

RÉGRESSION À NOYAU

Sujets: régression à noyau

- Algorithme de régression à noyau
 - entraînement : $\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{t}$
 - prédiction : $y(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\mathrm{T}}\mathbf{a}$
- Pour exécuter cet algorithme, on a seulement besoin de calculer les produits scalaires du noyau

$$\boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m)$$

• Par contre, on doit toujours avoir accès aux entrées de l'ensemble d'entraînement

RÉGRESSION À NOYAU

Sujets: régression à noyau

- Algorithme de régression à noyau
 - entraînement : $\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{t}$
 - prédiction : $y(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\mathrm{T}}\mathbf{a}$

comparaison avec tout l'ensemble d'entraînement

• Pour exécuter cet algorithme, on a seulement besoin de calculer les produits scalaires du noyau

$$\boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m)$$

• Par contre, on doit toujours avoir accès aux entrées de l'ensemble d'entraînement

Sujets: machine à vecteurs de support, support vector machine

- On va voir la machine à vecteur de support (support vector machine, SVM)
 - un nouvel algorithme pour la classification binaire
 - après l'entraînement, va garder seulement un sous-ensemble des données d'entraînement
 - plusieurs des a_n dans a vont être à 0

CLASSIFICATION

 \mathcal{R}_1

Sujets: classification binaire, séparabilité linéaire

- Cas spécial : classification binaire
 - classe C_1 correspond à t=1
 - classe C_2 correspond à t = 0 (ou t = -1)

• Cas spécial : classification linéaire

- la surface de décision entre chaque paire de régions de décision est linéaire, i.e. un hyperplan (droite pour D=2)
- on dit qu'un problème est linéairement séparable si une surface linéaire permet de classifier parfaitement

 \mathcal{R}_2

CLASSIFICATION

 \mathcal{R}_1

Sujets: classification binaire, séparabilité linéaire

- Cas spécial : classification binaire
 - classe C_1 correspond à t=1
 - classe C_2 correspond à t = 0 (ou t = -1)

- Cas spécial : classification linéaire
 - la surface de décision entre chaque paire de régions de décision est linéaire, i.e. un hyperplan (droite pour D=2)
 - on dit qu'un problème est linéairement séparable si une surface linéaire permet de classifier parfaitement

 \mathcal{R}_2

Sujets: machine à vecteurs de support, support vector machine

- On va voir la machine à vecteur de support (support vector machine, SVM)
 - un nouvel algorithme pour la classification binaire
 - après l'entraînement, va garder seulement un sous-ensemble des données d'entraînement
 - plusieurs des a_n dans a vont être à 0

• Au centre du SVM est la notion de **marge**

FONCTION DISCRIMINANTE

Sujets: fonction discriminante, vecteur de poids, biais

FONCTION DISCRIMINANTE

Sujets: fonction discriminante, vecteur de poids, biais

MARGE D'UN CLASSIFIEUR

Sujets: marge

• La **marge** est la plus petite distance signée entre la surface de décision et les entrées de l'ensemble d'entraînement y > 0

Apprentissage automatique Machine à vecteurs de support - classifieur à marge maximale

Sujets: machine à vecteurs de support, support vector machine

- On va voir la machine à vecteur de support (support vector machine, SVM)
 - un nouvel algorithme pour la classification binaire
 - après l'entraînement, va garder seulement un sous-ensemble des données d'entraînement
 - plusieurs des a_n dans a vont être à 0

• On va commencer par décrire la version paramétrique linéaire (sans noyau)

Sujets: classifieur à marge maximale

• La distance signée pour un exemple (\mathbf{x}_n, t_n) est

$$\frac{t_n y(\mathbf{x}_n)}{\|\mathbf{w}\|} = \frac{t_n(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n) + b)}{\|\mathbf{w}\|}$$

- Un SVM cherche à maximiser la marge
 - cherche le classifieur à marge maximale

$$\arg\max_{\mathbf{w},b} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} \left[t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b \right) \right] \right\}$$

HUGO LAROCHELLE

(b est équivalent à w_0)

Sujets: classifieur à marge maximale

• La marge est la même si on multiplie w et *b* par un constante (*a*)

$$\frac{t_n(a\mathbf{w}^{\mathrm{T}}(\mathbf{x}_n) + ab)}{a||\mathbf{w}||}$$

On va donc contraindre la solution pour que

$$t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b \right) = 1$$

pour (\mathbf{x}_n, t_n) le plus proche de la surface de décision

Sujets: classifieur à marge maximale

• La marge est la même si on multiplie w et *b* par un constante (*a*)

$$\frac{t_n(\boldsymbol{\alpha}\mathbf{w}^{\mathrm{T}}(\mathbf{x}_n) + \boldsymbol{\alpha}b)}{\boldsymbol{\alpha}||\mathbf{w}||}$$

On va donc contraindre la solution pour que margin

$$t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b \right) = 1$$

pour (\mathbf{x}_n, t_n) le plus proche de la surface de décision

Sujets: classifieur à marge maximale

• La marge est la même si on multiplie w et *b* par un constante (*a*)

$$\frac{t_n(\boldsymbol{\alpha}\mathbf{w}^{\mathrm{T}}(\mathbf{x}_n) + \boldsymbol{\alpha}b)}{\boldsymbol{\alpha}||\mathbf{w}||}$$

• On va donc contraindre la solution pour que

$$t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b \right) = 1$$

pour (\mathbf{x}_n, t_n) le plus proche de la surface de décision

Sujets: classifieur à marge maximale

• Exemple :

Sujets: classifieur à marge maximale

• En supposant que l'ensemble d'entraînement est linéairement séparable, on a :

$$\arg\max_{\mathbf{w},b} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} \left[t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b \right) \right] \right\}$$

- Ce problème d'optimisation est un programme quadratique
 - il existe des librairies pouvant le résoudre numériquement en $O(D^3)$

ratique $O(D^3)$

Sujets: classifieur à marge maximale

• En supposant que l'ensemble d'entraînement est linéairement séparable, on a :

$$\arg\max_{\mathbf{w},b} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} \left[t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b \right) \right] \right\} = 1$$

- Ce problème d'optimisation est un programme quadratique
 - il existe des librairies pouvant le résoudre numériquement en $O(D^3)$

ratique $O(D^3)$

Sujets: classifieur à marge maximale

• En supposant que l'ensemble d'entraînement est linéairement séparable, on a :

- Ce problème d'optimisation est un programme quadratique
 - il existe des librairies pouvant le résoudre numériquement en $O(D^3)$

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^{2}$$

t.q. $t_{n} \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_{n}) + b \right) \ge 1,$
pour $n = 1, \dots, N$

Tatique $O(D^3)$

Sujets: classifieur à marge maximale

• Si on suppose la séparabilité linéaire, on doit optimiser

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^{2}$$

t.q. $t_{n} \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_{n}) + b \right) \ge 1,$
pour $n = 1, \dots, N$

• C'est un problème d'optimisation (quadratique) avec N contraintes

Sujets: classifieur à marge maximale

• On peut enlever les contraintes en introduisant des multiplicateurs de Lagrange (voir Bishop, appendice E)

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b) - 1 \right\}$$

où les multiplicateurs sont $a_n \ge 0$

Sujets: classifieur à marge maximale

• On peut enlever les contraintes en introduisant des multiplicateurs de Lagrange (voir Bishop, appendice E)

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b) - 1 \right\}$$

• En annulant les dérivées, on obtient les conditions

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \boldsymbol{\phi}(\mathbf{x}_n) \qquad 0 = \sum_{n=1}^{N} a_n t_n$$

Sujets: classifieur à marge maximale

• On peut enlever les contraintes en introduisant des multiplicateurs de Lagrange (voir Bishop, appendice E)

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b) - 1 \right\}$$

• En a on peut exprimer w comme une combinaison linéaire des entées t les conditions

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \boldsymbol{\phi}(\mathbf{x}_n) \qquad 0 = \sum_{n=1}^{N} a_n t_n$$

REPRÉSENTATION DUALE

Sujets: représentation duale, astuce du noyau

• On peut alors réécrire $L(\mathbf{w}, b, \mathbf{a})$ comme suit :

$$\widetilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m \overbrace{k(\mathbf{x}_n, \mathbf{x}_m)}^{\mathbf{v}}$$

où on a toujours $a_n \ge 0$ et $\sum_{n=1}^{N} a_n t_n = 0$

- Programme quadratique de complexité dans $O(N^3)$
- C'est la **représentation duale** du SVM
 - nous permet d'utiliser l'**astuce du noyau**

$\boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_m)$

Sujets: classifieur à marge maximale

• On peut démontrer que la solution satisfait

$$a_n \ge 0$$
$$t_n y(\mathbf{x}_n) - 1 \ge 0$$
$$a_n \{t_n y(\mathbf{x}_n) - 1\} = 0$$

- Lié avec les conditions Karush-Kuhn-Tucker (KKT) (voir Bishop, appendice E)
- Les x_n tels que a_n > 0 sont appelés
 vecteurs de support

VECTEURS DE SUPPORT

Sujets: classifieur à marge maximale

• On peut démontrer que la solution satisfait

$$a_n \ge 0$$
 Pour o
 $t_n y(\mathbf{x}_n) - 1 \ge 0$ implique $a_n = a_n \{t_n y(\mathbf{x}_n) - 1\} = 0$

- Lié avec les conditions Karush-Kuhn-Tucker (KKT) (voir Bishop, appendice E)
- Les \mathbf{x}_n tels que $a_n > 0$ sont appelés vecteurs de support

chaque n

= 0 ou $t_n y(\mathbf{x}_n) = 1$

VECTEURS DE SUPPORT

Sujets: classifieur à marge maximale, vecteurs de support

• Exemple :

vecteurs de $\mathbf{O} t_n y(\mathbf{x}_n) = 1$ support

Sujets: classifieur à marge maximale, vecteurs de support

• Exemple :

O $t_n y(\mathbf{x}_n) = 1$ vecteurs de support

Sujets: classifieur à marge maximale, vecteurs de support

• Exemple :

y = -1y = 0y = 1

O $t_n y(\mathbf{x}_n) = 1$ vecteurs de support

Sujets: classifieur à marge maximale, vecteurs de support

• Exemple :

y = -1y = 0y = 1

$$t_n y(\mathbf{x}_n) = 1$$
 vecteurs de support $a_n = 0$

Solution aurait été identique, même si les points () n'avaient pas été dans l'ensemble d'entraînement!

Machine à Vecteurs de Support à Noyau

Sujets: SVM à noyau

• Prédiction, dans la représentation duale

 $y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}) + b$ $= \left(\sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)\right)^{\mathrm{T}} \phi(\mathbf{x}) + b$ N $= \sum_{n=1}^{\infty} a_n t_n k(\mathbf{x}_n, \mathbf{x}) + b$ seulement les vecteurs de support vont voter ! HUGO LAROCHELLE

Machine à Vecteurs de Support à Noyau

Sujets: SVM à noyau

• Exemple avec noyau gaussien

HUGO LAROCHELLE

vecteurs de support

 $y(\mathbf{x}) = \sum a_n t_n k(\mathbf{x}_n, \mathbf{x}) + b$ n=1

Machine à Vecteurs de Support à Noyau

Sujets: SVM à noyau

• Exemple avec noyau gaussien

vecteurs de support

 $y(\mathbf{x}) = \sum a_n t_n k(\mathbf{x}_n, \mathbf{x}) + b$ n=1

Sujets: classifieur à marge maximale

• En supposant que l'ensemble d'entraînement est linéairement séparable, on a :

- Ce problème d'optimisation est un programme quadratique
 - il existe des librairies pouvant le résoudre numériquement

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^{2}$$

t.q. $t_{n} \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_{n}) + b \right) \ge 1,$
pour $n = 1, \dots, N$

Sujets: classifieur à marge maximale

• En supposant que l'ensemble d'entraînement est linéairement séparable, on a :

- des erreurs dans l'ensemble d'entraînement arg max
 - des exemples exceptionnellement difficiles à classifier

- Ce problème d'optimisation est un programme quadratique
 - il existe des librairies pouvant le résoudre numériquement

 \mathbf{w}, b

Sujets: chevauchement de classes

• Quoi s'il y a chevauchement entre les classes ?

Sujets: variables de ressort (slack variables)

• On va permettre que des exemples ne respectent pas la contrainte de marge

- Les ξ_n sont des variables **variables de ressort**
 - elles correspondent aux violations des contraintes de marge

Sujets: variables de ressort (slack variables)

• On va permettre que des exemples ne respectent pas la contrainte de marge

- Les ξ_n sont des variables **variables de ressort**
 - elles correspondent aux violations des contraintes de marge

Sujets: variables de ressort (slack variables)

• On va permettre que des exemples ne respectent pas la contrainte de marge

• Si ξ_n est entre 0 et 1, l'exemple est quand même bien classifié

Sujets: variables de ressort (slack variables)

• On va permettre que des exemples ne respectent pas la contrainte de marge

• Si ξ_n est plus grand que 1, l'exemple est du mauvais côté de la surface de décision et est mal classifié

Sujets: variables de ressort (slack variables)

• On va permettre que des exemples ne respectent pas la contrainte de marge

- La constante C > 0 est un hyper-paramètre
 - ▶ plus il est petit, plus la capacité diminue ($C=\infty$ revient au prob. original)

Sujets: variables de ressort (slack variables)

• Exemple :

vecteurs de support

Les entrées qui violent les contraintes de marge sont aussi des vecteurs de support

REPRÉSENTATION DUALE

Sujets: représentation duale

• On peut montrer que la représentation duale devient

$$\widetilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

où on a toujours $C \ge a_n \ge 0$ et $\sum_{n=1}^{N} a_n t_n = 0$

• Reste un problème de programmation quadratique, mais les contraintes changent

REPRÉSENTATION DUALE

Sujets: représentation duale

• On peut montrer que la représentation duale devient

$$\widetilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

où on a toujours $C \ge a_n \ge 0$ et $\sum_{n=1}^{N} a_n t_n = 0$

• Reste un problème de programmation quadratique, mais les contraintes changent

Apprentissage automatique Machine à vecteurs de support - lien avec régression logistique

Sujets: hinge loss

• On peut réécrire l'entraînement d'un SVM sous une forme sans contraintes

$$\underset{\mathbf{w},b \ \xi_n}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^N \xi_n$$

t.q. $t_n y(\mathbf{x}_n) \ge 1 - \xi_n$
 $\xi_n \ge 0$
pour $n = 1, \dots, N$

Sujets: hinge loss

• On peut réécrire l'entraînement d'un SVM sous une forme sans contraintes

$$\arg\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n$$

t.q.
$$\xi_n \ge 1 - t_n y(\mathbf{x}_n)$$

$$\xi_n \ge 0$$

pour $n = 1, \dots, N$

Sujets: hinge loss

• On peut réécrire l'entraînement d'un SVM sous une forme sans contraintes

$$\begin{array}{|c|c|c|c|c|} \arg\min_{\mathbf{w},b\ \xi_n} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^N \xi_n \\ \text{t.q.} \quad \xi_n \ge 1 - t_n y(\mathbf{x}_n) \\ \xi_n \ge 0 \\ \text{pour } n = 1, \dots, N \end{array} \qquad \text{équival} \quad \arg\min_{\mathbf{w},b} \quad \sum_{n=1}^N \mathbf{x}_n = 1 \\ \end{array}$$

$\max(0, 1 - t_n y(\mathbf{x}_n)) + \lambda ||\mathbf{w}||^2$ $(\lambda = 1/(2C))$

Sujets: hinge loss

• On peut réécrire l'entraînement d'un SVM sous une forme sans contraintes

$[1-y_nt_n]_+$ (hinge loss) $\max(0, 1 - t_n y(\mathbf{x}_n)) + \lambda ||\mathbf{w}||^2$ $(\lambda = 1/(2C))$

APPROCHE PROBABILISTE DISCRIMINANTE

Sujets: cross-entropie

 Maximiser la vraisemblance est équivalent à minimiser la logvraisemblance négative

$$E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln y_n \}$$

cross-entropie (binaire)

- Malheureusement, minimiser cette fonction ne se fait pas analytiquement
 - on va devoir trouver le minimum de façon numérique

HUGO LAROCHELLE

$\mathbf{n}(1-y_n)\}$

Sujets: hinge loss

• On peut réécrire l'entraînement d'un SVM sous une forme sans contraintes

$$\begin{bmatrix} \arg\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n \\ \text{t.q.} \quad \xi_n \ge 1 - t_n y(\mathbf{x}_n) \\ \xi_n \ge 0 \\ \text{pour } n = 1, \dots, N \end{bmatrix} \text{ équivalt } \arg\min_{\mathbf{w},b} \sum_{n=1}^{N} n$$

$\left[1-y_nt_n\right]_+$ (hinge loss) $\max(0, 1 - t_n y(\mathbf{x}_n)) + \lambda ||\mathbf{w}||^2$

Sujets: hinge loss

 On peut réécrire l'entraînement d'un SVM sous une forme sans contraintes

$$\begin{bmatrix} \arg\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n \\ \text{t.q.} \quad \xi_n \ge 1 - t_n y(\mathbf{x}_n) \\ \xi_n \ge 0 \\ \text{pour } n = 1, \dots, N \end{bmatrix} \stackrel{\text{équivaut}}{\arg\min} \quad \arg\min_{n=1}^{N} \sum_{n=1}^{N} \ln(1)$$

forme équivalente à la régression logistique

HUGO LAROCHELLE

 \mathbf{w}, b

n=1

$[1 - y_n t_n]_+$ (hinge loss) $\max(0, 1 - t_n y(\mathbf{x}_n)) + \lambda ||\mathbf{w}||^2$

 $+\exp(-t_n y(\mathbf{x}_n))) + \lambda ||\mathbf{w}||^2$

Sujets: hinge loss

La régression logistique est donc une version «lisse» d'un SVM

Sujets: résumé du SVM (sans noyau)

- Modèle : $y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + b$
- Entraînement : résoudre programme quadratique

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n$$

t.q. $t_n y(\mathbf{x}_n) \ge 1 - \xi_n$
 $\xi_n \ge 0$
pour $n = 1, \dots, N$

- Hyper-paramètre : C
- Prédiction : C_1 si $y(\mathbf{x}) \ge 0$, sinon C_2

Sujets: résumé du SVM (avec noyau)

- Modèle : $y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + b$
- Entraînement : résoudre programme quadratique (voir équation 7.36 pour obtenir b)

$$\underset{\mathbf{a}}{\operatorname{arg\,min}} \quad \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

t.q. $0 \leq a_n \leq C$ pour $n = 1, \dots, N$
$$\sum_{n=1}^{N} a_n t_n = 0$$

- Hyper-paramètre : C
- Prédiction : C_1 si $y(\mathbf{x}) \ge 0$, sinon C_2 HUGO LAROCHELLE 41

plusieurs des a_n seront 0 !

CAPACITÉ

Sujets: lien entre capacité et C / noyau

• Plus C est petit, plus la capacité diminue

- Noyau polynomial $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^{\mathrm{T}}\mathbf{x}' + c)^{M}$
 - + plus M est grand, plus le modèle a de la capacité

- Noyau gaussien $k(\mathbf{x}, \mathbf{x}') = \exp\left(-\|\mathbf{x} \mathbf{x}'\|^2/2\sigma^2\right)$
 - + plus σ^2 est petit, plus le modèle a de la capacité

Sujets: extensions des SVMs

- Peut étendre à l'estimation d'une probabilité $p(t = 1 | \mathbf{x}) = \sigma (Ay(\mathbf{x}) + B)$
 - voir fin de section 7.1.1 (Platt scaling)

- Peut étendre à la régression
 - voir section 7.1.4

