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Mélange de gaussiennes - motivation



Sujets: 

HUGO LAROCHELLE

APPRENTISSAGE AUTOMATIQUE

• Il existe différents types d’apprentissage

‣ apprentissage supervisé : il y a une cible à prédire

              = {(x1,t1), ... , (xN,tN)}

‣ apprentissage non-supervisé : cible n’est pas fournie

              = {x1, ... , xN}

‣ apprentissage par renforcement (non couvert dans ce cours)
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Sujets: 

HUGO LAROCHELLE

TYPES D’APPRENTISSAGE

• L’apprentissage non-supervisé est lorsqu’une cible n’est pas 
explicitement donnée 

‣ estimation de densité : apprendre la loi de probabilité 
ayant généré les données

- pour générer de nouvelles données réalistes

- pour distinguer les «vrais» données des «fausses» données (spam filtering)

- compression de données
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Sujets: 

HUGO LAROCHELLE

TYPES D’APPRENTISSAGE

• L’apprentissage non-supervisé est lorsqu’une cible n’est pas 
explicitement donnée 

‣ partitionnement de données / clustering 
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apprentissage non-supervisé, partitionnement

678 A. DATA SETS

Figure A.1 One hundred examples of the
MNIST digits chosen at ran-
dom from the training set.

Oil Flow

This is a synthetic data set that arose out of a project aimed at measuring nonin-
vasively the proportions of oil, water, and gas in North Sea oil transfer pipelines
(Bishop and James, 1993). It is based on the principle of dual-energy gamma densit-
ometry. The ideas is that if a narrow beam of gamma rays is passed through the pipe,
the attenuation in the intensity of the beam provides information about the density of
material along its path. Thus, for instance, the beam will be attenuated more strongly
by oil than by gas.

A single attenuation measurement alone is not sufficient because there are two
degrees of freedom corresponding to the fraction of oil and the fraction of water (the
fraction of gas is redundant because the three fractions must add to one). To address
this, two gamma beams of different energies (in other words different frequencies or
wavelengths) are passed through the pipe along the same path, and the attenuation of
each is measured. Because the absorbtion properties of different materials vary dif-
ferently as a function of energy, measurement of the attenuations at the two energies
provides two independent pieces of information. Given the known absorbtion prop-
erties of oil, water, and gas at the two energies, it is then a simple matter to calculate
the average fractions of oil and water (and hence of gas) measured along the path of
the gamma beams.

There is a further complication, however, associated with the motion of the ma-
terials along the pipe. If the flow velocity is small, then the oil floats on top of the
water with the gas sitting above the oil. This is known as a laminar or stratified
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wavelengths) are passed through the pipe along the same path, and the attenuation of
each is measured. Because the absorbtion properties of different materials vary dif-
ferently as a function of energy, measurement of the attenuations at the two energies
provides two independent pieces of information. Given the known absorbtion prop-
erties of oil, water, and gas at the two energies, it is then a simple matter to calculate
the average fractions of oil and water (and hence of gas) measured along the path of
the gamma beams.

There is a further complication, however, associated with the motion of the ma-
terials along the pipe. If the flow velocity is small, then the oil floats on top of the
water with the gas sitting above the oil. This is known as a laminar or stratified
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Figure A.1 One hundred examples of the
MNIST digits chosen at ran-
dom from the training set.

Oil Flow

This is a synthetic data set that arose out of a project aimed at measuring nonin-
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• Un mélange de gaussiennes suppose que les données ont 
été générées comme suit :

‣ pour n = 1 ... N

- choisit un entier k ∈ {1,...,K} selons probabilités  

- génère xn d’une loi de la loi de probabilité  

‣ En mots : les entrées sont des échantillons d’une de K différentes 
lois gaussiennes, ayant chacune des moyennes et covariances 
différentes

6

mélange de gaussiennes

N (xn|µk,⌃k)

⇡1, . . . ,⇡K
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• Exemple de données générées d’un mélange de 
gaussiennes (K=3)

7
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(a)
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1 (b)
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0
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1 (c)
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1

Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .

xn

zn

N

µ Σ

π

la couleur indique 
de quelle gaussienne 
a été échantillonnée 

le point
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• On va noter z la variable aléatoire correspondant à 

l’identité de la gaussienne qui a généré une entrée x

‣ format one-hot : zk=1 si x a été générée par la ke gausssienne

• La probabilité de choisir la ke gausssienne est donc 

8

probabilité a priori du choix de la gaussienne
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The image segmentation problem discussed above also provides an illustration
of the use of clustering for data compression. Suppose the original image has N
pixels comprising {R, G, B} values each of which is stored with 8 bits of precision.
Then to transmit the whole image directly would cost 24N bits. Now suppose we
first run K-means on the image data, and then instead of transmitting the original
pixel intensity vectors we transmit the identity of the nearest vector µk. Because
there are K such vectors, this requires log2 K bits per pixel. We must also transmit
the K code book vectors µk, which requires 24K bits, and so the total number of
bits required to transmit the image is 24K + N log2 K (rounding up to the nearest
integer). The original image shown in Figure 9.3 has 240 × 180 = 43, 200 pixels
and so requires 24 × 43, 200 = 1, 036, 800 bits to transmit directly. By comparison,
the compressed images require 43, 248 bits (K = 2), 86, 472 bits (K = 3), and
173, 040 bits (K = 10), respectively, to transmit. These represent compression ratios
compared to the original image of 4.2%, 8.3%, and 16.7%, respectively. We see that
there is a trade-off between degree of compression and image quality. Note that our
aim in this example is to illustrate the K-means algorithm. If we had been aiming to
produce a good image compressor, then it would be more fruitful to consider small
blocks of adjacent pixels, for instance 5×5, and thereby exploit the correlations that
exist in natural images between nearby pixels.

9.2. Mixtures of Gaussians

In Section 2.3.9 we motivated the Gaussian mixture model as a simple linear super-
position of Gaussian components, aimed at providing a richer class of density mod-
els than the single Gaussian. We now turn to a formulation of Gaussian mixtures in
terms of discrete latent variables. This will provide us with a deeper insight into this
important distribution, and will also serve to motivate the expectation-maximization
algorithm.

Recall from (2.188) that the Gaussian mixture distribution can be written as a
linear superposition of Gaussians in the form

p(x) =
K∑

k=1

πkN (x|µk,Σk). (9.7)

Let us introduce a K-dimensional binary random variable z having a 1-of-K repre-
sentation in which a particular element zk is equal to 1 and all other elements are
equal to 0. The values of zk therefore satisfy zk ∈ {0, 1} and

∑
k zk = 1, and we

see that there are K possible states for the vector z according to which element is
nonzero. We shall define the joint distribution p(x, z) in terms of a marginal dis-
tribution p(z) and a conditional distribution p(x|z), corresponding to the graphical
model in Figure 9.4. The marginal distribution over z is specified in terms of the
mixing coefficients πk, such that

p(zk = 1) = πk
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• On va noter z la variable aléatoire correspondant à 

l’identité de la gaussienne qui a généré une entrée x

‣ format one-hot : zk=1 si x a été générée par la ke gausssienne

• Puisque z est one-hot, on peut aussi écrire 
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Figure 9.4 Graphical representation of a mixture model, in which
the joint distribution is expressed in the form p(x, z) =
p(z)p(x|z).

x

z

where the parameters {πk} must satisfy

0 ! πk ! 1 (9.8)

together with
K∑

k=1

πk = 1 (9.9)

in order to be valid probabilities. Because z uses a 1-of-K representation, we can
also write this distribution in the form

p(z) =
K∏

k=1

πzk
k . (9.10)

Similarly, the conditional distribution of x given a particular value for z is a Gaussian

p(x|zk = 1) = N (x|µk,Σk)

which can also be written in the form

p(x|z) =
K∏

k=1

N (x|µk,Σk)zk . (9.11)

The joint distribution is given by p(z)p(x|z), and the marginal distribution of x is
then obtained by summing the joint distribution over all possible states of z to giveExercise 9.3

p(x) =
∑

z

p(z)p(x|z) =
K∑

k=1

πkN (x|µk,Σk) (9.12)

where we have made use of (9.10) and (9.11). Thus the marginal distribution of x is
a Gaussian mixture of the form (9.7). If we have several observations x1, . . . ,xN ,
then, because we have represented the marginal distribution in the form p(x) =∑

z p(x, z), it follows that for every observed data point xn there is a corresponding
latent variable zn.

We have therefore found an equivalent formulation of the Gaussian mixture in-
volving an explicit latent variable. It might seem that we have not gained much
by doing so. However, we are now able to work with the joint distribution p(x, z)
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78 2. PROBABILITY DISTRIBUTIONS

Figure 2.5 Plots of the Dirichlet distribution over three variables, where the two horizontal axes are coordinates
in the plane of the simplex and the vertical axis corresponds to the value of the density. Here {αk} = 0.1 on the
left plot, {αk} = 1 in the centre plot, and {αk} = 10 in the right plot.

modelled using the binomial distribution (2.9) or as 1-of-2 variables and modelled
using the multinomial distribution (2.34) with K = 2.

2.3. The Gaussian Distribution

The Gaussian, also known as the normal distribution, is a widely used model for the
distribution of continuous variables. In the case of a single variable x, the Gaussian
distribution can be written in the form

N (x|µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}
(2.42)

where µ is the mean and σ2 is the variance. For a D-dimensional vector x, the
multivariate Gaussian distribution takes the form

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.43)

where µ is a D-dimensional mean vector, Σ is a D × D covariance matrix, and |Σ|
denotes the determinant of Σ.

The Gaussian distribution arises in many different contexts and can be motivated
from a variety of different perspectives. For example, we have already seen that forSection 1.6
a single real variable, the distribution that maximizes the entropy is the Gaussian.
This property applies also to the multivariate Gaussian.Exercise 2.14

Another situation in which the Gaussian distribution arises is when we consider
the sum of multiple random variables. The central limit theorem (due to Laplace)
tells us that, subject to certain mild conditions, the sum of a set of random variables,
which is of course itself a random variable, has a distribution that becomes increas-
ingly Gaussian as the number of terms in the sum increases (Walker, 1969). We can
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Figure 9.4 Graphical representation of a mixture model, in which
the joint distribution is expressed in the form p(x, z) =
p(z)p(x|z).
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where the parameters {πk} must satisfy

0 ! πk ! 1 (9.8)

together with
K∑

k=1

πk = 1 (9.9)

in order to be valid probabilities. Because z uses a 1-of-K representation, we can
also write this distribution in the form

p(z) =
K∏

k=1

πzk
k . (9.10)

Similarly, the conditional distribution of x given a particular value for z is a Gaussian

p(x|zk = 1) = N (x|µk,Σk)

which can also be written in the form

p(x|z) =
K∏

k=1

N (x|µk,Σk)zk . (9.11)

The joint distribution is given by p(z)p(x|z), and the marginal distribution of x is
then obtained by summing the joint distribution over all possible states of z to giveExercise 9.3

p(x) =
∑

z

p(z)p(x|z) =
K∑

k=1

πkN (x|µk,Σk) (9.12)

where we have made use of (9.10) and (9.11). Thus the marginal distribution of x is
a Gaussian mixture of the form (9.7). If we have several observations x1, . . . ,xN ,
then, because we have represented the marginal distribution in the form p(x) =∑

z p(x, z), it follows that for every observed data point xn there is a corresponding
latent variable zn.

We have therefore found an equivalent formulation of the Gaussian mixture in-
volving an explicit latent variable. It might seem that we have not gained much
by doing so. However, we are now able to work with the joint distribution p(x, z)
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APPROCHE PROBABILISTE GÉNÉRATIVE

• On va supposer que les données ont été générées selon le 
processus suivant (cas binaire) :

‣ pour n = 1 ... N

- assigne tn=1 avec probabilité                  et tn=0 avec probabilité      

- si tn=1, génère xn de la loi de probabilité                =

- sinon (tn=0), génère xn de la loi de probabilité                = 

‣ En mots : les entrées sont des échantillons d’une loi gaussienne, mais 
de moyennes différentes pour les différentes classes

12

approche probabiliste générative
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in
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Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in

200 4. LINEAR MODELS FOR CLASSIFICATION

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in

200 4. LINEAR MODELS FOR CLASSIFICATION

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in

200 4. LINEAR MODELS FOR CLASSIFICATION

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in

RAPPEL



Sujets: 

HUGO LAROCHELLE

MÉLANGE DE GAUSSIENNES

• Dans un mélange de gaussienne, l’appartenance aux K 
gaussiennes («classes») n’est pas connue

13

mélange de gaussiennes

9.2. Mixtures of Gaussians 433

(a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1 (c)

0 0.5 1

0

0.5

1

Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .
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Figure 9.4 Graphical representation of a mixture model, in which
the joint distribution is expressed in the form p(x, z) =
p(z)p(x|z).

x

z

where the parameters {πk} must satisfy

0 ! πk ! 1 (9.8)

together with
K∑

k=1

πk = 1 (9.9)

in order to be valid probabilities. Because z uses a 1-of-K representation, we can
also write this distribution in the form

p(z) =
K∏

k=1

πzk
k . (9.10)

Similarly, the conditional distribution of x given a particular value for z is a Gaussian

p(x|zk = 1) = N (x|µk,Σk)

which can also be written in the form

p(x|z) =
K∏

k=1

N (x|µk,Σk)zk . (9.11)

The joint distribution is given by p(z)p(x|z), and the marginal distribution of x is
then obtained by summing the joint distribution over all possible states of z to giveExercise 9.3

p(x) =
∑

z

p(z)p(x|z) =
K∑

k=1

πkN (x|µk,Σk) (9.12)

where we have made use of (9.10) and (9.11). Thus the marginal distribution of x is
a Gaussian mixture of the form (9.7). If we have several observations x1, . . . ,xN ,
then, because we have represented the marginal distribution in the form p(x) =∑

z p(x, z), it follows that for every observed data point xn there is a corresponding
latent variable zn.

We have therefore found an equivalent formulation of the Gaussian mixture in-
volving an explicit latent variable. It might seem that we have not gained much
by doing so. However, we are now able to work with the joint distribution p(x, z)
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• Un mélange de gaussiennes suppose que les données ont 
été générées comme suit :

‣ pour n = 1 ... N

- choisit un entier k ∈ {1,...,K} selons probabilités  

- génère xn d’une loi de la loi de probabilité  

‣ En mots : les entrées sont des échantillons d’une de K différentes 
lois gaussiennes, ayant chacune des moyennes et covariances 
différentes
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PARTITIONNEMENT DE DONNÉES

• À partir d’un mélange de gaussiennes entraîné, on pourrait 
inférer à quelle gaussienne appartiennent les entrées

‣ on pourrait alors automatiquement catégoriser nos données en 
fonction des probabilités d’appartenance à chacune des gaussiennes

• Cette application s’appelle le partitionnement de 
données (clustering)

‣ permet de «mettre de l’ordre» dans les données

‣ permet de visualiser les données une partition à la fois
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• À l’aide de la règle de Bayes, on obtient la probabilité 
d’appartenance à la ke gausssienne suivante :
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432 9. MIXTURE MODELS AND EM

instead of the marginal distribution p(x), and this will lead to significant simplifica-
tions, most notably through the introduction of the expectation-maximization (EM)
algorithm.

Another quantity that will play an important role is the conditional probability
of z given x. We shall use γ(zk) to denote p(zk = 1|x), whose value can be found
using Bayes’ theorem

γ(zk) ≡ p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)

K∑

j=1

p(zj = 1)p(x|zj = 1)

=
πkN (x|µk,Σk)

K∑

j=1

πjN (x|µj ,Σj)

. (9.13)

We shall view πk as the prior probability of zk = 1, and the quantity γ(zk) as the
corresponding posterior probability once we have observed x. As we shall see later,
γ(zk) can also be viewed as the responsibility that component k takes for ‘explain-
ing’ the observation x.

We can use the technique of ancestral sampling to generate random samplesSection 8.1.2
distributed according to the Gaussian mixture model. To do this, we first generate a
value for z, which we denote ẑ, from the marginal distribution p(z) and then generate
a value for x from the conditional distribution p(x|ẑ). Techniques for sampling from
standard distributions are discussed in Chapter 11. We can depict samples from the
joint distribution p(x, z) by plotting points at the corresponding values of x and
then colouring them according to the value of z, in other words according to which
Gaussian component was responsible for generating them, as shown in Figure 9.5(a).
Similarly samples from the marginal distribution p(x) are obtained by taking the
samples from the joint distribution and ignoring the values of z. These are illustrated
in Figure 9.5(b) by plotting the x values without any coloured labels.

We can also use this synthetic data set to illustrate the ‘responsibilities’ by eval-
uating, for every data point, the posterior probability for each component in the
mixture distribution from which this data set was generated. In particular, we can
represent the value of the responsibilities γ(znk) associated with data point xn by
plotting the corresponding point using proportions of red, blue, and green ink given
by γ(znk) for k = 1, 2, 3, respectively, as shown in Figure 9.5(c). So, for instance,
a data point for which γ(zn1) = 1 will be coloured red, whereas one for which
γ(zn2) = γ(zn3) = 0.5 will be coloured with equal proportions of blue and green
ink and so will appear cyan. This should be compared with Figure 9.5(a) in which
the data points were labelled using the true identity of the component from which
they were generated.

9.2.1 Maximum likelihood
Suppose we have a data set of observations {x1, . . . ,xN}, and we wish to model

this data using a mixture of Gaussians. We can represent this data set as an N × D
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Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .

xn

zn

N

µ Σ

π



Sujets: 

HUGO LAROCHELLE

MÉLANGE DE GAUSSIENNES

• Illustration des probabilités d’appartenance, pour chaque 
entrée

22

mélange de gaussiennes

9.2. Mixtures of Gaussians 433

(a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1 (c)

0 0.5 1

0

0.5

1

Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .

xn

zn

N

µ Σ

π



Sujets: 

HUGO LAROCHELLE

PARTITIONNEMENT DE DONNÉES

• Lors du partitionnement, on assigne chaque entrée x à la 

gaussienne ayant associée à la plus grande probabilité 
d’appartenance

23

partitionnement de données, clustering

678 A. DATA SETS

Figure A.1 One hundred examples of the
MNIST digits chosen at ran-
dom from the training set.

Oil Flow

This is a synthetic data set that arose out of a project aimed at measuring nonin-
vasively the proportions of oil, water, and gas in North Sea oil transfer pipelines
(Bishop and James, 1993). It is based on the principle of dual-energy gamma densit-
ometry. The ideas is that if a narrow beam of gamma rays is passed through the pipe,
the attenuation in the intensity of the beam provides information about the density of
material along its path. Thus, for instance, the beam will be attenuated more strongly
by oil than by gas.

A single attenuation measurement alone is not sufficient because there are two
degrees of freedom corresponding to the fraction of oil and the fraction of water (the
fraction of gas is redundant because the three fractions must add to one). To address
this, two gamma beams of different energies (in other words different frequencies or
wavelengths) are passed through the pipe along the same path, and the attenuation of
each is measured. Because the absorbtion properties of different materials vary dif-
ferently as a function of energy, measurement of the attenuations at the two energies
provides two independent pieces of information. Given the known absorbtion prop-
erties of oil, water, and gas at the two energies, it is then a simple matter to calculate
the average fractions of oil and water (and hence of gas) measured along the path of
the gamma beams.

There is a further complication, however, associated with the motion of the ma-
terials along the pipe. If the flow velocity is small, then the oil floats on top of the
water with the gas sitting above the oil. This is known as a laminar or stratified
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Sujets: 

HUGO LAROCHELLE

PARTITIONNEMENT DE DONNÉES

• On n’a pas de garanties qu’on va retrouver les «vraies» 
catégories ?

1. les données de chaque catégorie ne sont peut-être pas gaussiennes

2. le modèle de mélange entraîné n’est peut-être pas bon 
(plus là-dessus plus tard)

• Plus les données des différentes catégories seront bien 
séparées (pas entrelacées), meilleurs seront les résultats
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Apprentissage automatique
Mélange de gaussiennes - maximum de vraisemblance (EM)



Sujets: 

HUGO LAROCHELLE

PARTITIONNEMENT DE DONNÉES

• À partir d’un mélange de gaussiennes entraîné, on pourrait 
inférer à quelle gaussienne appartiennent les entrées

‣ on pourrait alors automatiquement catégoriser nos données en 
fonction des probabilités d’appartenance à chacune des gaussiennes

• Cette application s’appelle le partitionnement de 
données (clustering)

‣ permet de «mettre de l’ordre» dans les données

‣ permet de visualiser les données une partition à la fois
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Sujets: 

HUGO LAROCHELLE

MÉLANGE DE GAUSSIENNES

• Dans un mélange de gaussienne, l’appartenance aux K 
gaussiennes («classes») n’est pas connue
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .
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Sujets: 

HUGO LAROCHELLE

MÉLANGE DE GAUSSIENNES

• Puisqu’on ne connait pas l’appartenance aux gaussiennes 
(z), on va s’intéresser à la probabilité marginale :

• C’est de cette façon qu’on va mesurer la performance de 
notre modèle
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fonction de densité marginale des entrées
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Figure 9.4 Graphical representation of a mixture model, in which
the joint distribution is expressed in the form p(x, z) =
p(z)p(x|z).

x

z

where the parameters {πk} must satisfy

0 ! πk ! 1 (9.8)

together with
K∑

k=1

πk = 1 (9.9)

in order to be valid probabilities. Because z uses a 1-of-K representation, we can
also write this distribution in the form

p(z) =
K∏

k=1

πzk
k . (9.10)

Similarly, the conditional distribution of x given a particular value for z is a Gaussian

p(x|zk = 1) = N (x|µk,Σk)

which can also be written in the form

p(x|z) =
K∏

k=1

N (x|µk,Σk)zk . (9.11)

The joint distribution is given by p(z)p(x|z), and the marginal distribution of x is
then obtained by summing the joint distribution over all possible states of z to giveExercise 9.3

p(x) =
∑

z

p(z)p(x|z) =
K∑

k=1

πkN (x|µk,Σk) (9.12)

where we have made use of (9.10) and (9.11). Thus the marginal distribution of x is
a Gaussian mixture of the form (9.7). If we have several observations x1, . . . ,xN ,
then, because we have represented the marginal distribution in the form p(x) =∑

z p(x, z), it follows that for every observed data point xn there is a corresponding
latent variable zn.

We have therefore found an equivalent formulation of the Gaussian mixture in-
volving an explicit latent variable. It might seem that we have not gained much
by doing so. However, we are now able to work with the joint distribution p(x, z)

RAPPEL



Sujets: 

HUGO LAROCHELLE

MAXIMUM DE VRAISEMBLANCE

• On va entraîner un mélange de gaussiennes par maximum 
de vraisemblance

‣ on va maximiser la (log-)vraisemblance marginale des données 
d’entraînement
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a model. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12. However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other.

Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures
An elegant and powerful method for finding maximum likelihood solutions for

models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). Later we shall
give a general treatment of EM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EMSection 10.1
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function. Setting the derivatives of ln p(X|π, µ,Σ) in (9.14) with
respect to the means µk of the Gaussian components to zero, we obtain

0 = −
N∑

n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

︸ ︷︷ ︸
γ(znk)

Σk(xn − µk) (9.16)

where we have made use of the form (2.43) for the Gaussian distribution. Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on
the right-hand side. Multiplying by Σ−1

k (which we assume to be nonsingular) and
rearranging we obtain

µk =
1

Nk

N∑

n=1

γ(znk)xn (9.17)

where we have defined

Nk =
N∑

n=1

γ(znk). (9.18)
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value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively
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n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
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Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a model. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12. However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other.

Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures
An elegant and powerful method for finding maximum likelihood solutions for

models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). Later we shall
give a general treatment of EM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EMSection 10.1
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function. Setting the derivatives of ln p(X|π, µ,Σ) in (9.14) with
respect to the means µk of the Gaussian components to zero, we obtain

0 = −
N∑

n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

︸ ︷︷ ︸
γ(znk)

Σk(xn − µk) (9.16)

where we have made use of the form (2.43) for the Gaussian distribution. Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on
the right-hand side. Multiplying by Σ−1

k (which we assume to be nonsingular) and
rearranging we obtain

µk =
1

Nk

N∑

n=1

γ(znk)xn (9.17)

where we have defined

Nk =
N∑

n=1

γ(znk). (9.18)
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
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n=1

ln
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Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a model. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12. However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other.

Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures
An elegant and powerful method for finding maximum likelihood solutions for

models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). Later we shall
give a general treatment of EM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EMSection 10.1
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function. Setting the derivatives of ln p(X|π, µ,Σ) in (9.14) with
respect to the means µk of the Gaussian components to zero, we obtain

0 = −
N∑

n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

︸ ︷︷ ︸
γ(znk)

Σk(xn − µk) (9.16)

where we have made use of the form (2.43) for the Gaussian distribution. Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on
the right-hand side. Multiplying by Σ−1

k (which we assume to be nonsingular) and
rearranging we obtain

µk =
1

Nk

N∑

n=1

γ(znk)xn (9.17)

where we have defined

Nk =
N∑

n=1

γ(znk). (9.18)
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)T (9.19)

which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity

ln p(X|π, µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(9.20)

which gives

0 =
N∑

n=1

N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)T (9.19)

which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity

ln p(X|π, µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(9.20)

which gives

0 =
N∑

n=1

N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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Figure 9.4 Graphical representation of a mixture model, in which
the joint distribution is expressed in the form p(x, z) =
p(z)p(x|z).

x

z

where the parameters {πk} must satisfy

0 ! πk ! 1 (9.8)

together with
K∑

k=1

πk = 1 (9.9)

in order to be valid probabilities. Because z uses a 1-of-K representation, we can
also write this distribution in the form

p(z) =
K∏

k=1

πzk
k . (9.10)

Similarly, the conditional distribution of x given a particular value for z is a Gaussian

p(x|zk = 1) = N (x|µk,Σk)

which can also be written in the form

p(x|z) =
K∏

k=1

N (x|µk,Σk)zk . (9.11)

The joint distribution is given by p(z)p(x|z), and the marginal distribution of x is
then obtained by summing the joint distribution over all possible states of z to giveExercise 9.3

p(x) =
∑

z

p(z)p(x|z) =
K∑

k=1

πkN (x|µk,Σk) (9.12)

where we have made use of (9.10) and (9.11). Thus the marginal distribution of x is
a Gaussian mixture of the form (9.7). If we have several observations x1, . . . ,xN ,
then, because we have represented the marginal distribution in the form p(x) =∑

z p(x, z), it follows that for every observed data point xn there is a corresponding
latent variable zn.

We have therefore found an equivalent formulation of the Gaussian mixture in-
volving an explicit latent variable. It might seem that we have not gained much
by doing so. However, we are now able to work with the joint distribution p(x, z)
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)T (9.19)

which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity

ln p(X|π, µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(9.20)

which gives

0 =
N∑

n=1

N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a model. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12. However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other.

Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures
An elegant and powerful method for finding maximum likelihood solutions for

models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). Later we shall
give a general treatment of EM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EMSection 10.1
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function. Setting the derivatives of ln p(X|π, µ,Σ) in (9.14) with
respect to the means µk of the Gaussian components to zero, we obtain

0 = −
N∑

n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

︸ ︷︷ ︸
γ(znk)

Σk(xn − µk) (9.16)

where we have made use of the form (2.43) for the Gaussian distribution. Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on
the right-hand side. Multiplying by Σ−1

k (which we assume to be nonsingular) and
rearranging we obtain

µk =
1

Nk

N∑

n=1

γ(znk)xn (9.17)

where we have defined

Nk =
N∑

n=1

γ(znk). (9.18)
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4
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which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity
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πk − 1

)
(9.20)

which gives

0 =
N∑
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N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively
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there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a model. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12. However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other.

Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures
An elegant and powerful method for finding maximum likelihood solutions for

models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). Later we shall
give a general treatment of EM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EMSection 10.1
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function. Setting the derivatives of ln p(X|π, µ,Σ) in (9.14) with
respect to the means µk of the Gaussian components to zero, we obtain

0 = −
N∑

n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

︸ ︷︷ ︸
γ(znk)

Σk(xn − µk) (9.16)

where we have made use of the form (2.43) for the Gaussian distribution. Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on
the right-hand side. Multiplying by Σ−1

k (which we assume to be nonsingular) and
rearranging we obtain

µk =
1

Nk

N∑

n=1

γ(znk)xn (9.17)

where we have defined

Nk =
N∑

n=1

γ(znk). (9.18)
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)T (9.19)

which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity

ln p(X|π, µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(9.20)

which gives

0 =
N∑

n=1

N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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We can interpret Nk as the effective number of points assigned to cluster k. Note
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where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)T (9.19)

which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity

ln p(X|π, µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(9.20)

which gives

0 =
N∑

n=1

N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a model. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12. However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other.

Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures
An elegant and powerful method for finding maximum likelihood solutions for

models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). Later we shall
give a general treatment of EM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EMSection 10.1
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function. Setting the derivatives of ln p(X|π, µ,Σ) in (9.14) with
respect to the means µk of the Gaussian components to zero, we obtain

0 = −
N∑

n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

︸ ︷︷ ︸
γ(znk)

Σk(xn − µk) (9.16)

where we have made use of the form (2.43) for the Gaussian distribution. Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on
the right-hand side. Multiplying by Σ−1

k (which we assume to be nonsingular) and
rearranging we obtain

µk =
1

Nk

N∑

n=1

γ(znk)xn (9.17)

where we have defined

Nk =
N∑

n=1

γ(znk). (9.18)
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively
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the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by
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Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)T (9.19)

which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity

ln p(X|π, µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(9.20)

which gives

0 =
N∑

n=1

N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a model. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12. However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other.

Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures
An elegant and powerful method for finding maximum likelihood solutions for

models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). Later we shall
give a general treatment of EM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EMSection 10.1
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function. Setting the derivatives of ln p(X|π, µ,Σ) in (9.14) with
respect to the means µk of the Gaussian components to zero, we obtain

0 = −
N∑

n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

︸ ︷︷ ︸
γ(znk)

Σk(xn − µk) (9.16)

where we have made use of the form (2.43) for the Gaussian distribution. Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on
the right-hand side. Multiplying by Σ−1

k (which we assume to be nonsingular) and
rearranging we obtain

µk =
1

Nk

N∑

n=1

γ(znk)xn (9.17)

where we have defined

Nk =
N∑

n=1

γ(znk). (9.18)
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively
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the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by
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Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4
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which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity
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where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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πk − 1

)
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N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain
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However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a model. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12. However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other.

Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures
An elegant and powerful method for finding maximum likelihood solutions for

models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). Later we shall
give a general treatment of EM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EMSection 10.1
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function. Setting the derivatives of ln p(X|π, µ,Σ) in (9.14) with
respect to the means µk of the Gaussian components to zero, we obtain

0 = −
N∑

n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

︸ ︷︷ ︸
γ(znk)

Σk(xn − µk) (9.16)

where we have made use of the form (2.43) for the Gaussian distribution. Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on
the right-hand side. Multiplying by Σ−1

k (which we assume to be nonsingular) and
rearranging we obtain

µk =
1

Nk

N∑

n=1

γ(znk)xn (9.17)

where we have defined

Nk =
N∑

n=1

γ(znk). (9.18)
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .

xn

zn

N

µ Σ

π
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)T (9.19)

which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity

ln p(X|π, µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(9.20)

which gives

0 =
N∑

n=1

N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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Gaussian components are shown as blue and red circles. Plot (b) shows the result
of the initial E step, in which each data point is depicted using a proportion of blue
ink equal to the posterior probability of having been generated from the blue com-
ponent, and a corresponding proportion of red ink given by the posterior probability
of having been generated by the red component. Thus, points that have a significant
probability for belonging to either cluster appear purple. The situation after the first
M step is shown in plot (c), in which the mean of the blue Gaussian has moved to
the mean of the data set, weighted by the probabilities of each data point belonging
to the blue cluster, in other words it has moved to the centre of mass of the blue ink.
Similarly, the covariance of the blue Gaussian is set equal to the covariance of the
blue ink. Analogous results hold for the red component. Plots (d), (e), and (f) show
the results after 2, 5, and 20 complete cycles of EM, respectively. In plot (f) the
algorithm is close to convergence.

Note that the EM algorithm takes many more iterations to reach (approximate)
convergence compared with the K-means algorithm, and that each cycle requires
significantly more computation. It is therefore common to run the K-means algo-
rithm in order to find a suitable initialization for a Gaussian mixture model that is
subsequently adapted using EM. The covariance matrices can conveniently be ini-
tialized to the sample covariances of the clusters found by the K-means algorithm,
and the mixing coefficients can be set to the fractions of data points assigned to the
respective clusters. As with gradient-based approaches for maximizing the log like-
lihood, techniques must be employed to avoid singularities of the likelihood function
in which a Gaussian component collapses onto a particular data point. It should be
emphasized that there will generally be multiple local maxima of the log likelihood
function, and that EM is not guaranteed to find the largest of these maxima. Because
the EM algorithm for Gaussian mixtures plays such an important role, we summarize
it below.

EM for Gaussian Mixtures

Given a Gaussian mixture model, the goal is to maximize the likelihood function
with respect to the parameters (comprising the means and covariances of the
components and the mixing coefficients).

1. Initialize the means µk, covariances Σk and mixing coefficients πk, and
evaluate the initial value of the log likelihood.

2. E step. Evaluate the responsibilities using the current parameter values

γ(znk) =
πkN (xn|µk,Σk)

K∑

j=1

πjN (xn|µj ,Σj)

. (9.23)
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1. Initialize the means µk, covariances Σk and mixing coefficients πk, and
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3. M step. Re-estimate the parameters using the current responsibilities

µnew
k =

1
Nk

N∑

n=1

γ(znk)xn (9.24)

Σnew
k =

1
Nk

N∑

n=1

γ(znk) (xn − µnew
k ) (xn − µnew

k )T (9.25)

πnew
k =

Nk

N
(9.26)

where

Nk =
N∑

n=1

γ(znk). (9.27)

4. Evaluate the log likelihood

ln p(X|µ,Σ, π) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
(9.28)

and check for convergence of either the parameters or the log likelihood. If
the convergence criterion is not satisfied return to step 2.

9.3. An Alternative View of EM

In this section, we present a complementary view of the EM algorithm that recog-
nizes the key role played by latent variables. We discuss this approach first of all
in an abstract setting, and then for illustration we consider once again the case of
Gaussian mixtures.

The goal of the EM algorithm is to find maximum likelihood solutions for mod-
els having latent variables. We denote the set of all observed data by X, in which the
nth row represents xT

n , and similarly we denote the set of all latent variables by Z,
with a corresponding row zT

n . The set of all model parameters is denoted by θ, and
so the log likelihood function is given by

ln p(X|θ) = ln

{
∑

Z

p(X,Z|θ)

}
. (9.29)

Note that our discussion will apply equally well to continuous latent variables simply
by replacing the sum over Z with an integral.

A key observation is that the summation over the latent variables appears inside
the logarithm. Even if the joint distribution p(X,Z|θ) belongs to the exponential
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Apprentissage automatique
Mélange de gaussiennes - dérivation générale de EM
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)T (9.19)

which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity

ln p(X|π, µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(9.20)

which gives

0 =
N∑

n=1

N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a model. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12. However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other.

Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures
An elegant and powerful method for finding maximum likelihood solutions for

models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). Later we shall
give a general treatment of EM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EMSection 10.1
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function. Setting the derivatives of ln p(X|π, µ,Σ) in (9.14) with
respect to the means µk of the Gaussian components to zero, we obtain

0 = −
N∑

n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

︸ ︷︷ ︸
γ(znk)

Σk(xn − µk) (9.16)

where we have made use of the form (2.43) for the Gaussian distribution. Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on
the right-hand side. Multiplying by Σ−1

k (which we assume to be nonsingular) and
rearranging we obtain

µk =
1

Nk

N∑

n=1

γ(znk)xn (9.17)

where we have defined

Nk =
N∑

n=1

γ(znk). (9.18)
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively
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the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
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applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4
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which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity

ln p(X|π, µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(9.20)

which gives

0 =
N∑

n=1

N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a model. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12. However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other.

Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures
An elegant and powerful method for finding maximum likelihood solutions for

models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). Later we shall
give a general treatment of EM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EMSection 10.1
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function. Setting the derivatives of ln p(X|π, µ,Σ) in (9.14) with
respect to the means µk of the Gaussian components to zero, we obtain

0 = −
N∑

n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)
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γ(znk)

Σk(xn − µk) (9.16)

where we have made use of the form (2.43) for the Gaussian distribution. Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on
the right-hand side. Multiplying by Σ−1

k (which we assume to be nonsingular) and
rearranging we obtain

µk =
1

Nk

N∑

n=1

γ(znk)xn (9.17)

where we have defined

Nk =
N∑

n=1

γ(znk). (9.18)
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value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4
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coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity

ln p(X|π, µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(9.20)

which gives

0 =
N∑

n=1

N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a model. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12. However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other.

Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures
An elegant and powerful method for finding maximum likelihood solutions for

models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). Later we shall
give a general treatment of EM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EMSection 10.1
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function. Setting the derivatives of ln p(X|π, µ,Σ) in (9.14) with
respect to the means µk of the Gaussian components to zero, we obtain

0 = −
N∑

n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

︸ ︷︷ ︸
γ(znk)

Σk(xn − µk) (9.16)

where we have made use of the form (2.43) for the Gaussian distribution. Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on
the right-hand side. Multiplying by Σ−1

k (which we assume to be nonsingular) and
rearranging we obtain

µk =
1

Nk

N∑

n=1

γ(znk)xn (9.17)

where we have defined

Nk =
N∑

n=1

γ(znk). (9.18)
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .

xn

zn

N

µ Σ

π
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)T (9.19)

which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity

ln p(X|π, µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(9.20)

which gives

0 =
N∑

n=1

N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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αnew
i =

1
m2

i + Σii
(9.67)

(βnew)−1 =
∥t − ΦmN∥2 + β−1

∑
i γi

N
(9.68)

These re-estimation equations are formally equivalent to those obtained by direct
maxmization.Exercise 9.23

9.4. The EM Algorithm in General

The expectation maximization algorithm, or EM algorithm, is a general technique for
finding maximum likelihood solutions for probabilistic models having latent vari-
ables (Dempster et al., 1977; McLachlan and Krishnan, 1997). Here we give a very
general treatment of the EM algorithm and in the process provide a proof that the
EM algorithm derived heuristically in Sections 9.2 and 9.3 for Gaussian mixtures
does indeed maximize the likelihood function (Csiszàr and Tusnàdy, 1984; Hath-
away, 1986; Neal and Hinton, 1999). Our discussion will also form the basis for the
derivation of the variational inference framework.Section 10.1

Consider a probabilistic model in which we collectively denote all of the ob-
served variables by X and all of the hidden variables by Z. The joint distribution
p(X,Z|θ) is governed by a set of parameters denoted θ. Our goal is to maximize
the likelihood function that is given by

p(X|θ) =
∑

Z

p(X,Z|θ). (9.69)

Here we are assuming Z is discrete, although the discussion is identical if Z com-
prises continuous variables or a combination of discrete and continuous variables,
with summation replaced by integration as appropriate.

We shall suppose that direct optimization of p(X|θ) is difficult, but that opti-
mization of the complete-data likelihood function p(X,Z|θ) is significantly easier.
Next we introduce a distribution q(Z) defined over the latent variables, and we ob-
serve that, for any choice of q(Z), the following decomposition holds

ln p(X|θ) = L(q, θ) + KL(q∥p) (9.70)

where we have defined

L(q, θ) =
∑

Z

q(Z) ln
{

p(X,Z|θ)
q(Z)

}
(9.71)

KL(q∥p) = −
∑

Z

q(Z) ln
{

p(Z|X, θ)
q(Z)

}
. (9.72)

Note that L(q, θ) is a functional (see Appendix D for a discussion of functionals)
of the distribution q(Z), and a function of the parameters θ. It is worth studying
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maxmization.Exercise 9.23

9.4. The EM Algorithm in General

The expectation maximization algorithm, or EM algorithm, is a general technique for
finding maximum likelihood solutions for probabilistic models having latent vari-
ables (Dempster et al., 1977; McLachlan and Krishnan, 1997). Here we give a very
general treatment of the EM algorithm and in the process provide a proof that the
EM algorithm derived heuristically in Sections 9.2 and 9.3 for Gaussian mixtures
does indeed maximize the likelihood function (Csiszàr and Tusnàdy, 1984; Hath-
away, 1986; Neal and Hinton, 1999). Our discussion will also form the basis for the
derivation of the variational inference framework.Section 10.1

Consider a probabilistic model in which we collectively denote all of the ob-
served variables by X and all of the hidden variables by Z. The joint distribution
p(X,Z|θ) is governed by a set of parameters denoted θ. Our goal is to maximize
the likelihood function that is given by

p(X|θ) =
∑

Z

p(X,Z|θ). (9.69)

Here we are assuming Z is discrete, although the discussion is identical if Z com-
prises continuous variables or a combination of discrete and continuous variables,
with summation replaced by integration as appropriate.

We shall suppose that direct optimization of p(X|θ) is difficult, but that opti-
mization of the complete-data likelihood function p(X,Z|θ) is significantly easier.
Next we introduce a distribution q(Z) defined over the latent variables, and we ob-
serve that, for any choice of q(Z), the following decomposition holds

ln p(X|θ) = L(q, θ) + KL(q∥p) (9.70)

where we have defined

L(q, θ) =
∑

Z

q(Z) ln
{

p(X,Z|θ)
q(Z)

}
(9.71)

KL(q∥p) = −
∑

Z

q(Z) ln
{

p(Z|X, θ)
q(Z)

}
. (9.72)

Note that L(q, θ) is a functional (see Appendix D for a discussion of functionals)
of the distribution q(Z), and a function of the parameters θ. It is worth studying
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Figure 9.11 Illustration of the decomposition given
by (9.70), which holds for any choice
of distribution q(Z). Because the
Kullback-Leibler divergence satisfies
KL(q∥p) ! 0, we see that the quan-
tity L(q, θ) is a lower bound on the log
likelihood function ln p(X|θ).

ln p(X|θ)L(q, θ)

KL(q||p)

carefully the forms of the expressions (9.71) and (9.72), and in particular noting that
they differ in sign and also that L(q, θ) contains the joint distribution of X and Z
while KL(q∥p) contains the conditional distribution of Z given X. To verify the
decomposition (9.70), we first make use of the product rule of probability to giveExercise 9.24

ln p(X,Z|θ) = ln p(Z|X, θ) + ln p(X|θ) (9.73)

which we then substitute into the expression for L(q, θ). This gives rise to two terms,
one of which cancels KL(q∥p) while the other gives the required log likelihood
ln p(X|θ) after noting that q(Z) is a normalized distribution that sums to 1.

From (9.72), we see that KL(q∥p) is the Kullback-Leibler divergence between
q(Z) and the posterior distribution p(Z|X, θ). Recall that the Kullback-Leibler di-
vergence satisfies KL(q∥p) ! 0, with equality if, and only if, q(Z) = p(Z|X, θ). ItSection 1.6.1
therefore follows from (9.70) that L(q, θ) " ln p(X|θ), in other words that L(q, θ)
is a lower bound on ln p(X|θ). The decomposition (9.70) is illustrated in Fig-
ure 9.11.

The EM algorithm is a two-stage iterative optimization technique for finding
maximum likelihood solutions. We can use the decomposition (9.70) to define the
EM algorithm and to demonstrate that it does indeed maximize the log likelihood.
Suppose that the current value of the parameter vector is θold. In the E step, the
lower bound L(q, θold) is maximized with respect to q(Z) while holding θold fixed.
The solution to this maximization problem is easily seen by noting that the value
of ln p(X|θold) does not depend on q(Z) and so the largest value of L(q, θold) will
occur when the Kullback-Leibler divergence vanishes, in other words when q(Z) is
equal to the posterior distribution p(Z|X, θold). In this case, the lower bound will
equal the log likelihood, as illustrated in Figure 9.12.

In the subsequent M step, the distribution q(Z) is held fixed and the lower bound
L(q, θ) is maximized with respect to θ to give some new value θnew. This will
cause the lower bound L to increase (unless it is already at a maximum), which will
necessarily cause the corresponding log likelihood function to increase. Because the
distribution q is determined using the old parameter values rather than the new values
and is held fixed during the M step, it will not equal the new posterior distribution
p(Z|X, θnew), and hence there will be a nonzero KL divergence. The increase in the
log likelihood function is therefore greater than the increase in the lower bound, as

L’idée générale derrière 
EM est d’alterner entre

changer avec q(Z) (étape E)

et   (étape M)
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These re-estimation equations are formally equivalent to those obtained by direct
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9.4. The EM Algorithm in General

The expectation maximization algorithm, or EM algorithm, is a general technique for
finding maximum likelihood solutions for probabilistic models having latent vari-
ables (Dempster et al., 1977; McLachlan and Krishnan, 1997). Here we give a very
general treatment of the EM algorithm and in the process provide a proof that the
EM algorithm derived heuristically in Sections 9.2 and 9.3 for Gaussian mixtures
does indeed maximize the likelihood function (Csiszàr and Tusnàdy, 1984; Hath-
away, 1986; Neal and Hinton, 1999). Our discussion will also form the basis for the
derivation of the variational inference framework.Section 10.1

Consider a probabilistic model in which we collectively denote all of the ob-
served variables by X and all of the hidden variables by Z. The joint distribution
p(X,Z|θ) is governed by a set of parameters denoted θ. Our goal is to maximize
the likelihood function that is given by

p(X|θ) =
∑

Z

p(X,Z|θ). (9.69)

Here we are assuming Z is discrete, although the discussion is identical if Z com-
prises continuous variables or a combination of discrete and continuous variables,
with summation replaced by integration as appropriate.

We shall suppose that direct optimization of p(X|θ) is difficult, but that opti-
mization of the complete-data likelihood function p(X,Z|θ) is significantly easier.
Next we introduce a distribution q(Z) defined over the latent variables, and we ob-
serve that, for any choice of q(Z), the following decomposition holds

ln p(X|θ) = L(q, θ) + KL(q∥p) (9.70)

where we have defined

L(q, θ) =
∑

Z

q(Z) ln
{

p(X,Z|θ)
q(Z)

}
(9.71)

KL(q∥p) = −
∑

Z

q(Z) ln
{

p(Z|X, θ)
q(Z)

}
. (9.72)

Note that L(q, θ) is a functional (see Appendix D for a discussion of functionals)
of the distribution q(Z), and a function of the parameters θ. It is worth studying
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Figure 9.11 Illustration of the decomposition given
by (9.70), which holds for any choice
of distribution q(Z). Because the
Kullback-Leibler divergence satisfies
KL(q∥p) ! 0, we see that the quan-
tity L(q, θ) is a lower bound on the log
likelihood function ln p(X|θ).

ln p(X|θ)L(q, θ)

KL(q||p)

carefully the forms of the expressions (9.71) and (9.72), and in particular noting that
they differ in sign and also that L(q, θ) contains the joint distribution of X and Z
while KL(q∥p) contains the conditional distribution of Z given X. To verify the
decomposition (9.70), we first make use of the product rule of probability to giveExercise 9.24

ln p(X,Z|θ) = ln p(Z|X, θ) + ln p(X|θ) (9.73)

which we then substitute into the expression for L(q, θ). This gives rise to two terms,
one of which cancels KL(q∥p) while the other gives the required log likelihood
ln p(X|θ) after noting that q(Z) is a normalized distribution that sums to 1.

From (9.72), we see that KL(q∥p) is the Kullback-Leibler divergence between
q(Z) and the posterior distribution p(Z|X, θ). Recall that the Kullback-Leibler di-
vergence satisfies KL(q∥p) ! 0, with equality if, and only if, q(Z) = p(Z|X, θ). ItSection 1.6.1
therefore follows from (9.70) that L(q, θ) " ln p(X|θ), in other words that L(q, θ)
is a lower bound on ln p(X|θ). The decomposition (9.70) is illustrated in Fig-
ure 9.11.

The EM algorithm is a two-stage iterative optimization technique for finding
maximum likelihood solutions. We can use the decomposition (9.70) to define the
EM algorithm and to demonstrate that it does indeed maximize the log likelihood.
Suppose that the current value of the parameter vector is θold. In the E step, the
lower bound L(q, θold) is maximized with respect to q(Z) while holding θold fixed.
The solution to this maximization problem is easily seen by noting that the value
of ln p(X|θold) does not depend on q(Z) and so the largest value of L(q, θold) will
occur when the Kullback-Leibler divergence vanishes, in other words when q(Z) is
equal to the posterior distribution p(Z|X, θold). In this case, the lower bound will
equal the log likelihood, as illustrated in Figure 9.12.

In the subsequent M step, the distribution q(Z) is held fixed and the lower bound
L(q, θ) is maximized with respect to θ to give some new value θnew. This will
cause the lower bound L to increase (unless it is already at a maximum), which will
necessarily cause the corresponding log likelihood function to increase. Because the
distribution q is determined using the old parameter values rather than the new values
and is held fixed during the M step, it will not equal the new posterior distribution
p(Z|X, θnew), and hence there will be a nonzero KL divergence. The increase in the
log likelihood function is therefore greater than the increase in the lower bound, as
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which we then substitute into the expression for L(q, θ). This gives rise to two terms,
one of which cancels KL(q∥p) while the other gives the required log likelihood
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therefore follows from (9.70) that L(q, θ) " ln p(X|θ), in other words that L(q, θ)
is a lower bound on ln p(X|θ). The decomposition (9.70) is illustrated in Fig-
ure 9.11.

The EM algorithm is a two-stage iterative optimization technique for finding
maximum likelihood solutions. We can use the decomposition (9.70) to define the
EM algorithm and to demonstrate that it does indeed maximize the log likelihood.
Suppose that the current value of the parameter vector is θold. In the E step, the
lower bound L(q, θold) is maximized with respect to q(Z) while holding θold fixed.
The solution to this maximization problem is easily seen by noting that the value
of ln p(X|θold) does not depend on q(Z) and so the largest value of L(q, θold) will
occur when the Kullback-Leibler divergence vanishes, in other words when q(Z) is
equal to the posterior distribution p(Z|X, θold). In this case, the lower bound will
equal the log likelihood, as illustrated in Figure 9.12.

In the subsequent M step, the distribution q(Z) is held fixed and the lower bound
L(q, θ) is maximized with respect to θ to give some new value θnew. This will
cause the lower bound L to increase (unless it is already at a maximum), which will
necessarily cause the corresponding log likelihood function to increase. Because the
distribution q is determined using the old parameter values rather than the new values
and is held fixed during the M step, it will not equal the new posterior distribution
p(Z|X, θnew), and hence there will be a nonzero KL divergence. The increase in the
log likelihood function is therefore greater than the increase in the lower bound, as
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These re-estimation equations are formally equivalent to those obtained by direct
maxmization.Exercise 9.23

9.4. The EM Algorithm in General

The expectation maximization algorithm, or EM algorithm, is a general technique for
finding maximum likelihood solutions for probabilistic models having latent vari-
ables (Dempster et al., 1977; McLachlan and Krishnan, 1997). Here we give a very
general treatment of the EM algorithm and in the process provide a proof that the
EM algorithm derived heuristically in Sections 9.2 and 9.3 for Gaussian mixtures
does indeed maximize the likelihood function (Csiszàr and Tusnàdy, 1984; Hath-
away, 1986; Neal and Hinton, 1999). Our discussion will also form the basis for the
derivation of the variational inference framework.Section 10.1

Consider a probabilistic model in which we collectively denote all of the ob-
served variables by X and all of the hidden variables by Z. The joint distribution
p(X,Z|θ) is governed by a set of parameters denoted θ. Our goal is to maximize
the likelihood function that is given by

p(X|θ) =
∑

Z

p(X,Z|θ). (9.69)

Here we are assuming Z is discrete, although the discussion is identical if Z com-
prises continuous variables or a combination of discrete and continuous variables,
with summation replaced by integration as appropriate.

We shall suppose that direct optimization of p(X|θ) is difficult, but that opti-
mization of the complete-data likelihood function p(X,Z|θ) is significantly easier.
Next we introduce a distribution q(Z) defined over the latent variables, and we ob-
serve that, for any choice of q(Z), the following decomposition holds

ln p(X|θ) = L(q, θ) + KL(q∥p) (9.70)

where we have defined

L(q, θ) =
∑

Z

q(Z) ln
{

p(X,Z|θ)
q(Z)

}
(9.71)

KL(q∥p) = −
∑

Z

q(Z) ln
{

p(Z|X, θ)
q(Z)

}
. (9.72)

Note that L(q, θ) is a functional (see Appendix D for a discussion of functionals)
of the distribution q(Z), and a function of the parameters θ. It is worth studying
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Figure 9.11 Illustration of the decomposition given
by (9.70), which holds for any choice
of distribution q(Z). Because the
Kullback-Leibler divergence satisfies
KL(q∥p) ! 0, we see that the quan-
tity L(q, θ) is a lower bound on the log
likelihood function ln p(X|θ).

ln p(X|θ)L(q, θ)

KL(q||p)

carefully the forms of the expressions (9.71) and (9.72), and in particular noting that
they differ in sign and also that L(q, θ) contains the joint distribution of X and Z
while KL(q∥p) contains the conditional distribution of Z given X. To verify the
decomposition (9.70), we first make use of the product rule of probability to giveExercise 9.24

ln p(X,Z|θ) = ln p(Z|X, θ) + ln p(X|θ) (9.73)

which we then substitute into the expression for L(q, θ). This gives rise to two terms,
one of which cancels KL(q∥p) while the other gives the required log likelihood
ln p(X|θ) after noting that q(Z) is a normalized distribution that sums to 1.

From (9.72), we see that KL(q∥p) is the Kullback-Leibler divergence between
q(Z) and the posterior distribution p(Z|X, θ). Recall that the Kullback-Leibler di-
vergence satisfies KL(q∥p) ! 0, with equality if, and only if, q(Z) = p(Z|X, θ). ItSection 1.6.1
therefore follows from (9.70) that L(q, θ) " ln p(X|θ), in other words that L(q, θ)
is a lower bound on ln p(X|θ). The decomposition (9.70) is illustrated in Fig-
ure 9.11.

The EM algorithm is a two-stage iterative optimization technique for finding
maximum likelihood solutions. We can use the decomposition (9.70) to define the
EM algorithm and to demonstrate that it does indeed maximize the log likelihood.
Suppose that the current value of the parameter vector is θold. In the E step, the
lower bound L(q, θold) is maximized with respect to q(Z) while holding θold fixed.
The solution to this maximization problem is easily seen by noting that the value
of ln p(X|θold) does not depend on q(Z) and so the largest value of L(q, θold) will
occur when the Kullback-Leibler divergence vanishes, in other words when q(Z) is
equal to the posterior distribution p(Z|X, θold). In this case, the lower bound will
equal the log likelihood, as illustrated in Figure 9.12.

In the subsequent M step, the distribution q(Z) is held fixed and the lower bound
L(q, θ) is maximized with respect to θ to give some new value θnew. This will
cause the lower bound L to increase (unless it is already at a maximum), which will
necessarily cause the corresponding log likelihood function to increase. Because the
distribution q is determined using the old parameter values rather than the new values
and is held fixed during the M step, it will not equal the new posterior distribution
p(Z|X, θnew), and hence there will be a nonzero KL divergence. The increase in the
log likelihood function is therefore greater than the increase in the lower bound, as
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The EM algorithm is a two-stage iterative optimization technique for finding
maximum likelihood solutions. We can use the decomposition (9.70) to define the
EM algorithm and to demonstrate that it does indeed maximize the log likelihood.
Suppose that the current value of the parameter vector is θold. In the E step, the
lower bound L(q, θold) is maximized with respect to q(Z) while holding θold fixed.
The solution to this maximization problem is easily seen by noting that the value
of ln p(X|θold) does not depend on q(Z) and so the largest value of L(q, θold) will
occur when the Kullback-Leibler divergence vanishes, in other words when q(Z) is
equal to the posterior distribution p(Z|X, θold). In this case, the lower bound will
equal the log likelihood, as illustrated in Figure 9.12.

In the subsequent M step, the distribution q(Z) is held fixed and the lower bound
L(q, θ) is maximized with respect to θ to give some new value θnew. This will
cause the lower bound L to increase (unless it is already at a maximum), which will
necessarily cause the corresponding log likelihood function to increase. Because the
distribution q is determined using the old parameter values rather than the new values
and is held fixed during the M step, it will not equal the new posterior distribution
p(Z|X, θnew), and hence there will be a nonzero KL divergence. The increase in the
log likelihood function is therefore greater than the increase in the lower bound, as
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Figure 9.12 Illustration of the E step of
the EM algorithm. The q
distribution is set equal to
the posterior distribution for
the current parameter val-
ues θold, causing the lower
bound to move up to the
same value as the log like-
lihood function, with the KL
divergence vanishing. ln p(X|θold)L(q, θold)

KL(q||p) = 0

shown in Figure 9.13. If we substitute q(Z) = p(Z|X, θold) into (9.71), we see that,
after the E step, the lower bound takes the form

L(q, θ) =
∑

Z

p(Z|X, θold) ln p(X,Z|θ) −
∑

Z

p(Z|X, θold) ln p(Z|X, θold)

= Q(θ, θold) + const (9.74)

where the constant is simply the negative entropy of the q distribution and is there-
fore independent of θ. Thus in the M step, the quantity that is being maximized is the
expectation of the complete-data log likelihood, as we saw earlier in the case of mix-
tures of Gaussians. Note that the variable θ over which we are optimizing appears
only inside the logarithm. If the joint distribution p(Z,X|θ) comprises a member of
the exponential family, or a product of such members, then we see that the logarithm
will cancel the exponential and lead to an M step that will be typically much simpler
than the maximization of the corresponding incomplete-data log likelihood function
p(X|θ).

The operation of the EM algorithm can also be viewed in the space of parame-
ters, as illustrated schematically in Figure 9.14. Here the red curve depicts the (in-

Figure 9.13 Illustration of the M step of the EM
algorithm. The distribution q(Z)
is held fixed and the lower bound
L(q, θ) is maximized with respect
to the parameter vector θ to give
a revised value θnew. Because the
KL divergence is nonnegative, this
causes the log likelihood ln p(X|θ)
to increase by at least as much as
the lower bound does.

ln p(X|θnew)L(q, θnew)

KL(q||p)
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αnew
i =

1
m2

i + Σii
(9.67)

(βnew)−1 =
∥t − ΦmN∥2 + β−1

∑
i γi

N
(9.68)

These re-estimation equations are formally equivalent to those obtained by direct
maxmization.Exercise 9.23

9.4. The EM Algorithm in General

The expectation maximization algorithm, or EM algorithm, is a general technique for
finding maximum likelihood solutions for probabilistic models having latent vari-
ables (Dempster et al., 1977; McLachlan and Krishnan, 1997). Here we give a very
general treatment of the EM algorithm and in the process provide a proof that the
EM algorithm derived heuristically in Sections 9.2 and 9.3 for Gaussian mixtures
does indeed maximize the likelihood function (Csiszàr and Tusnàdy, 1984; Hath-
away, 1986; Neal and Hinton, 1999). Our discussion will also form the basis for the
derivation of the variational inference framework.Section 10.1

Consider a probabilistic model in which we collectively denote all of the ob-
served variables by X and all of the hidden variables by Z. The joint distribution
p(X,Z|θ) is governed by a set of parameters denoted θ. Our goal is to maximize
the likelihood function that is given by

p(X|θ) =
∑

Z

p(X,Z|θ). (9.69)

Here we are assuming Z is discrete, although the discussion is identical if Z com-
prises continuous variables or a combination of discrete and continuous variables,
with summation replaced by integration as appropriate.

We shall suppose that direct optimization of p(X|θ) is difficult, but that opti-
mization of the complete-data likelihood function p(X,Z|θ) is significantly easier.
Next we introduce a distribution q(Z) defined over the latent variables, and we ob-
serve that, for any choice of q(Z), the following decomposition holds

ln p(X|θ) = L(q, θ) + KL(q∥p) (9.70)

where we have defined

L(q, θ) =
∑

Z

q(Z) ln
{

p(X,Z|θ)
q(Z)

}
(9.71)

KL(q∥p) = −
∑

Z

q(Z) ln
{

p(Z|X, θ)
q(Z)

}
. (9.72)

Note that L(q, θ) is a functional (see Appendix D for a discussion of functionals)
of the distribution q(Z), and a function of the parameters θ. It is worth studying
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Figure 9.14 The EM algorithm involves alter-
nately computing a lower bound
on the log likelihood for the cur-
rent parameter values and then
maximizing this bound to obtain
the new parameter values. See
the text for a full discussion.

θold θnew

L (q, θ)

ln p(X|θ)

complete data) log likelihood function whose value we wish to maximize. We start
with some initial parameter value θold, and in the first E step we evaluate the poste-
rior distribution over latent variables, which gives rise to a lower bound L(θ, θ(old))
whose value equals the log likelihood at θ(old), as shown by the blue curve. Note that
the bound makes a tangential contact with the log likelihood at θ(old), so that both
curves have the same gradient. This bound is a convex function having a uniqueExercise 9.25
maximum (for mixture components from the exponential family). In the M step, the
bound is maximized giving the value θ(new), which gives a larger value of log likeli-
hood than θ(old). The subsequent E step then constructs a bound that is tangential at
θ(new) as shown by the green curve.

For the particular case of an independent, identically distributed data set, X
will comprise N data points {xn} while Z will comprise N corresponding latent
variables {zn}, where n = 1, . . . , N . From the independence assumption, we have
p(X,Z) =

∏
n p(xn, zn) and, by marginalizing over the {zn} we have p(X) =∏

n p(xn). Using the sum and product rules, we see that the posterior probability
that is evaluated in the E step takes the form

p(Z|X, θ) =
p(X,Z|θ)∑

Z

p(X,Z|θ)
=

N∏

n=1

p(xn, zn|θ)

∑

Z

N∏

n=1

p(xn, zn|θ)

=
N∏

n=1

p(zn|xn, θ) (9.75)

and so the posterior distribution also factorizes with respect to n. In the case of
the Gaussian mixture model this simply says that the responsibility that each of the
mixture components takes for a particular data point xn depends only on the value
of xn and on the parameters θ of the mixture components, not on the values of the
other data points.

We have seen that both the E and the M steps of the EM algorithm are increas-
ing the value of a well-defined bound on the log likelihood function and that the
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a model. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12. However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other.

Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures
An elegant and powerful method for finding maximum likelihood solutions for

models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). Later we shall
give a general treatment of EM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EMSection 10.1
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function. Setting the derivatives of ln p(X|π, µ,Σ) in (9.14) with
respect to the means µk of the Gaussian components to zero, we obtain

0 = −
N∑

n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

︸ ︷︷ ︸
γ(znk)

Σk(xn − µk) (9.16)

where we have made use of the form (2.43) for the Gaussian distribution. Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on
the right-hand side. Multiplying by Σ−1

k (which we assume to be nonsingular) and
rearranging we obtain

µk =
1

Nk

N∑

n=1

γ(znk)xn (9.17)

where we have defined

Nk =
N∑

n=1

γ(znk). (9.18)

✓
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .

xn

zn

N

µ Σ

π
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)T (9.19)

which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity

ln p(X|π, µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(9.20)

which gives

0 =
N∑

n=1

N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step

436 9. MIXTURE MODELS AND EM

We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)T (9.19)

which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity

ln p(X|π, µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(9.20)

which gives

0 =
N∑

n=1

N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step



Apprentissage automatique
Mélange de gaussiennes - résumé



Sujets: 

HUGO LAROCHELLE

MÉLANGE DE GAUSSIENNES

• Modèle :                                       

• Entraînement : algorithme EM (maximum vraisemblance)

‣ Étape E : calcul des             (colle la borne            sur                )

‣ Étape M : maximise la borne par rapport à 

• Hyper-paramètre : K, nb. d’itérations d’EM

• Prédiction :  p(x) ou assignation à une des K gaussiennes
60

résumé du modèle de mélange de gaussiennes

9.2. Mixtures of Gaussians 431

Figure 9.4 Graphical representation of a mixture model, in which
the joint distribution is expressed in the form p(x, z) =
p(z)p(x|z).

x

z

where the parameters {πk} must satisfy

0 ! πk ! 1 (9.8)

together with
K∑

k=1

πk = 1 (9.9)

in order to be valid probabilities. Because z uses a 1-of-K representation, we can
also write this distribution in the form

p(z) =
K∏

k=1

πzk
k . (9.10)

Similarly, the conditional distribution of x given a particular value for z is a Gaussian

p(x|zk = 1) = N (x|µk,Σk)

which can also be written in the form

p(x|z) =
K∏

k=1

N (x|µk,Σk)zk . (9.11)

The joint distribution is given by p(z)p(x|z), and the marginal distribution of x is
then obtained by summing the joint distribution over all possible states of z to giveExercise 9.3

p(x) =
∑

z

p(z)p(x|z) =
K∑

k=1

πkN (x|µk,Σk) (9.12)

where we have made use of (9.10) and (9.11). Thus the marginal distribution of x is
a Gaussian mixture of the form (9.7). If we have several observations x1, . . . ,xN ,
then, because we have represented the marginal distribution in the form p(x) =∑

z p(x, z), it follows that for every observed data point xn there is a corresponding
latent variable zn.

We have therefore found an equivalent formulation of the Gaussian mixture in-
volving an explicit latent variable. It might seem that we have not gained much
by doing so. However, we are now able to work with the joint distribution p(x, z)
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αnew
i =

1
m2

i + Σii
(9.67)

(βnew)−1 =
∥t − ΦmN∥2 + β−1

∑
i γi

N
(9.68)

These re-estimation equations are formally equivalent to those obtained by direct
maxmization.Exercise 9.23

9.4. The EM Algorithm in General

The expectation maximization algorithm, or EM algorithm, is a general technique for
finding maximum likelihood solutions for probabilistic models having latent vari-
ables (Dempster et al., 1977; McLachlan and Krishnan, 1997). Here we give a very
general treatment of the EM algorithm and in the process provide a proof that the
EM algorithm derived heuristically in Sections 9.2 and 9.3 for Gaussian mixtures
does indeed maximize the likelihood function (Csiszàr and Tusnàdy, 1984; Hath-
away, 1986; Neal and Hinton, 1999). Our discussion will also form the basis for the
derivation of the variational inference framework.Section 10.1

Consider a probabilistic model in which we collectively denote all of the ob-
served variables by X and all of the hidden variables by Z. The joint distribution
p(X,Z|θ) is governed by a set of parameters denoted θ. Our goal is to maximize
the likelihood function that is given by

p(X|θ) =
∑

Z

p(X,Z|θ). (9.69)

Here we are assuming Z is discrete, although the discussion is identical if Z com-
prises continuous variables or a combination of discrete and continuous variables,
with summation replaced by integration as appropriate.

We shall suppose that direct optimization of p(X|θ) is difficult, but that opti-
mization of the complete-data likelihood function p(X,Z|θ) is significantly easier.
Next we introduce a distribution q(Z) defined over the latent variables, and we ob-
serve that, for any choice of q(Z), the following decomposition holds

ln p(X|θ) = L(q, θ) + KL(q∥p) (9.70)

where we have defined

L(q, θ) =
∑

Z

q(Z) ln
{

p(X,Z|θ)
q(Z)

}
(9.71)

KL(q∥p) = −
∑

Z

q(Z) ln
{

p(Z|X, θ)
q(Z)

}
. (9.72)

Note that L(q, θ) is a functional (see Appendix D for a discussion of functionals)
of the distribution q(Z), and a function of the parameters θ. It is worth studying
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a model. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12. However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other.

Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures
An elegant and powerful method for finding maximum likelihood solutions for

models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). Later we shall
give a general treatment of EM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EMSection 10.1
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function. Setting the derivatives of ln p(X|π, µ,Σ) in (9.14) with
respect to the means µk of the Gaussian components to zero, we obtain

0 = −
N∑

n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

︸ ︷︷ ︸
γ(znk)

Σk(xn − µk) (9.16)

where we have made use of the form (2.43) for the Gaussian distribution. Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on
the right-hand side. Multiplying by Σ−1

k (which we assume to be nonsingular) and
rearranging we obtain

µk =
1

Nk

N∑

n=1

γ(znk)xn (9.17)

where we have defined

Nk =
N∑

n=1

γ(znk). (9.18)
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Figure 2.23 Illustration of a mixture of 3 Gaussians in a two-dimensional space. (a) Contours of constant
density for each of the mixture components, in which the 3 components are denoted red, blue and green, and
the values of the mixing coefficients are shown below each component. (b) Contours of the marginal probability
density p(x) of the mixture distribution. (c) A surface plot of the distribution p(x).

We therefore see that the mixing coefficients satisfy the requirements to be probabil-
ities.

From the sum and product rules, the marginal density is given by

p(x) =
K∑

k=1

p(k)p(x|k) (2.191)

which is equivalent to (2.188) in which we can view πk = p(k) as the prior prob-
ability of picking the kth component, and the density N (x|µk,Σk) = p(x|k) as
the probability of x conditioned on k. As we shall see in later chapters, an impor-
tant role is played by the posterior probabilities p(k|x), which are also known as
responsibilities. From Bayes’ theorem these are given by

γk(x) ≡ p(k|x)

=
p(k)p(x|k)∑

l p(l)p(x|l)

=
πkN (x|µk,Σk)∑

l πlN (x|µl,Σl)
. (2.192)

We shall discuss the probabilistic interpretation of the mixture distribution in greater
detail in Chapter 9.

The form of the Gaussian mixture distribution is governed by the parameters π,
µ and Σ, where we have used the notation π ≡ {π1, . . . , πK}, µ ≡ {µ1, . . . ,µK}
and Σ ≡ {Σ1, . . .ΣK}. One way to set the values of these parameters is to use
maximum likelihood. From (2.188) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
(2.193)
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• Hyper-paramètres vs capacité 

‣ plus le nombre de gaussiennes K est grand, plus la capacité augmente

‣ plus le nombre d’itérations d’EM augmente, plus la capacité augmente

• Pour la sélection de modèle, on utilise ln p(X) comme 

mesure de performance

‣ plus elle est élevée, meilleure la performance

‣ de façon équivalente, -ln p(X) est l’erreur du modèle
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• Existe plusieurs optima locaux (problème non-convexe)

‣ initialisation est importante

‣ approche : initialiser les moyennes à K exemples xn aléatoires, 
auxquels on ajoute du bruit gaussien
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• Le problème d’optimisation n’est pas bien défini

‣ si une gaussienne est centrée sur un exemple xn, la probabilité de xn 
peut devenir infinie en faisant tendre la covariance vers 0
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Figure 9.7 Illustration of how singularities in the
likelihood function arise with mixtures
of Gaussians. This should be com-
pared with the case of a single Gaus-
sian shown in Figure 1.14 for which no
singularities arise.

x

p(x)

points so that µj = xn for some value of n. This data point will then contribute a
term in the likelihood function of the form

N (xn|xn, σ2
j I) =

1
(2π)1/2

1
σj

. (9.15)

If we consider the limit σj → 0, then we see that this term goes to infinity and
so the log likelihood function will also go to infinity. Thus the maximization of
the log likelihood function is not a well posed problem because such singularities
will always be present and will occur whenever one of the Gaussian components
‘collapses’ onto a specific data point. Recall that this problem did not arise in the
case of a single Gaussian distribution. To understand the difference, note that if a
single Gaussian collapses onto a data point it will contribute multiplicative factors
to the likelihood function arising from the other data points and these factors will go
to zero exponentially fast, giving an overall likelihood that goes to zero rather than
infinity. However, once we have (at least) two components in the mixture, one of
the components can have a finite variance and therefore assign finite probability to
all of the data points while the other component can shrink onto one specific data
point and thereby contribute an ever increasing additive value to the log likelihood.
This is illustrated in Figure 9.7. These singularities provide another example of the
severe over-fitting that can occur in a maximum likelihood approach. We shall see
that this difficulty does not occur if we adopt a Bayesian approach. For the moment,Section 10.1
however, we simply note that in applying maximum likelihood to Gaussian mixture
models we must take steps to avoid finding such pathological solutions and instead
seek local maxima of the likelihood function that are well behaved. We can hope to
avoid the singularities by using suitable heuristics, for instance by detecting when a
Gaussian component is collapsing and resetting its mean to a randomly chosen value
while also resetting its covariance to some large value, and then continuing with the
optimization.

A further issue in finding maximum likelihood solutions arises from the fact
that for any given maximum likelihood solution, a K-component mixture will have
a total of K! equivalent solutions corresponding to the K! ways of assigning K
sets of parameters to K components. In other words, for any given (nondegenerate)
point in the space of parameter values there will be a further K!−1 additional points
all of which give rise to exactly the same distribution. This problem is known as
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FENÊTRE DE PARZEN

• La fenêtre de Parzen est un mélange de gaussienne où

‣              : il y a une gaussienne par exemple d’entraînement

‣              : chaque gaussienne a la même probabilité a priori

‣               : chaque gaussienne est centrée autour d’un exemple

‣                  : la covariance est sphérique (       est un hyper-param.)

• C’est un modèle très simple (voire simpliste), intéressant si 
on veut seulement estimer p(x), sans partionnement
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fenêtre de Parzen

K = N

⇡k =
1

N
µn = xn

⌃n = �2I �2


