
Apprentissage automatique
Machine à vecteurs de support - motivation

Sujets:

HUGO LAROCHELLE

• Algorithme de régression à noyau

‣ entraînement :

‣ prédiction :

• Pour exécuter cet algorithme, on a seulement besoin de
calculer les produits scalaires du noyau

• Par contre, on doit toujours avoir accès aux entrées de
l’ensemble d’entraînement

RÉGRESSION À NOYAU

2

régression à noyau

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)
y(x) = k(x)Ta

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

RAPPEL

Sujets:

HUGO LAROCHELLE

• Algorithme de régression à noyau

‣ entraînement :

‣ prédiction :

• Pour exécuter cet algorithme, on a seulement besoin de
calculer les produits scalaires du noyau

• Par contre, on doit toujours avoir accès aux entrées de
l’ensemble d’entraînement

RÉGRESSION À NOYAU

2

régression à noyau

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)
y(x) = k(x)Ta

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

RAPPEL

comparaison avec tout
l’ensemble d’entraînement

Sujets:

HUGO LAROCHELLE

• On va voir la machine à vecteur de support (support vector
machine, SVM)

‣ un nouvel algorithme pour la classification binaire

‣ après l’entraînement, va garder seulement un sous-ensemble des
données d’entraînement

‣ plusieurs des an dans a vont être à 0

MACHINE À VECTEURS DE SUPPORT

3

machine à vecteurs de support, support vector machine

Sujets:

HUGO LAROCHELLE

CLASSIFICATION

• Cas spécial : classification binaire

‣ classe correspond à t = 1

‣ classe correspond à t = 0 (ou t = -1)

• Cas spécial : classification linéaire

‣ la surface de décision entre chaque paire de régions de décision est
linéaire, i.e. un hyperplan (droite pour D=2)

‣ on dit qu’un problème est linéairement séparable si une
surface linéaire permet de classifier parfaitement

4

classification binaire, séparabilité linéaire

C1
C2 R2

R1

RAPPEL

Sujets:

HUGO LAROCHELLE

CLASSIFICATION

• Cas spécial : classification binaire

‣ classe correspond à t = 1

‣ classe correspond à t = 0 (ou t = -1)

• Cas spécial : classification linéaire

‣ la surface de décision entre chaque paire de régions de décision est
linéaire, i.e. un hyperplan (droite pour D=2)

‣ on dit qu’un problème est linéairement séparable si une
surface linéaire permet de classifier parfaitement

4

classification binaire, séparabilité linéaire

C1
C2 R2

R1

RAPPEL

Apprentissage automatique
Machine à vecteurs de support - marge

Sujets:

HUGO LAROCHELLE

• On va voir la machine à vecteur de support (support vector
machine, SVM)

‣ un nouvel algorithme pour la classification binaire

‣ après l’entraînement, va garder seulement un sous-ensemble des
données d’entraînement

‣ plusieurs des an dans a vont être à 0

• Au centre du SVM est la notion de marge

MACHINE À VECTEURS DE SUPPORT

6

machine à vecteurs de support, support vector machine

Sujets:

HUGO LAROCHELLE

FONCTION DISCRIMINANTE

7

fonction discriminante, vecteur de poids, biais

4.1. Discriminant Functions 181

(McCullagh and Nelder, 1989). Note, however, that in contrast to the models used
for regression, they are no longer linear in the parameters due to the presence of the
nonlinear function f(·). This will lead to more complex analytical and computa-
tional properties than for linear regression models. Nevertheless, these models are
still relatively simple compared to the more general nonlinear models that will be
studied in subsequent chapters.

The algorithms discussed in this chapter will be equally applicable if we first
make a fixed nonlinear transformation of the input variables using a vector of basis
functions φ(x) as we did for regression models in Chapter 3. We begin by consider-
ing classification directly in the original input space x, while in Section 4.3 we shall
find it convenient to switch to a notation involving basis functions for consistency
with later chapters.

4.1. Discriminant Functions

A discriminant is a function that takes an input vector x and assigns it to one of K
classes, denoted Ck. In this chapter, we shall restrict attention to linear discriminants,
namely those for which the decision surfaces are hyperplanes. To simplify the dis-
cussion, we consider first the case of two classes and then investigate the extension
to K > 2 classes.

4.1.1 Two classes
The simplest representation of a linear discriminant function is obtained by tak-

ing a linear function of the input vector so that

y(x) = wTx + w0 (4.4)

where w is called a weight vector, and w0 is a bias (not to be confused with bias in
the statistical sense). The negative of the bias is sometimes called a threshold. An
input vector x is assigned to class C1 if y(x) ! 0 and to class C2 otherwise. The cor-
responding decision boundary is therefore defined by the relation y(x) = 0, which
corresponds to a (D − 1)-dimensional hyperplane within the D-dimensional input
space. Consider two points xA and xB both of which lie on the decision surface.
Because y(xA) = y(xB) = 0, we have wT(xA−xB) = 0 and hence the vector w is
orthogonal to every vector lying within the decision surface, and so w determines the
orientation of the decision surface. Similarly, if x is a point on the decision surface,
then y(x) = 0, and so the normal distance from the origin to the decision surface is
given by

wTx
∥w∥ = − w0

∥w∥ . (4.5)

We therefore see that the bias parameter w0 determines the location of the decision
surface. These properties are illustrated for the case of D = 2 in Figure 4.1.

Furthermore, we note that the value of y(x) gives a signed measure of the per-
pendicular distance r of the point x from the decision surface. To see this, consider

182 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.1 Illustration of the geometry of a
linear discriminant function in two dimensions.
The decision surface, shown in red, is perpen-
dicular to w, and its displacement from the
origin is controlled by the bias parameter w0.
Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given
by y(x)/∥w∥.

x2

x1

w
x

y(x)
∥w∥

x⊥

−w0
∥w∥

y = 0
y < 0

y > 0

R2

R1

an arbitrary point x and let x⊥ be its orthogonal projection onto the decision surface,
so that

x = x⊥ + r
w
∥w∥ . (4.6)

Multiplying both sides of this result by wT and adding w0, and making use of y(x) =
wTx + w0 and y(x⊥) = wTx⊥ + w0 = 0, we have

r =
y(x)
∥w∥ . (4.7)

This result is illustrated in Figure 4.1.
As with the linear regression models in Chapter 3, it is sometimes convenient

to use a more compact notation in which we introduce an additional dummy ‘input’
value x0 = 1 and then define w̃ = (w0,w) and x̃ = (x0,x) so that

y(x) = w̃Tx̃. (4.8)

In this case, the decision surfaces are D-dimensional hyperplanes passing through
the origin of the D + 1-dimensional expanded input space.

4.1.2 Multiple classes
Now consider the extension of linear discriminants to K > 2 classes. We might

be tempted be to build a K-class discriminant by combining a number of two-class
discriminant functions. However, this leads to some serious difficulties (Duda and
Hart, 1973) as we now show.

Consider the use of K−1 classifiers each of which solves a two-class problem of
separating points in a particular class Ck from points not in that class. This is known
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an

182 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.1 Illustration of the geometry of a
linear discriminant function in two dimensions.
The decision surface, shown in red, is perpen-
dicular to w, and its displacement from the
origin is controlled by the bias parameter w0.
Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given
by y(x)/∥w∥.

x2

x1

w
x

y(x)
∥w∥

x⊥

−w0
∥w∥

y = 0
y < 0

y > 0

R2

R1

an arbitrary point x and let x⊥ be its orthogonal projection onto the decision surface,
so that

x = x⊥ + r
w
∥w∥ . (4.6)

Multiplying both sides of this result by wT and adding w0, and making use of y(x) =
wTx + w0 and y(x⊥) = wTx⊥ + w0 = 0, we have

r =
y(x)
∥w∥ . (4.7)

This result is illustrated in Figure 4.1.
As with the linear regression models in Chapter 3, it is sometimes convenient

to use a more compact notation in which we introduce an additional dummy ‘input’
value x0 = 1 and then define w̃ = (w0,w) and x̃ = (x0,x) so that

y(x) = w̃Tx̃. (4.8)

In this case, the decision surfaces are D-dimensional hyperplanes passing through
the origin of the D + 1-dimensional expanded input space.

4.1.2 Multiple classes
Now consider the extension of linear discriminants to K > 2 classes. We might

be tempted be to build a K-class discriminant by combining a number of two-class
discriminant functions. However, this leads to some serious difficulties (Duda and
Hart, 1973) as we now show.

Consider the use of K−1 classifiers each of which solves a two-class problem of
separating points in a particular class Ck from points not in that class. This is known
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an

= r

RAPPEL

Sujets:

HUGO LAROCHELLE

FONCTION DISCRIMINANTE

7

fonction discriminante, vecteur de poids, biais

4.1. Discriminant Functions 181

(McCullagh and Nelder, 1989). Note, however, that in contrast to the models used
for regression, they are no longer linear in the parameters due to the presence of the
nonlinear function f(·). This will lead to more complex analytical and computa-
tional properties than for linear regression models. Nevertheless, these models are
still relatively simple compared to the more general nonlinear models that will be
studied in subsequent chapters.

The algorithms discussed in this chapter will be equally applicable if we first
make a fixed nonlinear transformation of the input variables using a vector of basis
functions φ(x) as we did for regression models in Chapter 3. We begin by consider-
ing classification directly in the original input space x, while in Section 4.3 we shall
find it convenient to switch to a notation involving basis functions for consistency
with later chapters.

4.1. Discriminant Functions

A discriminant is a function that takes an input vector x and assigns it to one of K
classes, denoted Ck. In this chapter, we shall restrict attention to linear discriminants,
namely those for which the decision surfaces are hyperplanes. To simplify the dis-
cussion, we consider first the case of two classes and then investigate the extension
to K > 2 classes.

4.1.1 Two classes
The simplest representation of a linear discriminant function is obtained by tak-

ing a linear function of the input vector so that

y(x) = wTx + w0 (4.4)

where w is called a weight vector, and w0 is a bias (not to be confused with bias in
the statistical sense). The negative of the bias is sometimes called a threshold. An
input vector x is assigned to class C1 if y(x) ! 0 and to class C2 otherwise. The cor-
responding decision boundary is therefore defined by the relation y(x) = 0, which
corresponds to a (D − 1)-dimensional hyperplane within the D-dimensional input
space. Consider two points xA and xB both of which lie on the decision surface.
Because y(xA) = y(xB) = 0, we have wT(xA−xB) = 0 and hence the vector w is
orthogonal to every vector lying within the decision surface, and so w determines the
orientation of the decision surface. Similarly, if x is a point on the decision surface,
then y(x) = 0, and so the normal distance from the origin to the decision surface is
given by

wTx
∥w∥ = − w0

∥w∥ . (4.5)

We therefore see that the bias parameter w0 determines the location of the decision
surface. These properties are illustrated for the case of D = 2 in Figure 4.1.

Furthermore, we note that the value of y(x) gives a signed measure of the per-
pendicular distance r of the point x from the decision surface. To see this, consider

182 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.1 Illustration of the geometry of a
linear discriminant function in two dimensions.
The decision surface, shown in red, is perpen-
dicular to w, and its displacement from the
origin is controlled by the bias parameter w0.
Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given
by y(x)/∥w∥.

x2

x1

w
x

y(x)
∥w∥

x⊥

−w0
∥w∥

y = 0
y < 0

y > 0

R2

R1

an arbitrary point x and let x⊥ be its orthogonal projection onto the decision surface,
so that

x = x⊥ + r
w
∥w∥ . (4.6)

Multiplying both sides of this result by wT and adding w0, and making use of y(x) =
wTx + w0 and y(x⊥) = wTx⊥ + w0 = 0, we have

r =
y(x)
∥w∥ . (4.7)

This result is illustrated in Figure 4.1.
As with the linear regression models in Chapter 3, it is sometimes convenient

to use a more compact notation in which we introduce an additional dummy ‘input’
value x0 = 1 and then define w̃ = (w0,w) and x̃ = (x0,x) so that

y(x) = w̃Tx̃. (4.8)

In this case, the decision surfaces are D-dimensional hyperplanes passing through
the origin of the D + 1-dimensional expanded input space.

4.1.2 Multiple classes
Now consider the extension of linear discriminants to K > 2 classes. We might

be tempted be to build a K-class discriminant by combining a number of two-class
discriminant functions. However, this leads to some serious difficulties (Duda and
Hart, 1973) as we now show.

Consider the use of K−1 classifiers each of which solves a two-class problem of
separating points in a particular class Ck from points not in that class. This is known
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an

182 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.1 Illustration of the geometry of a
linear discriminant function in two dimensions.
The decision surface, shown in red, is perpen-
dicular to w, and its displacement from the
origin is controlled by the bias parameter w0.
Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given
by y(x)/∥w∥.

x2

x1

w
x

y(x)
∥w∥

x⊥

−w0
∥w∥

y = 0
y < 0

y > 0

R2

R1

an arbitrary point x and let x⊥ be its orthogonal projection onto the decision surface,
so that

x = x⊥ + r
w
∥w∥ . (4.6)

Multiplying both sides of this result by wT and adding w0, and making use of y(x) =
wTx + w0 and y(x⊥) = wTx⊥ + w0 = 0, we have

r =
y(x)
∥w∥ . (4.7)

This result is illustrated in Figure 4.1.
As with the linear regression models in Chapter 3, it is sometimes convenient

to use a more compact notation in which we introduce an additional dummy ‘input’
value x0 = 1 and then define w̃ = (w0,w) and x̃ = (x0,x) so that

y(x) = w̃Tx̃. (4.8)

In this case, the decision surfaces are D-dimensional hyperplanes passing through
the origin of the D + 1-dimensional expanded input space.

4.1.2 Multiple classes
Now consider the extension of linear discriminants to K > 2 classes. We might

be tempted be to build a K-class discriminant by combining a number of two-class
discriminant functions. However, this leads to some serious difficulties (Duda and
Hart, 1973) as we now show.

Consider the use of K−1 classifiers each of which solves a two-class problem of
separating points in a particular class Ck from points not in that class. This is known
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an

= r

RAPPEL

distance signéet

Sujets:

HUGO LAROCHELLE

• La marge est la plus petite distance signée entre la
surface de décision et les entrées de l’ensemble
d’entraînement

MARGE D’UN CLASSIFIEUR

8

marge

> 0

< 0

Apprentissage automatique
Machine à vecteurs de support - classifieur à marge maximale

Sujets:

HUGO LAROCHELLE

• On va voir la machine à vecteur de support (support vector
machine, SVM)

‣ un nouvel algorithme pour la classification binaire

‣ après l’entraînement, va garder seulement un sous-ensemble des
données d’entraînement

‣ plusieurs des an dans a vont être à 0

• On va commencer par décrire la version paramétrique
linéaire (sans noyau)

MACHINE À VECTEURS DE SUPPORT

10

machine à vecteurs de support, support vector machine

Sujets:

HUGO LAROCHELLE

• La distance signée pour un exemple (xn,tn) est

• Un SVM cherche à maximiser la marge

‣ cherche le classifieur à marge maximale

MACHINE À VECTEURS DE SUPPORT

11

classifieur à marge maximale

7.1. Maximum Margin Classifiers 327

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest
of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by a subset of the data points,
known as support vectors, which are indicated by the circles.

having a common parameter σ2. Together with the class priors, this defines an opti-
mal misclassification-rate decision boundary. However, instead of using this optimal
boundary, they determine the best hyperplane by minimizing the probability of error
relative to the learned density model. In the limit σ2 → 0, the optimal hyperplane
is shown to be the one having maximum margin. The intuition behind this result is
that as σ2 is reduced, the hyperplane is increasingly dominated by nearby data points
relative to more distant ones. In the limit, the hyperplane becomes independent of
data points that are not support vectors.

We shall see in Figure 10.13 that marginalization with respect to the prior distri-
bution of the parameters in a Bayesian approach for a simple linearly separable data
set leads to a decision boundary that lies in the middle of the region separating the
data points. The large margin solution has similar behaviour.

Recall from Figure 4.1 that the perpendicular distance of a point x from a hyper-
plane defined by y(x) = 0 where y(x) takes the form (7.1) is given by |y(x)|/∥w∥.
Furthermore, we are only interested in solutions for which all data points are cor-
rectly classified, so that tny(xn) > 0 for all n. Thus the distance of a point xn to the
decision surface is given by

tny(xn)
∥w∥ =

tn(wTφ(xn) + b)
∥w∥ . (7.2)

The margin is given by the perpendicular distance to the closest point xn from the
data set, and we wish to optimize the parameters w and b in order to maximize this
distance. Thus the maximum margin solution is found by solving

arg max
w,b

{
1

∥w∥ min
n

[
tn

(
wTφ(xn) + b

)]}
(7.3)

where we have taken the factor 1/∥w∥ outside the optimization over n because w

7.1. Maximum Margin Classifiers 327

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest
of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by a subset of the data points,
known as support vectors, which are indicated by the circles.

having a common parameter σ2. Together with the class priors, this defines an opti-
mal misclassification-rate decision boundary. However, instead of using this optimal
boundary, they determine the best hyperplane by minimizing the probability of error
relative to the learned density model. In the limit σ2 → 0, the optimal hyperplane
is shown to be the one having maximum margin. The intuition behind this result is
that as σ2 is reduced, the hyperplane is increasingly dominated by nearby data points
relative to more distant ones. In the limit, the hyperplane becomes independent of
data points that are not support vectors.

We shall see in Figure 10.13 that marginalization with respect to the prior distri-
bution of the parameters in a Bayesian approach for a simple linearly separable data
set leads to a decision boundary that lies in the middle of the region separating the
data points. The large margin solution has similar behaviour.

Recall from Figure 4.1 that the perpendicular distance of a point x from a hyper-
plane defined by y(x) = 0 where y(x) takes the form (7.1) is given by |y(x)|/∥w∥.
Furthermore, we are only interested in solutions for which all data points are cor-
rectly classified, so that tny(xn) > 0 for all n. Thus the distance of a point xn to the
decision surface is given by

tny(xn)
∥w∥ =

tn(wTφ(xn) + b)
∥w∥ . (7.2)

The margin is given by the perpendicular distance to the closest point xn from the
data set, and we wish to optimize the parameters w and b in order to maximize this
distance. Thus the maximum margin solution is found by solving

arg max
w,b

{
1

∥w∥ min
n

[
tn

(
wTφ(xn) + b

)]}
(7.3)

where we have taken the factor 1/∥w∥ outside the optimization over n because w

(b est équivalent à w0)

Sujets:

HUGO LAROCHELLE

• La marge est la même si on multiplie
w et b par un constante (a)

• On va donc contraindre la solution pour que

pour (xn,tn) le plus proche de la surface de décision

MACHINE À VECTEURS DE SUPPORT

12

classifieur à marge maximale
> 0

< 0

tn(awT(xn) + ab)

a||w||

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

Sujets:

HUGO LAROCHELLE

• La marge est la même si on multiplie
w et b par un constante (a)

• On va donc contraindre la solution pour que

pour (xn,tn) le plus proche de la surface de décision

MACHINE À VECTEURS DE SUPPORT

12

classifieur à marge maximale
> 0

< 0

tn(awT(xn) + ab)

a||w||

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

Sujets:

HUGO LAROCHELLE

• La marge est la même si on multiplie
w et b par un constante (a)

• On va donc contraindre la solution pour que

pour (xn,tn) le plus proche de la surface de décision

MACHINE À VECTEURS DE SUPPORT

12

classifieur à marge maximale

tn(awT(xn) + ab)

a||w||

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

Sujets:

HUGO LAROCHELLE

• Exemple :

MACHINE À VECTEURS DE SUPPORT

13

classifieur à marge maximale

Sujets:

HUGO LAROCHELLE

• En supposant que l’ensemble d’entraînement est
linéairement séparable, on a :

• Ce problème d’optimisation est un programme quadratique

‣ il existe des librairies pouvant le résoudre numériquement en O(D3)

MACHINE À VECTEURS DE SUPPORT

14

classifieur à marge maximale

7.1. Maximum Margin Classifiers 327

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest
of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by a subset of the data points,
known as support vectors, which are indicated by the circles.

having a common parameter σ2. Together with the class priors, this defines an opti-
mal misclassification-rate decision boundary. However, instead of using this optimal
boundary, they determine the best hyperplane by minimizing the probability of error
relative to the learned density model. In the limit σ2 → 0, the optimal hyperplane
is shown to be the one having maximum margin. The intuition behind this result is
that as σ2 is reduced, the hyperplane is increasingly dominated by nearby data points
relative to more distant ones. In the limit, the hyperplane becomes independent of
data points that are not support vectors.

We shall see in Figure 10.13 that marginalization with respect to the prior distri-
bution of the parameters in a Bayesian approach for a simple linearly separable data
set leads to a decision boundary that lies in the middle of the region separating the
data points. The large margin solution has similar behaviour.

Recall from Figure 4.1 that the perpendicular distance of a point x from a hyper-
plane defined by y(x) = 0 where y(x) takes the form (7.1) is given by |y(x)|/∥w∥.
Furthermore, we are only interested in solutions for which all data points are cor-
rectly classified, so that tny(xn) > 0 for all n. Thus the distance of a point xn to the
decision surface is given by

tny(xn)
∥w∥ =

tn(wTφ(xn) + b)
∥w∥ . (7.2)

The margin is given by the perpendicular distance to the closest point xn from the
data set, and we wish to optimize the parameters w and b in order to maximize this
distance. Thus the maximum margin solution is found by solving

arg max
w,b

{
1

∥w∥ min
n

[
tn

(
wTφ(xn) + b

)]}
(7.3)

where we have taken the factor 1/∥w∥ outside the optimization over n because w

Sujets:

HUGO LAROCHELLE

• En supposant que l’ensemble d’entraînement est
linéairement séparable, on a :

• Ce problème d’optimisation est un programme quadratique

‣ il existe des librairies pouvant le résoudre numériquement en O(D3)

MACHINE À VECTEURS DE SUPPORT

14

classifieur à marge maximale

7.1. Maximum Margin Classifiers 327

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest
of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by a subset of the data points,
known as support vectors, which are indicated by the circles.

having a common parameter σ2. Together with the class priors, this defines an opti-
mal misclassification-rate decision boundary. However, instead of using this optimal
boundary, they determine the best hyperplane by minimizing the probability of error
relative to the learned density model. In the limit σ2 → 0, the optimal hyperplane
is shown to be the one having maximum margin. The intuition behind this result is
that as σ2 is reduced, the hyperplane is increasingly dominated by nearby data points
relative to more distant ones. In the limit, the hyperplane becomes independent of
data points that are not support vectors.

We shall see in Figure 10.13 that marginalization with respect to the prior distri-
bution of the parameters in a Bayesian approach for a simple linearly separable data
set leads to a decision boundary that lies in the middle of the region separating the
data points. The large margin solution has similar behaviour.

Recall from Figure 4.1 that the perpendicular distance of a point x from a hyper-
plane defined by y(x) = 0 where y(x) takes the form (7.1) is given by |y(x)|/∥w∥.
Furthermore, we are only interested in solutions for which all data points are cor-
rectly classified, so that tny(xn) > 0 for all n. Thus the distance of a point xn to the
decision surface is given by

tny(xn)
∥w∥ =

tn(wTφ(xn) + b)
∥w∥ . (7.2)

The margin is given by the perpendicular distance to the closest point xn from the
data set, and we wish to optimize the parameters w and b in order to maximize this
distance. Thus the maximum margin solution is found by solving

arg max
w,b

{
1

∥w∥ min
n

[
tn

(
wTφ(xn) + b

)]}
(7.3)

where we have taken the factor 1/∥w∥ outside the optimization over n because w
=1

Sujets:

HUGO LAROCHELLE

• En supposant que l’ensemble d’entraînement est
linéairement séparable, on a :

• Ce problème d’optimisation est un programme quadratique

‣ il existe des librairies pouvant le résoudre numériquement en O(D3)

MACHINE À VECTEURS DE SUPPORT

14

classifieur à marge maximale

7.1. Maximum Margin Classifiers 327

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest
of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by a subset of the data points,
known as support vectors, which are indicated by the circles.

having a common parameter σ2. Together with the class priors, this defines an opti-
mal misclassification-rate decision boundary. However, instead of using this optimal
boundary, they determine the best hyperplane by minimizing the probability of error
relative to the learned density model. In the limit σ2 → 0, the optimal hyperplane
is shown to be the one having maximum margin. The intuition behind this result is
that as σ2 is reduced, the hyperplane is increasingly dominated by nearby data points
relative to more distant ones. In the limit, the hyperplane becomes independent of
data points that are not support vectors.

We shall see in Figure 10.13 that marginalization with respect to the prior distri-
bution of the parameters in a Bayesian approach for a simple linearly separable data
set leads to a decision boundary that lies in the middle of the region separating the
data points. The large margin solution has similar behaviour.

Recall from Figure 4.1 that the perpendicular distance of a point x from a hyper-
plane defined by y(x) = 0 where y(x) takes the form (7.1) is given by |y(x)|/∥w∥.
Furthermore, we are only interested in solutions for which all data points are cor-
rectly classified, so that tny(xn) > 0 for all n. Thus the distance of a point xn to the
decision surface is given by

tny(xn)
∥w∥ =

tn(wTφ(xn) + b)
∥w∥ . (7.2)

The margin is given by the perpendicular distance to the closest point xn from the
data set, and we wish to optimize the parameters w and b in order to maximize this
distance. Thus the maximum margin solution is found by solving

arg max
w,b

{
1

∥w∥ min
n

[
tn

(
wTφ(xn) + b

)]}
(7.3)

where we have taken the factor 1/∥w∥ outside the optimization over n because w

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.
pour

devient

=1

Apprentissage automatique
Machine à vecteurs de support - représentation duale

Sujets:

HUGO LAROCHELLE

• Si on suppose la séparabilité linéaire, on doit optimiser

• C’est un problème d’optimisation (quadratique)
avec N contraintes

MACHINE À VECTEURS DE SUPPORT

16

classifieur à marge maximale

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.
pour

Sujets:

HUGO LAROCHELLE

• On peut enlever les contraintes en introduisant des
multiplicateurs de Lagrange (voir Bishop, appendice E)

où les multiplicateurs sont an ≥0

MACHINE À VECTEURS DE SUPPORT

17

classifieur à marge maximale

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

Sujets:

HUGO LAROCHELLE

• On peut enlever les contraintes en introduisant des
multiplicateurs de Lagrange (voir Bishop, appendice E)

• En annulant les dérivées, on obtient les conditions

MACHINE À VECTEURS DE SUPPORT

18

classifieur à marge maximale

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

Sujets:

HUGO LAROCHELLE

• On peut enlever les contraintes en introduisant des
multiplicateurs de Lagrange (voir Bishop, appendice E)

• En annulant les dérivées, on obtient les conditions

MACHINE À VECTEURS DE SUPPORT

18

classifieur à marge maximale

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

on peut exprimer w comme une
combinaison linéaire des entées{

Sujets:

HUGO LAROCHELLE

• On peut alors réécrire L(w,b,a) comme suit :

où on a toujours an ≥0 et

• Programme quadratique de complexité dans O(N3)

• C’est la représentation duale du SVM

‣ nous permet d’utiliser l’astuce du noyau

REPRÉSENTATION DUALE

19

représentation duale, astuce du noyau

7.1. Maximum Margin Classifiers 329

Eliminating w and b from L(w, b,a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.10)

with respect to a subject to the constraints

an ! 0, n = 1, . . . , N, (7.11)
N∑

n=1

antn = 0. (7.12)

Here the kernel function is defined by k(x,x′) = φ(x)Tφ(x′). Again, this takes the
form of a quadratic programming problem in which we optimize a quadratic function
of a subject to a set of inequality constraints. We shall discuss techniques for solving
such quadratic programming problems in Section 7.1.1.

The solution to a quadratic programming problem in M variables in general has
computational complexity that is O(M3). In going to the dual formulation we have
turned the original optimization problem, which involved minimizing (7.6) over M
variables, into the dual problem (7.10), which has N variables. For a fixed set of
basis functions whose number M is smaller than the number N of data points, the
move to the dual problem appears disadvantageous. However, it allows the model to
be reformulated using kernels, and so the maximum margin classifier can be applied
efficiently to feature spaces whose dimensionality exceeds the number of data points,
including infinite feature spaces. The kernel formulation also makes clear the role
of the constraint that the kernel function k(x,x′) be positive definite, because this
ensures that the Lagrangian function L̃(a) is bounded below, giving rise to a well-
defined optimization problem.

In order to classify new data points using the trained model, we evaluate the sign
of y(x) defined by (7.1). This can be expressed in terms of the parameters {an} and
the kernel function by substituting for w using (7.8) to give

y(x) =
N∑

n=1

antnk(x,xn) + b. (7.13)

Joseph-Louis Lagrange
1736–1813

Although widely considered to be
a French mathematician, Lagrange
was born in Turin in Italy. By the age
of nineteen, he had already made
important contributions mathemat-
ics and had been appointed as Pro-

fessor at the Royal Artillery School in Turin. For many

years, Euler worked hard to persuade Lagrange to
move to Berlin, which he eventually did in 1766 where
he succeeded Euler as Director of Mathematics at
the Berlin Academy. Later he moved to Paris, nar-
rowly escaping with his life during the French revo-
lution thanks to the personal intervention of Lavoisier
(the French chemist who discovered oxygen) who him-
self was later executed at the guillotine. Lagrange
made key contributions to the calculus of variations
and the foundations of dynamics.

7.1. Maximum Margin Classifiers 329

Eliminating w and b from L(w, b,a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.10)

with respect to a subject to the constraints

an ! 0, n = 1, . . . , N, (7.11)
N∑

n=1

antn = 0. (7.12)

Here the kernel function is defined by k(x,x′) = φ(x)Tφ(x′). Again, this takes the
form of a quadratic programming problem in which we optimize a quadratic function
of a subject to a set of inequality constraints. We shall discuss techniques for solving
such quadratic programming problems in Section 7.1.1.

The solution to a quadratic programming problem in M variables in general has
computational complexity that is O(M3). In going to the dual formulation we have
turned the original optimization problem, which involved minimizing (7.6) over M
variables, into the dual problem (7.10), which has N variables. For a fixed set of
basis functions whose number M is smaller than the number N of data points, the
move to the dual problem appears disadvantageous. However, it allows the model to
be reformulated using kernels, and so the maximum margin classifier can be applied
efficiently to feature spaces whose dimensionality exceeds the number of data points,
including infinite feature spaces. The kernel formulation also makes clear the role
of the constraint that the kernel function k(x,x′) be positive definite, because this
ensures that the Lagrangian function L̃(a) is bounded below, giving rise to a well-
defined optimization problem.

In order to classify new data points using the trained model, we evaluate the sign
of y(x) defined by (7.1). This can be expressed in terms of the parameters {an} and
the kernel function by substituting for w using (7.8) to give

y(x) =
N∑

n=1

antnk(x,xn) + b. (7.13)

Joseph-Louis Lagrange
1736–1813

Although widely considered to be
a French mathematician, Lagrange
was born in Turin in Italy. By the age
of nineteen, he had already made
important contributions mathemat-
ics and had been appointed as Pro-

fessor at the Royal Artillery School in Turin. For many

years, Euler worked hard to persuade Lagrange to
move to Berlin, which he eventually did in 1766 where
he succeeded Euler as Director of Mathematics at
the Berlin Academy. Later he moved to Paris, nar-
rowly escaping with his life during the French revo-
lution thanks to the personal intervention of Lavoisier
(the French chemist who discovered oxygen) who him-
self was later executed at the guillotine. Lagrange
made key contributions to the calculus of variations
and the foundations of dynamics.

{

6.1. Dual Representations 293

6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN)T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN)T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN)−1 t. (6.8)

Sujets:

HUGO LAROCHELLE

• On peut démontrer que la solution satisfait

• Lié avec les conditions Karush-Kuhn-Tucker (KKT)
(voir Bishop, appendice E)

• Les xn tels que an > 0 sont appelés

vecteurs de support

VECTEURS DE SUPPORT

20

classifieur à marge maximale

330 7. SPARSE KERNEL MACHINES

In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

an ! 0 (7.14)
tny(xn) − 1 ! 0 (7.15)

an {tny(xn) − 1} = 0. (7.16)

Thus for every data point, either an = 0 or tny(xn) = 1. Any data point for
which an = 0 will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector xn satisfies tny(xn) = 1. Using (7.13) this gives

tn

(
∑

m∈S

amtmk(xn,xm) + b

)
= 1 (7.17)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector xn, a numerically more
stable solution is obtained by first multiplying through by tn, making use of t2n = 1,
and then averaging these equations over all support vectors and solving for b to give

b =
1

NS

∑

n∈S

(
tn −

∑

m∈S

amtmk(xn,xm)

)
(7.18)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum-

margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

N∑

n=1

E∞(y(xn)tn − 1) + λ∥w∥2 (7.19)

where E∞(z) is a function that is zero if z ! 0 and ∞ otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the

Sujets:

HUGO LAROCHELLE

• On peut démontrer que la solution satisfait

• Lié avec les conditions Karush-Kuhn-Tucker (KKT)
(voir Bishop, appendice E)

• Les xn tels que an > 0 sont appelés

vecteurs de support

VECTEURS DE SUPPORT

20

classifieur à marge maximale

330 7. SPARSE KERNEL MACHINES

In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

an ! 0 (7.14)
tny(xn) − 1 ! 0 (7.15)

an {tny(xn) − 1} = 0. (7.16)

Thus for every data point, either an = 0 or tny(xn) = 1. Any data point for
which an = 0 will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector xn satisfies tny(xn) = 1. Using (7.13) this gives

tn

(
∑

m∈S

amtmk(xn,xm) + b

)
= 1 (7.17)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector xn, a numerically more
stable solution is obtained by first multiplying through by tn, making use of t2n = 1,
and then averaging these equations over all support vectors and solving for b to give

b =
1

NS

∑

n∈S

(
tn −

∑

m∈S

amtmk(xn,xm)

)
(7.18)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum-

margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

N∑

n=1

E∞(y(xn)tn − 1) + λ∥w∥2 (7.19)

where E∞(z) is a function that is zero if z ! 0 and ∞ otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the

implique

Pour chaque n

330 7. SPARSE KERNEL MACHINES

In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

an ! 0 (7.14)
tny(xn) − 1 ! 0 (7.15)

an {tny(xn) − 1} = 0. (7.16)

Thus for every data point, either an = 0 or tny(xn) = 1. Any data point for
which an = 0 will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector xn satisfies tny(xn) = 1. Using (7.13) this gives

tn

(
∑

m∈S

amtmk(xn,xm) + b

)
= 1 (7.17)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector xn, a numerically more
stable solution is obtained by first multiplying through by tn, making use of t2n = 1,
and then averaging these equations over all support vectors and solving for b to give

b =
1

NS

∑

n∈S

(
tn −

∑

m∈S

amtmk(xn,xm)

)
(7.18)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum-

margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

N∑

n=1

E∞(y(xn)tn − 1) + λ∥w∥2 (7.19)

where E∞(z) is a function that is zero if z ! 0 and ∞ otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the

330 7. SPARSE KERNEL MACHINES

In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

an ! 0 (7.14)
tny(xn) − 1 ! 0 (7.15)

an {tny(xn) − 1} = 0. (7.16)

Thus for every data point, either an = 0 or tny(xn) = 1. Any data point for
which an = 0 will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector xn satisfies tny(xn) = 1. Using (7.13) this gives

tn

(
∑

m∈S

amtmk(xn,xm) + b

)
= 1 (7.17)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector xn, a numerically more
stable solution is obtained by first multiplying through by tn, making use of t2n = 1,
and then averaging these equations over all support vectors and solving for b to give

b =
1

NS

∑

n∈S

(
tn −

∑

m∈S

amtmk(xn,xm)

)
(7.18)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum-

margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

N∑

n=1

E∞(y(xn)tn − 1) + λ∥w∥2 (7.19)

where E∞(z) is a function that is zero if z ! 0 and ∞ otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the

ou

Sujets:

HUGO LAROCHELLE

• Exemple :

VECTEURS DE SUPPORT

21

classifieur à marge maximale, vecteurs de support

330 7. SPARSE KERNEL MACHINES

In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

an ! 0 (7.14)
tny(xn) − 1 ! 0 (7.15)

an {tny(xn) − 1} = 0. (7.16)

Thus for every data point, either an = 0 or tny(xn) = 1. Any data point for
which an = 0 will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector xn satisfies tny(xn) = 1. Using (7.13) this gives

tn

(
∑

m∈S

amtmk(xn,xm) + b

)
= 1 (7.17)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector xn, a numerically more
stable solution is obtained by first multiplying through by tn, making use of t2n = 1,
and then averaging these equations over all support vectors and solving for b to give

b =
1

NS

∑

n∈S

(
tn −

∑

m∈S

amtmk(xn,xm)

)
(7.18)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum-

margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

N∑

n=1

E∞(y(xn)tn − 1) + λ∥w∥2 (7.19)

where E∞(z) is a function that is zero if z ! 0 and ∞ otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the

vecteurs de
support

Sujets:

HUGO LAROCHELLE

• Exemple :

VECTEURS DE SUPPORT

21

classifieur à marge maximale, vecteurs de support

330 7. SPARSE KERNEL MACHINES

In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

an ! 0 (7.14)
tny(xn) − 1 ! 0 (7.15)

an {tny(xn) − 1} = 0. (7.16)

Thus for every data point, either an = 0 or tny(xn) = 1. Any data point for
which an = 0 will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector xn satisfies tny(xn) = 1. Using (7.13) this gives

tn

(
∑

m∈S

amtmk(xn,xm) + b

)
= 1 (7.17)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector xn, a numerically more
stable solution is obtained by first multiplying through by tn, making use of t2n = 1,
and then averaging these equations over all support vectors and solving for b to give

b =
1

NS

∑

n∈S

(
tn −

∑

m∈S

amtmk(xn,xm)

)
(7.18)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum-

margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

N∑

n=1

E∞(y(xn)tn − 1) + λ∥w∥2 (7.19)

where E∞(z) is a function that is zero if z ! 0 and ∞ otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the

330 7. SPARSE KERNEL MACHINES

In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

an ! 0 (7.14)
tny(xn) − 1 ! 0 (7.15)

an {tny(xn) − 1} = 0. (7.16)

Thus for every data point, either an = 0 or tny(xn) = 1. Any data point for
which an = 0 will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector xn satisfies tny(xn) = 1. Using (7.13) this gives

tn

(
∑

m∈S

amtmk(xn,xm) + b

)
= 1 (7.17)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector xn, a numerically more
stable solution is obtained by first multiplying through by tn, making use of t2n = 1,
and then averaging these equations over all support vectors and solving for b to give

b =
1

NS

∑

n∈S

(
tn −

∑

m∈S

amtmk(xn,xm)

)
(7.18)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum-

margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

N∑

n=1

E∞(y(xn)tn − 1) + λ∥w∥2 (7.19)

where E∞(z) is a function that is zero if z ! 0 and ∞ otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the

vecteurs de
support

Sujets:

HUGO LAROCHELLE

• Exemple :

VECTEURS DE SUPPORT

21

classifieur à marge maximale, vecteurs de support

330 7. SPARSE KERNEL MACHINES

In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

an ! 0 (7.14)
tny(xn) − 1 ! 0 (7.15)

an {tny(xn) − 1} = 0. (7.16)

Thus for every data point, either an = 0 or tny(xn) = 1. Any data point for
which an = 0 will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector xn satisfies tny(xn) = 1. Using (7.13) this gives

tn

(
∑

m∈S

amtmk(xn,xm) + b

)
= 1 (7.17)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector xn, a numerically more
stable solution is obtained by first multiplying through by tn, making use of t2n = 1,
and then averaging these equations over all support vectors and solving for b to give

b =
1

NS

∑

n∈S

(
tn −

∑

m∈S

amtmk(xn,xm)

)
(7.18)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum-

margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

N∑

n=1

E∞(y(xn)tn − 1) + λ∥w∥2 (7.19)

where E∞(z) is a function that is zero if z ! 0 and ∞ otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the

330 7. SPARSE KERNEL MACHINES

In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

an ! 0 (7.14)
tny(xn) − 1 ! 0 (7.15)

an {tny(xn) − 1} = 0. (7.16)

Thus for every data point, either an = 0 or tny(xn) = 1. Any data point for
which an = 0 will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector xn satisfies tny(xn) = 1. Using (7.13) this gives

tn

(
∑

m∈S

amtmk(xn,xm) + b

)
= 1 (7.17)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector xn, a numerically more
stable solution is obtained by first multiplying through by tn, making use of t2n = 1,
and then averaging these equations over all support vectors and solving for b to give

b =
1

NS

∑

n∈S

(
tn −

∑

m∈S

amtmk(xn,xm)

)
(7.18)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum-

margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

N∑

n=1

E∞(y(xn)tn − 1) + λ∥w∥2 (7.19)

where E∞(z) is a function that is zero if z ! 0 and ∞ otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the

vecteurs de
support

Sujets:

HUGO LAROCHELLE

• Exemple :

VECTEURS DE SUPPORT

21

classifieur à marge maximale, vecteurs de support

330 7. SPARSE KERNEL MACHINES

In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

an ! 0 (7.14)
tny(xn) − 1 ! 0 (7.15)

an {tny(xn) − 1} = 0. (7.16)

Thus for every data point, either an = 0 or tny(xn) = 1. Any data point for
which an = 0 will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector xn satisfies tny(xn) = 1. Using (7.13) this gives

tn

(
∑

m∈S

amtmk(xn,xm) + b

)
= 1 (7.17)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector xn, a numerically more
stable solution is obtained by first multiplying through by tn, making use of t2n = 1,
and then averaging these equations over all support vectors and solving for b to give

b =
1

NS

∑

n∈S

(
tn −

∑

m∈S

amtmk(xn,xm)

)
(7.18)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum-

margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

N∑

n=1

E∞(y(xn)tn − 1) + λ∥w∥2 (7.19)

where E∞(z) is a function that is zero if z ! 0 and ∞ otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the

330 7. SPARSE KERNEL MACHINES

In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

an ! 0 (7.14)
tny(xn) − 1 ! 0 (7.15)

an {tny(xn) − 1} = 0. (7.16)

Thus for every data point, either an = 0 or tny(xn) = 1. Any data point for
which an = 0 will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector xn satisfies tny(xn) = 1. Using (7.13) this gives

tn

(
∑

m∈S

amtmk(xn,xm) + b

)
= 1 (7.17)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector xn, a numerically more
stable solution is obtained by first multiplying through by tn, making use of t2n = 1,
and then averaging these equations over all support vectors and solving for b to give

b =
1

NS

∑

n∈S

(
tn −

∑

m∈S

amtmk(xn,xm)

)
(7.18)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum-

margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

N∑

n=1

E∞(y(xn)tn − 1) + λ∥w∥2 (7.19)

where E∞(z) is a function that is zero if z ! 0 and ∞ otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the

Solution aurait été
identique, même si les
points n’avaient pas
été dans l’ensemble

d’entraînement!

vecteurs de
support

Sujets:

HUGO LAROCHELLE

• Prédiction, dans la représentation duale

MACHINE À VECTEURS DE SUPPORT À NOYAU

22

SVM à noyau

y(x) = w

T�(x) + b

=

NX

n=1

antn�(xn)

!T

�(x) + b

=
NX

n=1

antnk(xn,x) + b
seulement les vecteurs de

support vont voter !

Sujets:

HUGO LAROCHELLE

• Exemple avec noyau gaussien

MACHINE À VECTEURS DE SUPPORT À NOYAU

23

SVM à noyau
7.1. Maximum Margin Classifiers 331

Figure 7.2 Example of synthetic data from
two classes in two dimensions
showing contours of constant
y(x) obtained from a support
vector machine having a Gaus-
sian kernel function. Also shown
are the decision boundary, the
margin boundaries, and the sup-
port vectors.

form (6.23). Although the data set is not linearly separable in the two-dimensional
data space x, it is linearly separable in the nonlinear feature space defined implicitly
by the nonlinear kernel function. Thus the training data points are perfectly separated
in the original data space.

This example also provides a geometrical insight into the origin of sparsity in
the SVM. The maximum margin hyperplane is defined by the location of the support
vectors. Other data points can be moved around freely (so long as they remain out-
side the margin region) without changing the decision boundary, and so the solution
will be independent of such data points.

7.1.1 Overlapping class distributions
So far, we have assumed that the training data points are linearly separable in the

feature space φ(x). The resulting support vector machine will give exact separation
of the training data in the original input space x, although the corresponding decision
boundary will be nonlinear. In practice, however, the class-conditional distributions
may overlap, in which case exact separation of the training data can lead to poor
generalization.

We therefore need a way to modify the support vector machine so as to allow
some of the training points to be misclassified. From (7.19) we see that in the case
of separable classes, we implicitly used an error function that gave infinite error
if a data point was misclassified and zero error if it was classified correctly, and
then optimized the model parameters to maximize the margin. We now modify this
approach so that data points are allowed to be on the ‘wrong side’ of the margin
boundary, but with a penalty that increases with the distance from that boundary. For
the subsequent optimization problem, it is convenient to make this penalty a linear
function of this distance. To do this, we introduce slack variables, ξn ! 0 where
n = 1, . . . , N , with one slack variable for each training data point (Bennett, 1992;
Cortes and Vapnik, 1995). These are defined by ξn = 0 for data points that are on or
inside the correct margin boundary and ξn = |tn − y(xn)| for other points. Thus a
data point that is on the decision boundary y(xn) = 0 will have ξn = 1, and points

y(x) =
NX

n=1

antnk(xn,x) + b

vecteurs de support

Sujets:

HUGO LAROCHELLE

• Exemple avec noyau gaussien

MACHINE À VECTEURS DE SUPPORT À NOYAU

23

SVM à noyau
7.1. Maximum Margin Classifiers 331

Figure 7.2 Example of synthetic data from
two classes in two dimensions
showing contours of constant
y(x) obtained from a support
vector machine having a Gaus-
sian kernel function. Also shown
are the decision boundary, the
margin boundaries, and the sup-
port vectors.

form (6.23). Although the data set is not linearly separable in the two-dimensional
data space x, it is linearly separable in the nonlinear feature space defined implicitly
by the nonlinear kernel function. Thus the training data points are perfectly separated
in the original data space.

This example also provides a geometrical insight into the origin of sparsity in
the SVM. The maximum margin hyperplane is defined by the location of the support
vectors. Other data points can be moved around freely (so long as they remain out-
side the margin region) without changing the decision boundary, and so the solution
will be independent of such data points.

7.1.1 Overlapping class distributions
So far, we have assumed that the training data points are linearly separable in the

feature space φ(x). The resulting support vector machine will give exact separation
of the training data in the original input space x, although the corresponding decision
boundary will be nonlinear. In practice, however, the class-conditional distributions
may overlap, in which case exact separation of the training data can lead to poor
generalization.

We therefore need a way to modify the support vector machine so as to allow
some of the training points to be misclassified. From (7.19) we see that in the case
of separable classes, we implicitly used an error function that gave infinite error
if a data point was misclassified and zero error if it was classified correctly, and
then optimized the model parameters to maximize the margin. We now modify this
approach so that data points are allowed to be on the ‘wrong side’ of the margin
boundary, but with a penalty that increases with the distance from that boundary. For
the subsequent optimization problem, it is convenient to make this penalty a linear
function of this distance. To do this, we introduce slack variables, ξn ! 0 where
n = 1, . . . , N , with one slack variable for each training data point (Bennett, 1992;
Cortes and Vapnik, 1995). These are defined by ξn = 0 for data points that are on or
inside the correct margin boundary and ξn = |tn − y(xn)| for other points. Thus a
data point that is on the decision boundary y(xn) = 0 will have ξn = 1, and points

y(x) =
NX

n=1

antnk(xn,x) + b

vecteurs de support

Apprentissage automatique
Machine à vecteurs de support - chevauchement de classes

Sujets:

HUGO LAROCHELLE

• En supposant que l’ensemble d’entraînement est
linéairement séparable, on a :

• Ce problème d’optimisation est un programme quadratique

‣ il existe des librairies pouvant le résoudre numériquement

MACHINE À VECTEURS DE SUPPORT

25

classifieur à marge maximale

7.1. Maximum Margin Classifiers 327

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest
of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by a subset of the data points,
known as support vectors, which are indicated by the circles.

having a common parameter σ2. Together with the class priors, this defines an opti-
mal misclassification-rate decision boundary. However, instead of using this optimal
boundary, they determine the best hyperplane by minimizing the probability of error
relative to the learned density model. In the limit σ2 → 0, the optimal hyperplane
is shown to be the one having maximum margin. The intuition behind this result is
that as σ2 is reduced, the hyperplane is increasingly dominated by nearby data points
relative to more distant ones. In the limit, the hyperplane becomes independent of
data points that are not support vectors.

We shall see in Figure 10.13 that marginalization with respect to the prior distri-
bution of the parameters in a Bayesian approach for a simple linearly separable data
set leads to a decision boundary that lies in the middle of the region separating the
data points. The large margin solution has similar behaviour.

Recall from Figure 4.1 that the perpendicular distance of a point x from a hyper-
plane defined by y(x) = 0 where y(x) takes the form (7.1) is given by |y(x)|/∥w∥.
Furthermore, we are only interested in solutions for which all data points are cor-
rectly classified, so that tny(xn) > 0 for all n. Thus the distance of a point xn to the
decision surface is given by

tny(xn)
∥w∥ =

tn(wTφ(xn) + b)
∥w∥ . (7.2)

The margin is given by the perpendicular distance to the closest point xn from the
data set, and we wish to optimize the parameters w and b in order to maximize this
distance. Thus the maximum margin solution is found by solving

arg max
w,b

{
1

∥w∥ min
n

[
tn

(
wTφ(xn) + b

)]}
(7.3)

where we have taken the factor 1/∥w∥ outside the optimization over n because w

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.
pour

devient

=1

RAPPEL

Sujets:

HUGO LAROCHELLE

• En supposant que l’ensemble d’entraînement est
linéairement séparable, on a :

• Ce problème d’optimisation est un programme quadratique

‣ il existe des librairies pouvant le résoudre numériquement

MACHINE À VECTEURS DE SUPPORT

25

classifieur à marge maximale

7.1. Maximum Margin Classifiers 327

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest
of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by a subset of the data points,
known as support vectors, which are indicated by the circles.

having a common parameter σ2. Together with the class priors, this defines an opti-
mal misclassification-rate decision boundary. However, instead of using this optimal
boundary, they determine the best hyperplane by minimizing the probability of error
relative to the learned density model. In the limit σ2 → 0, the optimal hyperplane
is shown to be the one having maximum margin. The intuition behind this result is
that as σ2 is reduced, the hyperplane is increasingly dominated by nearby data points
relative to more distant ones. In the limit, the hyperplane becomes independent of
data points that are not support vectors.

We shall see in Figure 10.13 that marginalization with respect to the prior distri-
bution of the parameters in a Bayesian approach for a simple linearly separable data
set leads to a decision boundary that lies in the middle of the region separating the
data points. The large margin solution has similar behaviour.

Recall from Figure 4.1 that the perpendicular distance of a point x from a hyper-
plane defined by y(x) = 0 where y(x) takes the form (7.1) is given by |y(x)|/∥w∥.
Furthermore, we are only interested in solutions for which all data points are cor-
rectly classified, so that tny(xn) > 0 for all n. Thus the distance of a point xn to the
decision surface is given by

tny(xn)
∥w∥ =

tn(wTφ(xn) + b)
∥w∥ . (7.2)

The margin is given by the perpendicular distance to the closest point xn from the
data set, and we wish to optimize the parameters w and b in order to maximize this
distance. Thus the maximum margin solution is found by solving

arg max
w,b

{
1

∥w∥ min
n

[
tn

(
wTφ(xn) + b

)]}
(7.3)

where we have taken the factor 1/∥w∥ outside the optimization over n because w

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.
pour

devient

=1

RAPPEL

Quoi faire s’il y a :
- des erreurs dans l’ensemble d’entraînement
- des exemples exceptionnellement difficiles à classifier

Sujets:

HUGO LAROCHELLE

• Quoi s’il y a chevauchement entre les classes ?

CHEVAUCHEMENT DE CLASSES

26

chevauchement de classes
7.1. Maximum Margin Classifiers 335

Figure 7.4 Illustration of the ν-SVM applied
to a nonseparable data set in two
dimensions. The support vectors
are indicated by circles.

−2 0 2

−2

0

2

the quadratic programming problem. We first note that the objective function L̃(a)
given by (7.10) or (7.32) is quadratic and so any local optimum will also be a global
optimum provided the constraints define a convex region (which they do as a conse-
quence of being linear). Direct solution of the quadratic programming problem us-
ing traditional techniques is often infeasible due to the demanding computation and
memory requirements, and so more practical approaches need to be found. The tech-
nique of chunking (Vapnik, 1982) exploits the fact that the value of the Lagrangian
is unchanged if we remove the rows and columns of the kernel matrix corresponding
to Lagrange multipliers that have value zero. This allows the full quadratic pro-
gramming problem to be broken down into a series of smaller ones, whose goal is
eventually to identify all of the nonzero Lagrange multipliers and discard the others.
Chunking can be implemented using protected conjugate gradients (Burges, 1998).
Although chunking reduces the size of the matrix in the quadratic function from the
number of data points squared to approximately the number of nonzero Lagrange
multipliers squared, even this may be too big to fit in memory for large-scale appli-
cations. Decomposition methods (Osuna et al., 1996) also solve a series of smaller
quadratic programming problems but are designed so that each of these is of a fixed
size, and so the technique can be applied to arbitrarily large data sets. However, it
still involves numerical solution of quadratic programming subproblems and these
can be problematic and expensive. One of the most popular approaches to training
support vector machines is called sequential minimal optimization, or SMO (Platt,
1999). It takes the concept of chunking to the extreme limit and considers just two
Lagrange multipliers at a time. In this case, the subproblem can be solved analyti-
cally, thereby avoiding numerical quadratic programming altogether. Heuristics are
given for choosing the pair of Lagrange multipliers to be considered at each step.
In practice, SMO is found to have a scaling with the number of data points that is
somewhere between linear and quadratic depending on the particular application.

We have seen that kernel functions correspond to inner products in feature spaces
that can have high, or even infinite, dimensionality. By working directly in terms of
the kernel function, without introducing the feature space explicitly, it might there-
fore seem that support vector machines somehow manage to avoid the curse of di-

Sujets:

HUGO LAROCHELLE

• On va permettre que des exemples ne respectent pas la
contrainte de marge

• Les sont des variables variables de ressort

‣ elles correspondent aux violations des contraintes de marge

CHEVAUCHEMENT DE CLASSES

27

variables de ressort (slack variables)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.
pour

devient

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.

pour

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

+

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

⇠n

⇠n

Sujets:

HUGO LAROCHELLE

• On va permettre que des exemples ne respectent pas la
contrainte de marge

• Les sont des variables variables de ressort

‣ elles correspondent aux violations des contraintes de marge

CHEVAUCHEMENT DE CLASSES

27

variables de ressort (slack variables)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.
pour

devient

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.

pour

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

+

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

⇠n

⇠n

Sujets:

HUGO LAROCHELLE

• On va permettre que des exemples ne respectent pas la
contrainte de marge

• Si est entre 0 et 1, l’exemple est quand même bien
classifié

CHEVAUCHEMENT DE CLASSES

28

variables de ressort (slack variables)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.
pour

devient

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.

pour

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

+

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

⇠n

⇠n

Sujets:

HUGO LAROCHELLE

• On va permettre que des exemples ne respectent pas la
contrainte de marge

• Si est plus grand que 1, l’exemple est du mauvais côté de
la surface de décision et est mal classifié

CHEVAUCHEMENT DE CLASSES

29

variables de ressort (slack variables)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.
pour

devient

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.

pour

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

+

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

⇠n

⇠n

Sujets:

HUGO LAROCHELLE

• On va permettre que des exemples ne respectent pas la
contrainte de marge

• La constante C > 0 est un hyper-paramètre

‣ plus il est petit, plus la capacité diminue (C=∞ revient au prob. original)

CHEVAUCHEMENT DE CLASSES

30

variables de ressort (slack variables)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.
pour

devient

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.

pour

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

+

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

⇠n

Sujets:

HUGO LAROCHELLE

• Exemple :

CHEVAUCHEMENT DE CLASSES

31

variables de ressort (slack variables)

vecteurs de support

Les entrées qui violent
les contraintes de marge

sont aussi des
vecteurs de support

Sujets:

HUGO LAROCHELLE

• On peut montrer que la représentation duale devient

où on a toujours C ≥an ≥0 et

• Reste un problème de programmation quadratique, mais les
contraintes changent

REPRÉSENTATION DUALE

32

représentation duale

7.1. Maximum Margin Classifiers 329

Eliminating w and b from L(w, b,a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.10)

with respect to a subject to the constraints

an ! 0, n = 1, . . . , N, (7.11)
N∑

n=1

antn = 0. (7.12)

Here the kernel function is defined by k(x,x′) = φ(x)Tφ(x′). Again, this takes the
form of a quadratic programming problem in which we optimize a quadratic function
of a subject to a set of inequality constraints. We shall discuss techniques for solving
such quadratic programming problems in Section 7.1.1.

The solution to a quadratic programming problem in M variables in general has
computational complexity that is O(M3). In going to the dual formulation we have
turned the original optimization problem, which involved minimizing (7.6) over M
variables, into the dual problem (7.10), which has N variables. For a fixed set of
basis functions whose number M is smaller than the number N of data points, the
move to the dual problem appears disadvantageous. However, it allows the model to
be reformulated using kernels, and so the maximum margin classifier can be applied
efficiently to feature spaces whose dimensionality exceeds the number of data points,
including infinite feature spaces. The kernel formulation also makes clear the role
of the constraint that the kernel function k(x,x′) be positive definite, because this
ensures that the Lagrangian function L̃(a) is bounded below, giving rise to a well-
defined optimization problem.

In order to classify new data points using the trained model, we evaluate the sign
of y(x) defined by (7.1). This can be expressed in terms of the parameters {an} and
the kernel function by substituting for w using (7.8) to give

y(x) =
N∑

n=1

antnk(x,xn) + b. (7.13)

Joseph-Louis Lagrange
1736–1813

Although widely considered to be
a French mathematician, Lagrange
was born in Turin in Italy. By the age
of nineteen, he had already made
important contributions mathemat-
ics and had been appointed as Pro-

fessor at the Royal Artillery School in Turin. For many

years, Euler worked hard to persuade Lagrange to
move to Berlin, which he eventually did in 1766 where
he succeeded Euler as Director of Mathematics at
the Berlin Academy. Later he moved to Paris, nar-
rowly escaping with his life during the French revo-
lution thanks to the personal intervention of Lavoisier
(the French chemist who discovered oxygen) who him-
self was later executed at the guillotine. Lagrange
made key contributions to the calculus of variations
and the foundations of dynamics.

7.1. Maximum Margin Classifiers 329

Eliminating w and b from L(w, b,a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.10)

with respect to a subject to the constraints

an ! 0, n = 1, . . . , N, (7.11)
N∑

n=1

antn = 0. (7.12)

Here the kernel function is defined by k(x,x′) = φ(x)Tφ(x′). Again, this takes the
form of a quadratic programming problem in which we optimize a quadratic function
of a subject to a set of inequality constraints. We shall discuss techniques for solving
such quadratic programming problems in Section 7.1.1.

The solution to a quadratic programming problem in M variables in general has
computational complexity that is O(M3). In going to the dual formulation we have
turned the original optimization problem, which involved minimizing (7.6) over M
variables, into the dual problem (7.10), which has N variables. For a fixed set of
basis functions whose number M is smaller than the number N of data points, the
move to the dual problem appears disadvantageous. However, it allows the model to
be reformulated using kernels, and so the maximum margin classifier can be applied
efficiently to feature spaces whose dimensionality exceeds the number of data points,
including infinite feature spaces. The kernel formulation also makes clear the role
of the constraint that the kernel function k(x,x′) be positive definite, because this
ensures that the Lagrangian function L̃(a) is bounded below, giving rise to a well-
defined optimization problem.

In order to classify new data points using the trained model, we evaluate the sign
of y(x) defined by (7.1). This can be expressed in terms of the parameters {an} and
the kernel function by substituting for w using (7.8) to give

y(x) =
N∑

n=1

antnk(x,xn) + b. (7.13)

Joseph-Louis Lagrange
1736–1813

Although widely considered to be
a French mathematician, Lagrange
was born in Turin in Italy. By the age
of nineteen, he had already made
important contributions mathemat-
ics and had been appointed as Pro-

fessor at the Royal Artillery School in Turin. For many

years, Euler worked hard to persuade Lagrange to
move to Berlin, which he eventually did in 1766 where
he succeeded Euler as Director of Mathematics at
the Berlin Academy. Later he moved to Paris, nar-
rowly escaping with his life during the French revo-
lution thanks to the personal intervention of Lavoisier
(the French chemist who discovered oxygen) who him-
self was later executed at the guillotine. Lagrange
made key contributions to the calculus of variations
and the foundations of dynamics.

Sujets:

HUGO LAROCHELLE

• On peut montrer que la représentation duale devient

où on a toujours C ≥an ≥0 et

• Reste un problème de programmation quadratique, mais les
contraintes changent

REPRÉSENTATION DUALE

32

représentation duale

7.1. Maximum Margin Classifiers 329

Eliminating w and b from L(w, b,a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.10)

with respect to a subject to the constraints

an ! 0, n = 1, . . . , N, (7.11)
N∑

n=1

antn = 0. (7.12)

Here the kernel function is defined by k(x,x′) = φ(x)Tφ(x′). Again, this takes the
form of a quadratic programming problem in which we optimize a quadratic function
of a subject to a set of inequality constraints. We shall discuss techniques for solving
such quadratic programming problems in Section 7.1.1.

The solution to a quadratic programming problem in M variables in general has
computational complexity that is O(M3). In going to the dual formulation we have
turned the original optimization problem, which involved minimizing (7.6) over M
variables, into the dual problem (7.10), which has N variables. For a fixed set of
basis functions whose number M is smaller than the number N of data points, the
move to the dual problem appears disadvantageous. However, it allows the model to
be reformulated using kernels, and so the maximum margin classifier can be applied
efficiently to feature spaces whose dimensionality exceeds the number of data points,
including infinite feature spaces. The kernel formulation also makes clear the role
of the constraint that the kernel function k(x,x′) be positive definite, because this
ensures that the Lagrangian function L̃(a) is bounded below, giving rise to a well-
defined optimization problem.

In order to classify new data points using the trained model, we evaluate the sign
of y(x) defined by (7.1). This can be expressed in terms of the parameters {an} and
the kernel function by substituting for w using (7.8) to give

y(x) =
N∑

n=1

antnk(x,xn) + b. (7.13)

Joseph-Louis Lagrange
1736–1813

Although widely considered to be
a French mathematician, Lagrange
was born in Turin in Italy. By the age
of nineteen, he had already made
important contributions mathemat-
ics and had been appointed as Pro-

fessor at the Royal Artillery School in Turin. For many

years, Euler worked hard to persuade Lagrange to
move to Berlin, which he eventually did in 1766 where
he succeeded Euler as Director of Mathematics at
the Berlin Academy. Later he moved to Paris, nar-
rowly escaping with his life during the French revo-
lution thanks to the personal intervention of Lavoisier
(the French chemist who discovered oxygen) who him-
self was later executed at the guillotine. Lagrange
made key contributions to the calculus of variations
and the foundations of dynamics.

7.1. Maximum Margin Classifiers 329

Eliminating w and b from L(w, b,a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.10)

with respect to a subject to the constraints

an ! 0, n = 1, . . . , N, (7.11)
N∑

n=1

antn = 0. (7.12)

Here the kernel function is defined by k(x,x′) = φ(x)Tφ(x′). Again, this takes the
form of a quadratic programming problem in which we optimize a quadratic function
of a subject to a set of inequality constraints. We shall discuss techniques for solving
such quadratic programming problems in Section 7.1.1.

The solution to a quadratic programming problem in M variables in general has
computational complexity that is O(M3). In going to the dual formulation we have
turned the original optimization problem, which involved minimizing (7.6) over M
variables, into the dual problem (7.10), which has N variables. For a fixed set of
basis functions whose number M is smaller than the number N of data points, the
move to the dual problem appears disadvantageous. However, it allows the model to
be reformulated using kernels, and so the maximum margin classifier can be applied
efficiently to feature spaces whose dimensionality exceeds the number of data points,
including infinite feature spaces. The kernel formulation also makes clear the role
of the constraint that the kernel function k(x,x′) be positive definite, because this
ensures that the Lagrangian function L̃(a) is bounded below, giving rise to a well-
defined optimization problem.

In order to classify new data points using the trained model, we evaluate the sign
of y(x) defined by (7.1). This can be expressed in terms of the parameters {an} and
the kernel function by substituting for w using (7.8) to give

y(x) =
N∑

n=1

antnk(x,xn) + b. (7.13)

Joseph-Louis Lagrange
1736–1813

Although widely considered to be
a French mathematician, Lagrange
was born in Turin in Italy. By the age
of nineteen, he had already made
important contributions mathemat-
ics and had been appointed as Pro-

fessor at the Royal Artillery School in Turin. For many

years, Euler worked hard to persuade Lagrange to
move to Berlin, which he eventually did in 1766 where
he succeeded Euler as Director of Mathematics at
the Berlin Academy. Later he moved to Paris, nar-
rowly escaping with his life during the French revo-
lution thanks to the personal intervention of Lavoisier
(the French chemist who discovered oxygen) who him-
self was later executed at the guillotine. Lagrange
made key contributions to the calculus of variations
and the foundations of dynamics.

Apprentissage automatique
Machine à vecteurs de support - lien avec régression logistique

Sujets:

HUGO LAROCHELLE

• On peut réécrire l’entraînement d’un SVM sous une forme
sans contraintes

MACHINE À VECTEURS DE SUPPORT

34

hinge loss

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.

pour

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

+

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

tny(xn) ⇠n� 1�

⇠n

Sujets:

HUGO LAROCHELLE

• On peut réécrire l’entraînement d’un SVM sous une forme
sans contraintes

MACHINE À VECTEURS DE SUPPORT

35

hinge loss

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.

pour

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

+

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

tny(xn)⇠n � 1�

⇠n

Sujets:

HUGO LAROCHELLE

• On peut réécrire l’entraînement d’un SVM sous une forme
sans contraintes

MACHINE À VECTEURS DE SUPPORT

35

hinge loss

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.

pour

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

+

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

tny(xn)⇠n � 1�

⇠n

équivaut

NX

n=1

max(0, 1� tny(xn)) + �||w||2argmin
w, b

� = 1/(2C)()

Sujets:

HUGO LAROCHELLE

• On peut réécrire l’entraînement d’un SVM sous une forme
sans contraintes

MACHINE À VECTEURS DE SUPPORT

35

hinge loss

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.

pour

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

+

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

tny(xn)⇠n � 1�

{

7.1. Maximum Margin Classifiers 337

Figure 7.5 Plot of the ‘hinge’ error function used
in support vector machines, shown
in blue, along with the error function
for logistic regression, rescaled by a
factor of 1/ ln(2) so that it passes
through the point (0, 1), shown in red.
Also shown are the misclassification
error in black and the squared error
in green.

−2 −1 0 1 2
z

E(z)

remaining points we have ξn = 1 − yntn. Thus the objective function (7.21) can be
written (up to an overall multiplicative constant) in the form

N∑

n=1

ESV(yntn) + λ∥w∥2 (7.44)

where λ = (2C)−1, and ESV(·) is the hinge error function defined by

ESV(yntn) = [1 − yntn]+ (7.45)

where [·]+ denotes the positive part. The hinge error function, so-called because
of its shape, is plotted in Figure 7.5. It can be viewed as an approximation to the
misclassification error, i.e., the error function that ideally we would like to minimize,
which is also shown in Figure 7.5.

When we considered the logistic regression model in Section 4.3.2, we found it
convenient to work with target variable t ∈ {0, 1}. For comparison with the support
vector machine, we first reformulate maximum likelihood logistic regression using
the target variable t ∈ {−1, 1}. To do this, we note that p(t = 1|y) = σ(y) where
y(x) is given by (7.1), and σ(y) is the logistic sigmoid function defined by (4.59). It
follows that p(t = −1|y) = 1 − σ(y) = σ(−y), where we have used the properties
of the logistic sigmoid function, and so we can write

p(t|y) = σ(yt). (7.46)

From this we can construct an error function by taking the negative logarithm of the
likelihood function that, with a quadratic regularizer, takes the formExercise 7.6

N∑

n=1

ELR(yntn) + λ∥w∥2. (7.47)

where
ELR(yt) = ln (1 + exp(−yt)) . (7.48)

(hinge loss)
⇠n

équivaut

NX

n=1

max(0, 1� tny(xn)) + �||w||2argmin
w, b

� = 1/(2C)()

Sujets:

HUGO LAROCHELLE

APPROCHE PROBABILISTE DISCRIMINANTE

• Maximiser la vraisemblance est équivalent à minimiser la log-
vraisemblance négative

• Malheureusement, minimiser cette fonction ne se fait pas
analytiquement

‣ on va devoir trouver le minimum de façon numérique

36

cross-entropie

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

{
cross-entropie (binaire)

RAPPEL

Sujets:

HUGO LAROCHELLE

• On peut réécrire l’entraînement d’un SVM sous une forme
sans contraintes

MACHINE À VECTEURS DE SUPPORT

37

hinge loss

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.

pour

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

+

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

tny(xn)⇠n � 1�
équivaut

NX

n=1

max(0, 1� tny(xn)) + �||w||2argmin
w, b

{

7.1. Maximum Margin Classifiers 337

Figure 7.5 Plot of the ‘hinge’ error function used
in support vector machines, shown
in blue, along with the error function
for logistic regression, rescaled by a
factor of 1/ ln(2) so that it passes
through the point (0, 1), shown in red.
Also shown are the misclassification
error in black and the squared error
in green.

−2 −1 0 1 2
z

E(z)

remaining points we have ξn = 1 − yntn. Thus the objective function (7.21) can be
written (up to an overall multiplicative constant) in the form

N∑

n=1

ESV(yntn) + λ∥w∥2 (7.44)

where λ = (2C)−1, and ESV(·) is the hinge error function defined by

ESV(yntn) = [1 − yntn]+ (7.45)

where [·]+ denotes the positive part. The hinge error function, so-called because
of its shape, is plotted in Figure 7.5. It can be viewed as an approximation to the
misclassification error, i.e., the error function that ideally we would like to minimize,
which is also shown in Figure 7.5.

When we considered the logistic regression model in Section 4.3.2, we found it
convenient to work with target variable t ∈ {0, 1}. For comparison with the support
vector machine, we first reformulate maximum likelihood logistic regression using
the target variable t ∈ {−1, 1}. To do this, we note that p(t = 1|y) = σ(y) where
y(x) is given by (7.1), and σ(y) is the logistic sigmoid function defined by (4.59). It
follows that p(t = −1|y) = 1 − σ(y) = σ(−y), where we have used the properties
of the logistic sigmoid function, and so we can write

p(t|y) = σ(yt). (7.46)

From this we can construct an error function by taking the negative logarithm of the
likelihood function that, with a quadratic regularizer, takes the formExercise 7.6

N∑

n=1

ELR(yntn) + λ∥w∥2. (7.47)

where
ELR(yt) = ln (1 + exp(−yt)) . (7.48)

(hinge loss)

Sujets:

HUGO LAROCHELLE

• On peut réécrire l’entraînement d’un SVM sous une forme
sans contraintes

MACHINE À VECTEURS DE SUPPORT

37

hinge loss

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.

pour

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

+

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

tny(xn)⇠n � 1�
équivaut

NX

n=1

max(0, 1� tny(xn)) + �||w||2argmin
w, b

{

7.1. Maximum Margin Classifiers 337

Figure 7.5 Plot of the ‘hinge’ error function used
in support vector machines, shown
in blue, along with the error function
for logistic regression, rescaled by a
factor of 1/ ln(2) so that it passes
through the point (0, 1), shown in red.
Also shown are the misclassification
error in black and the squared error
in green.

−2 −1 0 1 2
z

E(z)

remaining points we have ξn = 1 − yntn. Thus the objective function (7.21) can be
written (up to an overall multiplicative constant) in the form

N∑

n=1

ESV(yntn) + λ∥w∥2 (7.44)

where λ = (2C)−1, and ESV(·) is the hinge error function defined by

ESV(yntn) = [1 − yntn]+ (7.45)

where [·]+ denotes the positive part. The hinge error function, so-called because
of its shape, is plotted in Figure 7.5. It can be viewed as an approximation to the
misclassification error, i.e., the error function that ideally we would like to minimize,
which is also shown in Figure 7.5.

When we considered the logistic regression model in Section 4.3.2, we found it
convenient to work with target variable t ∈ {0, 1}. For comparison with the support
vector machine, we first reformulate maximum likelihood logistic regression using
the target variable t ∈ {−1, 1}. To do this, we note that p(t = 1|y) = σ(y) where
y(x) is given by (7.1), and σ(y) is the logistic sigmoid function defined by (4.59). It
follows that p(t = −1|y) = 1 − σ(y) = σ(−y), where we have used the properties
of the logistic sigmoid function, and so we can write

p(t|y) = σ(yt). (7.46)

From this we can construct an error function by taking the negative logarithm of the
likelihood function that, with a quadratic regularizer, takes the formExercise 7.6

N∑

n=1

ELR(yntn) + λ∥w∥2. (7.47)

where
ELR(yt) = ln (1 + exp(−yt)) . (7.48)

(hinge loss)

NX

n=1

ln(1 + exp(�tny(xn))) + �||w||2argmin
w, b

forme équivalente à la régression logistique

{

Sujets:

HUGO LAROCHELLE

• La régression logistique est donc une version «lisse» d’un SVM

MACHINE À VECTEURS DE SUPPORT

38

hinge loss
7.1. Maximum Margin Classifiers 337

Figure 7.5 Plot of the ‘hinge’ error function used
in support vector machines, shown
in blue, along with the error function
for logistic regression, rescaled by a
factor of 1/ ln(2) so that it passes
through the point (0, 1), shown in red.
Also shown are the misclassification
error in black and the squared error
in green.

−2 −1 0 1 2
z

E(z)

remaining points we have ξn = 1 − yntn. Thus the objective function (7.21) can be
written (up to an overall multiplicative constant) in the form

N∑

n=1

ESV(yntn) + λ∥w∥2 (7.44)

where λ = (2C)−1, and ESV(·) is the hinge error function defined by

ESV(yntn) = [1 − yntn]+ (7.45)

where [·]+ denotes the positive part. The hinge error function, so-called because
of its shape, is plotted in Figure 7.5. It can be viewed as an approximation to the
misclassification error, i.e., the error function that ideally we would like to minimize,
which is also shown in Figure 7.5.

When we considered the logistic regression model in Section 4.3.2, we found it
convenient to work with target variable t ∈ {0, 1}. For comparison with the support
vector machine, we first reformulate maximum likelihood logistic regression using
the target variable t ∈ {−1, 1}. To do this, we note that p(t = 1|y) = σ(y) where
y(x) is given by (7.1), and σ(y) is the logistic sigmoid function defined by (4.59). It
follows that p(t = −1|y) = 1 − σ(y) = σ(−y), where we have used the properties
of the logistic sigmoid function, and so we can write

p(t|y) = σ(yt). (7.46)

From this we can construct an error function by taking the negative logarithm of the
likelihood function that, with a quadratic regularizer, takes the formExercise 7.6

N∑

n=1

ELR(yntn) + λ∥w∥2. (7.47)

where
ELR(yt) = ln (1 + exp(−yt)) . (7.48)

ty(x)

ln(1 + exp(�ty(x)))

(t� y(x))2

(i.e. erreur 0/1)1[ty(x < 0]

(distance signée)

max(0, 1� ty(x))

Apprentissage automatique
Machine à vecteurs de support - résumé

Sujets:

HUGO LAROCHELLE

MACHINE À VECTEURS DE SUPPORT

• Modèle :

• Entraînement : résoudre programme quadratique

• Hyper-paramètre : C

• Prédiction : si y(x)≥0, sinon
40

résumé du SVM (sans noyau)

C1 C2

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q.

pour

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

+

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
∥w∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

tny(xn) ⇠n� 1�

y(x) = w

T�(x) + b

Sujets:

HUGO LAROCHELLE

• Modèle :

• Entraînement : résoudre programme quadratique

• Hyper-paramètre : C

• Prédiction : si y(x)≥0, sinon

MACHINE À VECTEURS DE SUPPORT

41

résumé du SVM (avec noyau)

C1 C2

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w∥,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w∥−1, which is
equivalent to minimizing ∥w∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
∥w∥2 −

N∑

n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN)T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

t.q. pour

y(x) = w

T�(x) + b
7.1. Maximum Margin Classifiers 329

Eliminating w and b from L(w, b,a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.10)

with respect to a subject to the constraints

an ! 0, n = 1, . . . , N, (7.11)
N∑

n=1

antn = 0. (7.12)

Here the kernel function is defined by k(x,x′) = φ(x)Tφ(x′). Again, this takes the
form of a quadratic programming problem in which we optimize a quadratic function
of a subject to a set of inequality constraints. We shall discuss techniques for solving
such quadratic programming problems in Section 7.1.1.

The solution to a quadratic programming problem in M variables in general has
computational complexity that is O(M3). In going to the dual formulation we have
turned the original optimization problem, which involved minimizing (7.6) over M
variables, into the dual problem (7.10), which has N variables. For a fixed set of
basis functions whose number M is smaller than the number N of data points, the
move to the dual problem appears disadvantageous. However, it allows the model to
be reformulated using kernels, and so the maximum margin classifier can be applied
efficiently to feature spaces whose dimensionality exceeds the number of data points,
including infinite feature spaces. The kernel formulation also makes clear the role
of the constraint that the kernel function k(x,x′) be positive definite, because this
ensures that the Lagrangian function L̃(a) is bounded below, giving rise to a well-
defined optimization problem.

In order to classify new data points using the trained model, we evaluate the sign
of y(x) defined by (7.1). This can be expressed in terms of the parameters {an} and
the kernel function by substituting for w using (7.8) to give

y(x) =
N∑

n=1

antnk(x,xn) + b. (7.13)

Joseph-Louis Lagrange
1736–1813

Although widely considered to be
a French mathematician, Lagrange
was born in Turin in Italy. By the age
of nineteen, he had already made
important contributions mathemat-
ics and had been appointed as Pro-

fessor at the Royal Artillery School in Turin. For many

years, Euler worked hard to persuade Lagrange to
move to Berlin, which he eventually did in 1766 where
he succeeded Euler as Director of Mathematics at
the Berlin Academy. Later he moved to Paris, nar-
rowly escaping with his life during the French revo-
lution thanks to the personal intervention of Lavoisier
(the French chemist who discovered oxygen) who him-
self was later executed at the guillotine. Lagrange
made key contributions to the calculus of variations
and the foundations of dynamics.

argmin
a

7.1. Maximum Margin Classifiers 333

where {an ! 0} and {µn ! 0} are Lagrange multipliers. The corresponding set of
KKT conditions are given byAppendix E

an ! 0 (7.23)
tny(xn) − 1 + ξn ! 0 (7.24)

an (tny(xn) − 1 + ξn) = 0 (7.25)
µn ! 0 (7.26)
ξn ! 0 (7.27)

µnξn = 0 (7.28)

where n = 1, . . . , N .
We now optimize out w, b, and {ξn} making use of the definition (7.1) of y(x)

to give

∂L

∂w
= 0 ⇒ w =

N∑

n=1

antnφ(xn) (7.29)

∂L

∂b
= 0 ⇒

N∑

n=1

antn = 0 (7.30)

∂L

∂ξn
= 0 ⇒ an = C − µn. (7.31)

Using these results to eliminate w, b, and {ξn} from the Lagrangian, we obtain the
dual Lagrangian in the form

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.32)

which is identical to the separable case, except that the constraints are somewhat
different. To see what these constraints are, we note that an ! 0 is required because
these are Lagrange multipliers. Furthermore, (7.31) together with µn ! 0 implies
an " C. We therefore have to minimize (7.32) with respect to the dual variables
{an} subject to

0 " an " C (7.33)
N∑

n=1

antn = 0 (7.34)

for n = 1, . . . , N , where (7.33) are known as box constraints. This again represents
a quadratic programming problem. If we substitute (7.29) into (7.1), we see that
predictions for new data points are again made by using (7.13).

We can now interpret the resulting solution. As before, a subset of the data
points may have an = 0, in which case they do not contribute to the predictive

7.1. Maximum Margin Classifiers 333

where {an ! 0} and {µn ! 0} are Lagrange multipliers. The corresponding set of
KKT conditions are given byAppendix E

an ! 0 (7.23)
tny(xn) − 1 + ξn ! 0 (7.24)

an (tny(xn) − 1 + ξn) = 0 (7.25)
µn ! 0 (7.26)
ξn ! 0 (7.27)

µnξn = 0 (7.28)

where n = 1, . . . , N .
We now optimize out w, b, and {ξn} making use of the definition (7.1) of y(x)

to give

∂L

∂w
= 0 ⇒ w =

N∑

n=1

antnφ(xn) (7.29)

∂L

∂b
= 0 ⇒

N∑

n=1

antn = 0 (7.30)

∂L

∂ξn
= 0 ⇒ an = C − µn. (7.31)

Using these results to eliminate w, b, and {ξn} from the Lagrangian, we obtain the
dual Lagrangian in the form

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.32)

which is identical to the separable case, except that the constraints are somewhat
different. To see what these constraints are, we note that an ! 0 is required because
these are Lagrange multipliers. Furthermore, (7.31) together with µn ! 0 implies
an " C. We therefore have to minimize (7.32) with respect to the dual variables
{an} subject to

0 " an " C (7.33)
N∑

n=1

antn = 0 (7.34)

for n = 1, . . . , N , where (7.33) are known as box constraints. This again represents
a quadratic programming problem. If we substitute (7.29) into (7.1), we see that
predictions for new data points are again made by using (7.13).

We can now interpret the resulting solution. As before, a subset of the data
points may have an = 0, in which case they do not contribute to the predictive

(voir équation 7.36 pour obtenir b)

plusieurs des an seront 0 !

Sujets:

HUGO LAROCHELLE

CAPACITÉ

• Plus C est petit, plus la capacité diminue

• Noyau polynomial

‣ plus M est grand, plus le modèle a de la capacité

• Noyau gaussien

‣ plus est petit, plus le modèle a de la capacité

42

lien entre capacité et C / noyau

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

�2

Sujets:

HUGO LAROCHELLE

• Peut étendre à l’estimation d’une probabilité

‣ voir fin de section 7.1.1 (Platt scaling)

• Peut étendre à la régression

‣ voir section 7.1.4

EXTENSIONS

43

extensions des SVMs

7.1. Maximum Margin Classifiers 341

Figure 7.7 Illustration of SVM regression, showing
the regression curve together with the ϵ-
insensitive ‘tube’. Also shown are exam-
ples of the slack variables ξ and bξ. Points
above the ϵ-tube have ξ > 0 and bξ = 0,
points below the ϵ-tube have ξ = 0 and
bξ > 0, and points inside the ϵ-tube have
ξ = bξ = 0.

y

y + ϵ

y − ϵ

y(x)

x

ξ̂ > 0

ξ > 0

The error function for support vector regression can then be written as

C
N∑

n=1

(ξn + ξ̂n) +
1
2
∥w∥2 (7.55)

which must be minimized subject to the constraints ξn ! 0 and ξ̂n ! 0 as well as
(7.53) and (7.54). This can be achieved by introducing Lagrange multipliers an ! 0,
ân ! 0, µn ! 0, and µ̂n ! 0 and optimizing the Lagrangian

L = C
N∑

n=1

(ξn + ξ̂n) +
1
2
∥w∥2 −

N∑

n=1

(µnξn + µ̂nξ̂n)

−
N∑

n=1

an(ϵ + ξn + yn − tn) −
N∑

n=1

ân(ϵ + ξ̂n − yn + tn). (7.56)

We now substitute for y(x) using (7.1) and then set the derivatives of the La-
grangian with respect to w, b, ξn, and ξ̂n to zero, giving

∂L

∂w
= 0 ⇒ w =

N∑

n=1

(an − ân)φ(xn) (7.57)

∂L

∂b
= 0 ⇒

N∑

n=1

(an − ân) = 0 (7.58)

∂L

∂ξn
= 0 ⇒ an + µn = C (7.59)

∂L

∂ξ̂n

= 0 ⇒ ân + µ̂n = C. (7.60)

Using these results to eliminate the corresponding variables from the Lagrangian, we
see that the dual problem involves maximizingExercise 7.7

336 7. SPARSE KERNEL MACHINES

mensionality. This is not the case, however, because there are constraints amongstSection 1.4
the feature values that restrict the effective dimensionality of feature space. To see
this consider a simple second-order polynomial kernel that we can expand in terms
of its components

k(x, z) =
(
1 + xTz

)2 = (1 + x1z1 + x2z2)2

= 1 + 2x1z1 + 2x2z2 + x2
1z

2
1 + 2x1z1x2z2 + x2

2z
2
2

= (1,
√

2x1,
√

2x2, x
2
1,
√

2x1x2, x
2
2)(1,

√
2z1,

√
2z2, z

2
1 ,
√

2z1z2, z
2
2)

T

= φ(x)Tφ(z). (7.42)

This kernel function therefore represents an inner product in a feature space having
six dimensions, in which the mapping from input space to feature space is described
by the vector function φ(x). However, the coefficients weighting these different
features are constrained to have specific forms. Thus any set of points in the original
two-dimensional space x would be constrained to lie exactly on a two-dimensional
nonlinear manifold embedded in the six-dimensional feature space.

We have already highlighted the fact that the support vector machine does not
provide probabilistic outputs but instead makes classification decisions for new in-
put vectors. Veropoulos et al. (1999) discuss modifications to the SVM to allow
the trade-off between false positive and false negative errors to be controlled. How-
ever, if we wish to use the SVM as a module in a larger probabilistic system, then
probabilistic predictions of the class label t for new inputs x are required.

To address this issue, Platt (2000) has proposed fitting a logistic sigmoid to the
outputs of a previously trained support vector machine. Specifically, the required
conditional probability is assumed to be of the form

p(t = 1|x) = σ (Ay(x) + B) (7.43)

where y(x) is defined by (7.1). Values for the parameters A and B are found by
minimizing the cross-entropy error function defined by a training set consisting of
pairs of values y(xn) and tn. The data used to fit the sigmoid needs to be independent
of that used to train the original SVM in order to avoid severe over-fitting. This two-
stage approach is equivalent to assuming that the output y(x) of the support vector
machine represents the log-odds of x belonging to class t = 1. Because the SVM
training procedure is not specifically intended to encourage this, the SVM can give
a poor approximation to the posterior probabilities (Tipping, 2001).

7.1.2 Relation to logistic regression
As with the separable case, we can re-cast the SVM for nonseparable distri-

butions in terms of the minimization of a regularized error function. This will also
allow us to highlight similarities, and differences, compared to the logistic regression
model.Section 4.3.2

We have seen that for data points that are on the correct side of the margin
boundary, and which therefore satisfy yntn ! 1, we have ξn = 0, and for the

