern recognition, consider the
behaviour of a Gaussian distribution in a high-dimensional space. If we transform
from Cartesian to polar coordinates, and then integrate out the directional variables,
we obtain an expression for the density p(r) as a function of radius r from the origin.Exercise 1.20
Thus p(r)δr is the probability mass inside a thin shell of thickness δr located at
radius r. This distribution is plotted, for various values of D, in Figure 1.23, and we
see that for large D the probability mass of the Gaussian is concentrated in a thin
shell.

The severe difficulty that can arise in spaces of many dimensions is sometimes
called the curse of dimensionality (Bellman, 1961). In this book, we shall make ex-
tensive use of illustrative examples involving input spaces of one or two dimensions,
because this makes it particularly easy to illustrate the techniques graphically. The
reader should be warned, however, that not all intuitions developed in spaces of low
dimensionality will generalize to spaces of many dimensions.

RAPPEL

On n’a plus à apprendre un
paramètre w explicitement !

Sujets:

HUGO LAROCHELLE

MALÉDICTION DE LA DIMENSIONNALITÉ

• La difficulté à bien généraliser peut donc potentiellement
augmenter exponentiellement avec la dimensionnalité
D des entrées

• Cette observation est appelée la malédiction de la
dimensionnalité

• Nécessite le design de modèles / algorithmes appropriés
pour chaque problème

‣ on cherche des modèles / algorithmes qui vont bien exploiter les
données à notre disposition

20

malédiction de la dimensionnalité
RAPPEL

Sujets:

HUGO LAROCHELLE

MALÉDICTION DE LA DIMENSIONNALITÉ

• La difficulté à bien généraliser peut donc potentiellement
augmenter exponentiellement avec la dimensionnalité
D des entrées

• Cette observation est appelée la malédiction de la
dimensionnalité

• Nécessite le design de modèles / algorithmes appropriés
pour chaque problème

‣ on cherche des modèles / algorithmes qui vont bien exploiter les
données à notre disposition

20

malédiction de la dimensionnalité
RAPPEL

On risque quand même d’être victime de sur-apprentissage,
lorsque la dimensionnalité (implicite) de augmente�(x)

Apprentissage automatique
Méthodes à noyaux - construction de noyaux

Sujets:

HUGO LAROCHELLE

• L’astuce du noyau vise à exploiter cet observation

‣ peut-on définir des noyaux tels que calculer k(xn,xm) est plus
efficace que de calculer et et ensuite
faire ?

ASTUCE DU NOYAU

22

astuce du noyau

�(xn) �(xm)
�(xn)

T�(xm)

Sujets:

HUGO LAROCHELLE

• Une forme générale est le noyau polynomial

où c est une constante >0

• On peut montrer que le implicite contient tous les
produits possibles entre au plus M éléments de x

NOYAU POLYNOMIAL

23

noyau polynomial

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

�(x) = (c0, c1x1, . . . , cDxD,

c11x
2
1, c12x1x2, . . . ,

c111x
3
1, c112x

2
1x2, c123x1x2x3, . . .)

�(x)

Sujets:

HUGO LAROCHELLE

• Règles pour construire de nouveaux noyaux valides

où c>0, f(x) est une fonction, q(a) est un polynôme avec coefficients
positifs, A est une matrice définie positive et x=(xa,xb).
Les noyaux k1, k2, k3, ka et kb doivent être valides.

CONSTRUCTION DE NOYAUX

24

construction de noyau

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

Sujets:

HUGO LAROCHELLE

• Exemple : où c>0

CONSTRUCTION DE NOYAUX

25

construction de noyau

ck1(x,x
0)

ck1(x,x
0) = c�1(x)T�1(x0)

=
�p

c�1(x)
�T �p

c�1(x0)
�

= �(x)T�(x0)

Sujets:

HUGO LAROCHELLE

• Un noyau souvent utilisé est le noyau gaussien :

• Est valide puisque :

NOYAU GAUSSIEN

26

noyau gaussien

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

6.2. Constructing Kernels 297

omitted. We can see that this is a valid kernel by expanding the square

∥x − x′∥2 = xTx + (x′)Tx′ − 2xTx′ (6.24)

to give

k(x,x′) = exp
(
−xTx/2σ2

)
exp

(
xTx′/σ2

)
exp

(
−(x′)Tx′/2σ2

)
(6.25)

and then making use of (6.14) and (6.16), together with the validity of the linear
kernel k(x,x′) = xTx′. Note that the feature vector that corresponds to the Gaussian
kernel has infinite dimensionality.Exercise 6.11

The Gaussian kernel is not restricted to the use of Euclidean distance. If we use
kernel substitution in (6.24) to replace xTx′ with a nonlinear kernel κ(x,x′), we
obtain

k(x,x′) = exp
{
− 1

2σ2
(κ(x,x) + κ(x′,x′) − 2κ(x,x′))

}
. (6.26)

An important contribution to arise from the kernel viewpoint has been the exten-
sion to inputs that are symbolic, rather than simply vectors of real numbers. Kernel
functions can be defined over objects as diverse as graphs, sets, strings, and text doc-
uments. Consider, for instance, a fixed set and define a nonvectorial space consisting
of all possible subsets of this set. If A1 and A2 are two such subsets then one simple
choice of kernel would be

k(A1, A2) = 2|A1∩A2| (6.27)

where A1 ∩ A2 denotes the intersection of sets A1 and A2, and |A| denotes the
number of subsets in A. This is a valid kernel function because it can be shown to
correspond to an inner product in a feature space.Exercise 6.12

One powerful approach to the construction of kernels starts from a probabilistic
generative model (Haussler, 1999), which allows us to apply generative models in a
discriminative setting. Generative models can deal naturally with missing data and
in the case of hidden Markov models can handle sequences of varying length. By
contrast, discriminative models generally give better performance on discriminative
tasks than generative models. It is therefore of some interest to combine these two
approaches (Lasserre et al., 2006). One way to combine them is to use a generative
model to define a kernel, and then use this kernel in a discriminative approach.

Given a generative model p(x) we can define a kernel by

k(x,x′) = p(x)p(x′). (6.28)

This is clearly a valid kernel function because we can interpret it as an inner product
in the one-dimensional feature space defined by the mapping p(x). It says that two
inputs x and x′ are similar if they both have high probabilities. We can use (6.13) and
(6.17) to extend this class of kernels by considering sums over products of different
probability distributions, with positive weighting coefficients p(i), of the form

k(x,x′) =
∑

i

p(x|i)p(x′|i)p(i). (6.29)

6.2. Constructing Kernels 297

omitted. We can see that this is a valid kernel by expanding the square

∥x − x′∥2 = xTx + (x′)Tx′ − 2xTx′ (6.24)

to give

k(x,x′) = exp
(
−xTx/2σ2

)
exp

(
xTx′/σ2

)
exp

(
−(x′)Tx′/2σ2

)
(6.25)

and then making use of (6.14) and (6.16), together with the validity of the linear
kernel k(x,x′) = xTx′. Note that the feature vector that corresponds to the Gaussian
kernel has infinite dimensionality.Exercise 6.11

The Gaussian kernel is not restricted to the use of Euclidean distance. If we use
kernel substitution in (6.24) to replace xTx′ with a nonlinear kernel κ(x,x′), we
obtain

k(x,x′) = exp
{
− 1

2σ2
(κ(x,x) + κ(x′,x′) − 2κ(x,x′))

}
. (6.26)

An important contribution to arise from the kernel viewpoint has been the exten-
sion to inputs that are symbolic, rather than simply vectors of real numbers. Kernel
functions can be defined over objects as diverse as graphs, sets, strings, and text doc-
uments. Consider, for instance, a fixed set and define a nonvectorial space consisting
of all possible subsets of this set. If A1 and A2 are two such subsets then one simple
choice of kernel would be

k(A1, A2) = 2|A1∩A2| (6.27)

where A1 ∩ A2 denotes the intersection of sets A1 and A2, and |A| denotes the
number of subsets in A. This is a valid kernel function because it can be shown to
correspond to an inner product in a feature space.Exercise 6.12

One powerful approach to the construction of kernels starts from a probabilistic
generative model (Haussler, 1999), which allows us to apply generative models in a
discriminative setting. Generative models can deal naturally with missing data and
in the case of hidden Markov models can handle sequences of varying length. By
contrast, discriminative models generally give better performance on discriminative
tasks than generative models. It is therefore of some interest to combine these two
approaches (Lasserre et al., 2006). One way to combine them is to use a generative
model to define a kernel, and then use this kernel in a discriminative approach.

Given a generative model p(x) we can define a kernel by

k(x,x′) = p(x)p(x′). (6.28)

This is clearly a valid kernel function because we can interpret it as an inner product
in the one-dimensional feature space defined by the mapping p(x). It says that two
inputs x and x′ are similar if they both have high probabilities. We can use (6.13) and
(6.17) to extend this class of kernels by considering sums over products of different
probability distributions, with positive weighting coefficients p(i), of the form

k(x,x′) =
∑

i

p(x|i)p(x′|i)p(i). (6.29)

Sujets:

HUGO LAROCHELLE

• Un noyau souvent utilisé est le noyau gaussien :

• Est valide puisque :

NOYAU GAUSSIEN

26

noyau gaussien

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

6.2. Constructing Kernels 297

omitted. We can see that this is a valid kernel by expanding the square

∥x − x′∥2 = xTx + (x′)Tx′ − 2xTx′ (6.24)

to give

k(x,x′) = exp
(
−xTx/2σ2

)
exp

(
xTx′/σ2

)
exp

(
−(x′)Tx′/2σ2

)
(6.25)

and then making use of (6.14) and (6.16), together with the validity of the linear
kernel k(x,x′) = xTx′. Note that the feature vector that corresponds to the Gaussian
kernel has infinite dimensionality.Exercise 6.11

The Gaussian kernel is not restricted to the use of Euclidean distance. If we use
kernel substitution in (6.24) to replace xTx′ with a nonlinear kernel κ(x,x′), we
obtain

k(x,x′) = exp
{
− 1

2σ2
(κ(x,x) + κ(x′,x′) − 2κ(x,x′))

}
. (6.26)

An important contribution to arise from the kernel viewpoint has been the exten-
sion to inputs that are symbolic, rather than simply vectors of real numbers. Kernel
functions can be defined over objects as diverse as graphs, sets, strings, and text doc-
uments. Consider, for instance, a fixed set and define a nonvectorial space consisting
of all possible subsets of this set. If A1 and A2 are two such subsets then one simple
choice of kernel would be

k(A1, A2) = 2|A1∩A2| (6.27)

where A1 ∩ A2 denotes the intersection of sets A1 and A2, and |A| denotes the
number of subsets in A. This is a valid kernel function because it can be shown to
correspond to an inner product in a feature space.Exercise 6.12

One powerful approach to the construction of kernels starts from a probabilistic
generative model (Haussler, 1999), which allows us to apply generative models in a
discriminative setting. Generative models can deal naturally with missing data and
in the case of hidden Markov models can handle sequences of varying length. By
contrast, discriminative models generally give better performance on discriminative
tasks than generative models. It is therefore of some interest to combine these two
approaches (Lasserre et al., 2006). One way to combine them is to use a generative
model to define a kernel, and then use this kernel in a discriminative approach.

Given a generative model p(x) we can define a kernel by

k(x,x′) = p(x)p(x′). (6.28)

This is clearly a valid kernel function because we can interpret it as an inner product
in the one-dimensional feature space defined by the mapping p(x). It says that two
inputs x and x′ are similar if they both have high probabilities. We can use (6.13) and
(6.17) to extend this class of kernels by considering sums over products of different
probability distributions, with positive weighting coefficients p(i), of the form

k(x,x′) =
∑

i

p(x|i)p(x′|i)p(i). (6.29)

6.2. Constructing Kernels 297

omitted. We can see that this is a valid kernel by expanding the square

∥x − x′∥2 = xTx + (x′)Tx′ − 2xTx′ (6.24)

to give

k(x,x′) = exp
(
−xTx/2σ2

)
exp

(
xTx′/σ2

)
exp

(
−(x′)Tx′/2σ2

)
(6.25)

and then making use of (6.14) and (6.16), together with the validity of the linear
kernel k(x,x′) = xTx′. Note that the feature vector that corresponds to the Gaussian
kernel has infinite dimensionality.Exercise 6.11

The Gaussian kernel is not restricted to the use of Euclidean distance. If we use
kernel substitution in (6.24) to replace xTx′ with a nonlinear kernel κ(x,x′), we
obtain

k(x,x′) = exp
{
− 1

2σ2
(κ(x,x) + κ(x′,x′) − 2κ(x,x′))

}
. (6.26)

An important contribution to arise from the kernel viewpoint has been the exten-
sion to inputs that are symbolic, rather than simply vectors of real numbers. Kernel
functions can be defined over objects as diverse as graphs, sets, strings, and text doc-
uments. Consider, for instance, a fixed set and define a nonvectorial space consisting
of all possible subsets of this set. If A1 and A2 are two such subsets then one simple
choice of kernel would be

k(A1, A2) = 2|A1∩A2| (6.27)

where A1 ∩ A2 denotes the intersection of sets A1 and A2, and |A| denotes the
number of subsets in A. This is a valid kernel function because it can be shown to
correspond to an inner product in a feature space.Exercise 6.12

One powerful approach to the construction of kernels starts from a probabilistic
generative model (Haussler, 1999), which allows us to apply generative models in a
discriminative setting. Generative models can deal naturally with missing data and
in the case of hidden Markov models can handle sequences of varying length. By
contrast, discriminative models generally give better performance on discriminative
tasks than generative models. It is therefore of some interest to combine these two
approaches (Lasserre et al., 2006). One way to combine them is to use a generative
model to define a kernel, and then use this kernel in a discriminative approach.

Given a generative model p(x) we can define a kernel by

k(x,x′) = p(x)p(x′). (6.28)

This is clearly a valid kernel function because we can interpret it as an inner product
in the one-dimensional feature space defined by the mapping p(x). It says that two
inputs x and x′ are similar if they both have high probabilities. We can use (6.13) and
(6.17) to extend this class of kernels by considering sums over products of different
probability distributions, with positive weighting coefficients p(i), of the form

k(x,x′) =
∑

i

p(x|i)p(x′|i)p(i). (6.29)

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

{

Sujets:

HUGO LAROCHELLE

• Un noyau souvent utilisé est le noyau gaussien :

• Est valide puisque :

NOYAU GAUSSIEN

26

noyau gaussien

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

6.2. Constructing Kernels 297

omitted. We can see that this is a valid kernel by expanding the square

∥x − x′∥2 = xTx + (x′)Tx′ − 2xTx′ (6.24)

to give

k(x,x′) = exp
(
−xTx/2σ2

)
exp

(
xTx′/σ2

)
exp

(
−(x′)Tx′/2σ2

)
(6.25)

and then making use of (6.14) and (6.16), together with the validity of the linear
kernel k(x,x′) = xTx′. Note that the feature vector that corresponds to the Gaussian
kernel has infinite dimensionality.Exercise 6.11

The Gaussian kernel is not restricted to the use of Euclidean distance. If we use
kernel substitution in (6.24) to replace xTx′ with a nonlinear kernel κ(x,x′), we
obtain

k(x,x′) = exp
{
− 1

2σ2
(κ(x,x) + κ(x′,x′) − 2κ(x,x′))

}
. (6.26)

An important contribution to arise from the kernel viewpoint has been the exten-
sion to inputs that are symbolic, rather than simply vectors of real numbers. Kernel
functions can be defined over objects as diverse as graphs, sets, strings, and text doc-
uments. Consider, for instance, a fixed set and define a nonvectorial space consisting
of all possible subsets of this set. If A1 and A2 are two such subsets then one simple
choice of kernel would be

k(A1, A2) = 2|A1∩A2| (6.27)

where A1 ∩ A2 denotes the intersection of sets A1 and A2, and |A| denotes the
number of subsets in A. This is a valid kernel function because it can be shown to
correspond to an inner product in a feature space.Exercise 6.12

One powerful approach to the construction of kernels starts from a probabilistic
generative model (Haussler, 1999), which allows us to apply generative models in a
discriminative setting. Generative models can deal naturally with missing data and
in the case of hidden Markov models can handle sequences of varying length. By
contrast, discriminative models generally give better performance on discriminative
tasks than generative models. It is therefore of some interest to combine these two
approaches (Lasserre et al., 2006). One way to combine them is to use a generative
model to define a kernel, and then use this kernel in a discriminative approach.

Given a generative model p(x) we can define a kernel by

k(x,x′) = p(x)p(x′). (6.28)

This is clearly a valid kernel function because we can interpret it as an inner product
in the one-dimensional feature space defined by the mapping p(x). It says that two
inputs x and x′ are similar if they both have high probabilities. We can use (6.13) and
(6.17) to extend this class of kernels by considering sums over products of different
probability distributions, with positive weighting coefficients p(i), of the form

k(x,x′) =
∑

i

p(x|i)p(x′|i)p(i). (6.29)

6.2. Constructing Kernels 297

omitted. We can see that this is a valid kernel by expanding the square

∥x − x′∥2 = xTx + (x′)Tx′ − 2xTx′ (6.24)

to give

k(x,x′) = exp
(
−xTx/2σ2

)
exp

(
xTx′/σ2

)
exp

(
−(x′)Tx′/2σ2

)
(6.25)

and then making use of (6.14) and (6.16), together with the validity of the linear
kernel k(x,x′) = xTx′. Note that the feature vector that corresponds to the Gaussian
kernel has infinite dimensionality.Exercise 6.11

The Gaussian kernel is not restricted to the use of Euclidean distance. If we use
kernel substitution in (6.24) to replace xTx′ with a nonlinear kernel κ(x,x′), we
obtain

k(x,x′) = exp
{
− 1

2σ2
(κ(x,x) + κ(x′,x′) − 2κ(x,x′))

}
. (6.26)

An important contribution to arise from the kernel viewpoint has been the exten-
sion to inputs that are symbolic, rather than simply vectors of real numbers. Kernel
functions can be defined over objects as diverse as graphs, sets, strings, and text doc-
uments. Consider, for instance, a fixed set and define a nonvectorial space consisting
of all possible subsets of this set. If A1 and A2 are two such subsets then one simple
choice of kernel would be

k(A1, A2) = 2|A1∩A2| (6.27)

where A1 ∩ A2 denotes the intersection of sets A1 and A2, and |A| denotes the
number of subsets in A. This is a valid kernel function because it can be shown to
correspond to an inner product in a feature space.Exercise 6.12

One powerful approach to the construction of kernels starts from a probabilistic
generative model (Haussler, 1999), which allows us to apply generative models in a
discriminative setting. Generative models can deal naturally with missing data and
in the case of hidden Markov models can handle sequences of varying length. By
contrast, discriminative models generally give better performance on discriminative
tasks than generative models. It is therefore of some interest to combine these two
approaches (Lasserre et al., 2006). One way to combine them is to use a generative
model to define a kernel, and then use this kernel in a discriminative approach.

Given a generative model p(x) we can define a kernel by

k(x,x′) = p(x)p(x′). (6.28)

This is clearly a valid kernel function because we can interpret it as an inner product
in the one-dimensional feature space defined by the mapping p(x). It says that two
inputs x and x′ are similar if they both have high probabilities. We can use (6.13) and
(6.17) to extend this class of kernels by considering sums over products of different
probability distributions, with positive weighting coefficients p(i), of the form

k(x,x′) =
∑

i

p(x|i)p(x′|i)p(i). (6.29)

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

{{

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

Sujets:

HUGO LAROCHELLE

• Un noyau souvent utilisé est le noyau gaussien :

• Est valide puisque :

NOYAU GAUSSIEN

26

noyau gaussien

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

6.2. Constructing Kernels 297

omitted. We can see that this is a valid kernel by expanding the square

∥x − x′∥2 = xTx + (x′)Tx′ − 2xTx′ (6.24)

to give

k(x,x′) = exp
(
−xTx/2σ2

)
exp

(
xTx′/σ2

)
exp

(
−(x′)Tx′/2σ2

)
(6.25)

and then making use of (6.14) and (6.16), together with the validity of the linear
kernel k(x,x′) = xTx′. Note that the feature vector that corresponds to the Gaussian
kernel has infinite dimensionality.Exercise 6.11

The Gaussian kernel is not restricted to the use of Euclidean distance. If we use
kernel substitution in (6.24) to replace xTx′ with a nonlinear kernel κ(x,x′), we
obtain

k(x,x′) = exp
{
− 1

2σ2
(κ(x,x) + κ(x′,x′) − 2κ(x,x′))

}
. (6.26)

An important contribution to arise from the kernel viewpoint has been the exten-
sion to inputs that are symbolic, rather than simply vectors of real numbers. Kernel
functions can be defined over objects as diverse as graphs, sets, strings, and text doc-
uments. Consider, for instance, a fixed set and define a nonvectorial space consisting
of all possible subsets of this set. If A1 and A2 are two such subsets then one simple
choice of kernel would be

k(A1, A2) = 2|A1∩A2| (6.27)

where A1 ∩ A2 denotes the intersection of sets A1 and A2, and |A| denotes the
number of subsets in A. This is a valid kernel function because it can be shown to
correspond to an inner product in a feature space.Exercise 6.12

One powerful approach to the construction of kernels starts from a probabilistic
generative model (Haussler, 1999), which allows us to apply generative models in a
discriminative setting. Generative models can deal naturally with missing data and
in the case of hidden Markov models can handle sequences of varying length. By
contrast, discriminative models generally give better performance on discriminative
tasks than generative models. It is therefore of some interest to combine these two
approaches (Lasserre et al., 2006). One way to combine them is to use a generative
model to define a kernel, and then use this kernel in a discriminative approach.

Given a generative model p(x) we can define a kernel by

k(x,x′) = p(x)p(x′). (6.28)

This is clearly a valid kernel function because we can interpret it as an inner product
in the one-dimensional feature space defined by the mapping p(x). It says that two
inputs x and x′ are similar if they both have high probabilities. We can use (6.13) and
(6.17) to extend this class of kernels by considering sums over products of different
probability distributions, with positive weighting coefficients p(i), of the form

k(x,x′) =
∑

i

p(x|i)p(x′|i)p(i). (6.29)

6.2. Constructing Kernels 297

omitted. We can see that this is a valid kernel by expanding the square

∥x − x′∥2 = xTx + (x′)Tx′ − 2xTx′ (6.24)

to give

k(x,x′) = exp
(
−xTx/2σ2

)
exp

(
xTx′/σ2

)
exp

(
−(x′)Tx′/2σ2

)
(6.25)

and then making use of (6.14) and (6.16), together with the validity of the linear
kernel k(x,x′) = xTx′. Note that the feature vector that corresponds to the Gaussian
kernel has infinite dimensionality.Exercise 6.11

The Gaussian kernel is not restricted to the use of Euclidean distance. If we use
kernel substitution in (6.24) to replace xTx′ with a nonlinear kernel κ(x,x′), we
obtain

k(x,x′) = exp
{
− 1

2σ2
(κ(x,x) + κ(x′,x′) − 2κ(x,x′))

}
. (6.26)

An important contribution to arise from the kernel viewpoint has been the exten-
sion to inputs that are symbolic, rather than simply vectors of real numbers. Kernel
functions can be defined over objects as diverse as graphs, sets, strings, and text doc-
uments. Consider, for instance, a fixed set and define a nonvectorial space consisting
of all possible subsets of this set. If A1 and A2 are two such subsets then one simple
choice of kernel would be

k(A1, A2) = 2|A1∩A2| (6.27)

where A1 ∩ A2 denotes the intersection of sets A1 and A2, and |A| denotes the
number of subsets in A. This is a valid kernel function because it can be shown to
correspond to an inner product in a feature space.Exercise 6.12

One powerful approach to the construction of kernels starts from a probabilistic
generative model (Haussler, 1999), which allows us to apply generative models in a
discriminative setting. Generative models can deal naturally with missing data and
in the case of hidden Markov models can handle sequences of varying length. By
contrast, discriminative models generally give better performance on discriminative
tasks than generative models. It is therefore of some interest to combine these two
approaches (Lasserre et al., 2006). One way to combine them is to use a generative
model to define a kernel, and then use this kernel in a discriminative approach.

Given a generative model p(x) we can define a kernel by

k(x,x′) = p(x)p(x′). (6.28)

This is clearly a valid kernel function because we can interpret it as an inner product
in the one-dimensional feature space defined by the mapping p(x). It says that two
inputs x and x′ are similar if they both have high probabilities. We can use (6.13) and
(6.17) to extend this class of kernels by considering sums over products of different
probability distributions, with positive weighting coefficients p(i), of the form

k(x,x′) =
∑

i

p(x|i)p(x′|i)p(i). (6.29)

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

{{

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

{

Sujets:

HUGO LAROCHELLE

• Un noyau souvent utilisé est le noyau gaussien :

• On peut même montrer que le est un vecteur de
taille infinie !

NOYAU GAUSSIEN

27

noyau gaussien

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

�(x)

Sujets:

HUGO LAROCHELLE

• On peut également définir des noyaux pour des entrées
qui ne sont pas des vecteurs x de taille fixe

‣ chaînes de caractères

‣ ensembles de vecteurs

‣ etc.

• Noyau de Fisher : un paradigme pour dériver de nouveaux
noyaux à partir de modèles probabilistes génératifs

‣ voir fin de la section 6.2

CONSTRUCTION DE NOYAUX

28

construction de noyaux

Apprentissage automatique
Méthodes à noyaux - résumé

Sujets:

HUGO LAROCHELLE

RÉGRESSION À NOYAU

• Modèle :

• Entraînement :

• Hyper-paramètres : λ et ceux dans le noyau k(x,xn)

‣ c et M pour le noyau polynomial

‣ pour le noyau gaussien

• Prédiction :
30

résumé de la régression à noyau

294 6. KERNEL METHODS

If we substitute this back into the linear regression model, we obtain the following
prediction for a new input x

y(x) = wTφ(x) = aTΦφ(x) = k(x)T (K + λIN)−1 t (6.9)

where we have defined the vector k(x) with elements kn(x) = k(xn,x). Thus we
see that the dual formulation allows the solution to the least-squares problem to be
expressed entirely in terms of the kernel function k(x,x′). This is known as a dual
formulation because, by noting that the solution for a can be expressed as a linear
combination of the elements of φ(x), we recover the original formulation in terms of
the parameter vector w. Note that the prediction at x is given by a linear combinationExercise 6.1
of the target values from the training set. In fact, we have already obtained this result,
using a slightly different notation, in Section 3.3.3.

In the dual formulation, we determine the parameter vector a by inverting an
N ×N matrix, whereas in the original parameter space formulation we had to invert
an M × M matrix in order to determine w. Because N is typically much larger
than M , the dual formulation does not seem to be particularly useful. However, the
advantage of the dual formulation, as we shall see, is that it is expressed entirely in
terms of the kernel function k(x,x′). We can therefore work directly in terms of
kernels and avoid the explicit introduction of the feature vector φ(x), which allows
us implicitly to use feature spaces of high, even infinite, dimensionality.

The existence of a dual representation based on the Gram matrix is a property of
many linear models, including the perceptron. In Section 6.4, we will develop a dual-Exercise 6.2
ity between probabilistic linear models for regression and the technique of Gaussian
processes. Duality will also play an important role when we discuss support vector
machines in Chapter 7.

6.2. Constructing Kernels

In order to exploit kernel substitution, we need to be able to construct valid kernel
functions. One approach is to choose a feature space mapping φ(x) and then use
this to find the corresponding kernel, as is illustrated in Figure 6.1. Here the kernel
function is defined for a one-dimensional input space by

k(x, x′) = φ(x)Tφ(x′) =
M∑

i=1

φi(x)φi(x′) (6.10)

where φi(x) are the basis functions.
An alternative approach is to construct kernel functions directly. In this case,

we must ensure that the function we choose is a valid kernel, in other words that it
corresponds to a scalar product in some (perhaps infinite dimensional) feature space.
As a simple example, consider a kernel function given by

k(x, z) =
(
xTz

)2
. (6.11)

= k(x)Ta =
NX

n=1

ank(x,xn)

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

p(t|x,�) = N (t|y(x),��1)

�2

y(x)

Sujets:

HUGO LAROCHELLE

CAPACITÉ ET NOYAU

• Modèle :

• Noyau polynomial

‣ plus M est grand, plus le modèle a de la capacité

• Noyau gaussien

‣ plus est petit, plus le modèle a de la capacité

31

lien entre capacité et noyau

294 6. KERNEL METHODS

If we substitute this back into the linear regression model, we obtain the following
prediction for a new input x

y(x) = wTφ(x) = aTΦφ(x) = k(x)T (K + λIN)−1 t (6.9)

where we have defined the vector k(x) with elements kn(x) = k(xn,x). Thus we
see that the dual formulation allows the solution to the least-squares problem to be
expressed entirely in terms of the kernel function k(x,x′). This is known as a dual
formulation because, by noting that the solution for a can be expressed as a linear
combination of the elements of φ(x), we recover the original formulation in terms of
the parameter vector w. Note that the prediction at x is given by a linear combinationExercise 6.1
of the target values from the training set. In fact, we have already obtained this result,
using a slightly different notation, in Section 3.3.3.

In the dual formulation, we determine the parameter vector a by inverting an
N ×N matrix, whereas in the original parameter space formulation we had to invert
an M × M matrix in order to determine w. Because N is typically much larger
than M , the dual formulation does not seem to be particularly useful. However, the
advantage of the dual formulation, as we shall see, is that it is expressed entirely in
terms of the kernel function k(x,x′). We can therefore work directly in terms of
kernels and avoid the explicit introduction of the feature vector φ(x), which allows
us implicitly to use feature spaces of high, even infinite, dimensionality.

The existence of a dual representation based on the Gram matrix is a property of
many linear models, including the perceptron. In Section 6.4, we will develop a dual-Exercise 6.2
ity between probabilistic linear models for regression and the technique of Gaussian
processes. Duality will also play an important role when we discuss support vector
machines in Chapter 7.

6.2. Constructing Kernels

In order to exploit kernel substitution, we need to be able to construct valid kernel
functions. One approach is to choose a feature space mapping φ(x) and then use
this to find the corresponding kernel, as is illustrated in Figure 6.1. Here the kernel
function is defined for a one-dimensional input space by

k(x, x′) = φ(x)Tφ(x′) =
M∑

i=1

φi(x)φi(x′) (6.10)

where φi(x) are the basis functions.
An alternative approach is to construct kernel functions directly. In this case,

we must ensure that the function we choose is a valid kernel, in other words that it
corresponds to a scalar product in some (perhaps infinite dimensional) feature space.
As a simple example, consider a kernel function given by

k(x, z) =
(
xTz

)2
. (6.11)

= k(x)Ta =
NX

n=1

ank(x,xn)

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

�2

