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APPRENTISSAGE AUTOMATIQUE

• Il existe différents types d’apprentissage

‣ apprentissage supervisé : il y a une cible à prédire

              = {(x1,t1), ... , (xN,tN)}

‣ apprentissage non-supervisé : cible n’est pas fournie

              = {x1, ... , xN}

‣ apprentissage par renforcement (non couvert dans ce cours)
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RÉDUCTION DE DIMENSIONNALITÉ

• Formellement, le problème est d’apprendre une fonction 
y(x) telle que

où la dimensionnalité M < D (c’est un hyper-paramètre)

• Applications

‣ visualisation de données

‣ limiter le sur-apprentissage

3

réduction de dimensionnalité
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TYPES D’APPRENTISSAGE

• L’apprentissage non-supervisé est lorsqu’une cible n’est pas 
explicitement donnée 

‣ visualisation de données 
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apprentissage non-supervisé, visualisation

tion to geodesic distance. For faraway points,
geodesic distance can be approximated by
adding up a sequence of “short hops” be-
tween neighboring points. These approxima-
tions are computed efficiently by finding
shortest paths in a graph with edges connect-
ing neighboring data points.

The complete isometric feature mapping,
or Isomap, algorithm has three steps, which
are detailed in Table 1. The first step deter-
mines which points are neighbors on the
manifold M, based on the distances dX (i, j)
between pairs of points i, j in the input space

X. Two simple methods are to connect each
point to all points within some fixed radius !,
or to all of its K nearest neighbors (15). These
neighborhood relations are represented as a
weighted graph G over the data points, with
edges of weight dX(i, j) between neighboring
points (Fig. 3B).

In its second step, Isomap estimates the
geodesic distances dM (i, j) between all pairs
of points on the manifold M by computing
their shortest path distances dG(i, j) in the
graph G. One simple algorithm (16) for find-
ing shortest paths is given in Table 1.

The final step applies classical MDS to
the matrix of graph distances DG " {dG(i, j)},
constructing an embedding of the data in a
d-dimensional Euclidean space Y that best
preserves the manifold’s estimated intrinsic
geometry (Fig. 3C). The coordinate vectors yi

for points in Y are chosen to minimize the
cost function

E ! !#$DG% " #$DY%!L2 (1)

where DY denotes the matrix of Euclidean
distances {dY(i, j) " !yi & yj!} and !A!L2

the L2 matrix norm '(i, j Ai j
2 . The # operator

Fig. 1. (A) A canonical dimensionality reduction
problem from visual perception. The input consists
of a sequence of 4096-dimensional vectors, rep-
resenting the brightness values of 64 pixel by 64
pixel images of a face rendered with different
poses and lighting directions. Applied to N " 698
raw images, Isomap (K" 6) learns a three-dimen-
sional embedding of the data’s intrinsic geometric
structure. A two-dimensional projection is shown,
with a sample of the original input images (red
circles) superimposed on all the data points (blue)
and horizontal sliders (under the images) repre-
senting the third dimension. Each coordinate axis
of the embedding correlates highly with one de-
gree of freedom underlying the original data: left-
right pose (x axis, R " 0.99), up-down pose ( y
axis, R " 0.90), and lighting direction (slider posi-
tion, R " 0.92). The input-space distances dX(i, j )
given to Isomap were Euclidean distances be-
tween the 4096-dimensional image vectors. (B)
Isomap applied to N " 1000 handwritten “2”s
from the MNIST database (40). The two most
significant dimensions in the Isomap embedding,
shown here, articulate the major features of the
“2”: bottom loop (x axis) and top arch ( y axis).
Input-space distances dX(i, j ) were measured by
tangent distance, a metric designed to capture the
invariances relevant in handwriting recognition
(41). Here we used !-Isomap (with ! " 4.2) be-
cause we did not expect a constant dimensionality
to hold over the whole data set; consistent with
this, Isomap finds several tendrils projecting from
the higher dimensional mass of data and repre-
senting successive exaggerations of an extra
stroke or ornament in the digit.

R E P O R T S

22 DECEMBER 2000 VOL 290 SCIENCE www.sciencemag.org2320

Tenenbaum, de Silva, 
Langford, (2000)
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MALÉDICTION DE LA DIMENSIONNALITÉ

• La difficulté à bien généraliser peut donc potentiellement 
augmenter exponentiellement avec la dimensionnalité 
D des entrées

• Cette observation est appelée la malédiction de la 
dimensionnalité

• Nécessite le design de modèles / algorithmes appropriés 
pour chaque problème

‣ on cherche des modèles / algorithmes qui vont bien exploiter les 
données à notre disposition
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RÉDUCTION DE DIMENSIONNALITÉ

• Ne perd-on pas de l’information ?

‣ pas si la dimensionnalité intrinsèque est basse

• Exemple : images (une dimension par pixel)

‣ varier individuellement chacun 
des D pixels ne résulte presque
jamais en une image compréhensible 

6

dimensionnalité intrinsèque
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RÉDUCTION DE DIMENSIONNALITÉ

• Soit un jeu de données généré en prenant une seule image 
du caractère «3» et en appliquant différentes (1) 
translations verticales, (2) horizontales et (3) rotations

• Même si les images sont 100 ⨉	  100 (D=10 000), les 
images ne peuvent varier que selon 3 degrés de liberté

‣ la dimensionnalité intrinsèque (M) est donc de 3
7

dimensionnalité intrinsèque

560 12. CONTINUOUS LATENT VARIABLES

Figure 12.1 A synthetic data set obtained by taking one of the off-line digit images and creating multi-
ple copies in each of which the digit has undergone a random displacement and rotation
within some larger image field. The resulting images each have 100 × 100 = 10, 000
pixels.

that the manifold will be nonlinear because, for instance, if we translate the digit
past a particular pixel, that pixel value will go from zero (white) to one (black) and
back to zero again, which is clearly a nonlinear function of the digit position. In
this example, the translation and rotation parameters are latent variables because we
observe only the image vectors and are not told which values of the translation or
rotation variables were used to create them.

For real digit image data, there will be a further degree of freedom arising from
scaling. Moreover there will be multiple additional degrees of freedom associated
with more complex deformations due to the variability in an individual’s writing
as well as the differences in writing styles between individuals. Nevertheless, the
number of such degrees of freedom will be small compared to the dimensionality of
the data set.

Another example is provided by the oil flow data set, in which (for a given ge-Appendix A
ometrical configuration of the gas, water, and oil phases) there are only two degrees
of freedom of variability corresponding to the fraction of oil in the pipe and the frac-
tion of water (the fraction of gas then being determined). Although the data space
comprises 12 measurements, a data set of points will lie close to a two-dimensional
manifold embedded within this space. In this case, the manifold comprises several
distinct segments corresponding to different flow regimes, each such segment being
a (noisy) continuous two-dimensional manifold. If our goal is data compression, or
density modelling, then there can be benefits in exploiting this manifold structure.

In practice, the data points will not be confined precisely to a smooth low-
dimensional manifold, and we can interpret the departures of data points from the
manifold as ‘noise’. This leads naturally to a generative view of such models in
which we first select a point within the manifold according to some latent variable
distribution and then generate an observed data point by adding noise, drawn from
some conditional distribution of the data variables given the latent variables.

The simplest continuous latent variable model assumes Gaussian distributions
for both the latent and observed variables and makes use of a linear-Gaussian de-
pendence of the observed variables on the state of the latent variables. This leadsSection 8.1.4
to a probabilistic formulation of the well-known technique of principal component
analysis (PCA), as well as to a related model called factor analysis.

In this chapter w will begin with a standard, nonprobabilistic treatment of PCA,Section 12.1
and then we show how PCA arises naturally as the maximum likelihood solution to

{ {
, , , , , ...
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RÉDUCTION DE DIMENSIONNALITÉ

• De façon générale, lorsque D est grand, on s’attend à ce 
que les données se trouvent surtout autour d’une 
variété (manifold) de dimensionnalité M < D

8

variété, manifold
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678 A. DATA SETS

Figure A.1 One hundred examples of the
MNIST digits chosen at ran-
dom from the training set.

Oil Flow

This is a synthetic data set that arose out of a project aimed at measuring nonin-
vasively the proportions of oil, water, and gas in North Sea oil transfer pipelines
(Bishop and James, 1993). It is based on the principle of dual-energy gamma densit-
ometry. The ideas is that if a narrow beam of gamma rays is passed through the pipe,
the attenuation in the intensity of the beam provides information about the density of
material along its path. Thus, for instance, the beam will be attenuated more strongly
by oil than by gas.

A single attenuation measurement alone is not sufficient because there are two
degrees of freedom corresponding to the fraction of oil and the fraction of water (the
fraction of gas is redundant because the three fractions must add to one). To address
this, two gamma beams of different energies (in other words different frequencies or
wavelengths) are passed through the pipe along the same path, and the attenuation of
each is measured. Because the absorbtion properties of different materials vary dif-
ferently as a function of energy, measurement of the attenuations at the two energies
provides two independent pieces of information. Given the known absorbtion prop-
erties of oil, water, and gas at the two energies, it is then a simple matter to calculate
the average fractions of oil and water (and hence of gas) measured along the path of
the gamma beams.

There is a further complication, however, associated with the motion of the ma-
terials along the pipe. If the flow velocity is small, then the oil floats on top of the
water with the gas sitting above the oil. This is known as a laminar or stratified
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Figure 12.2 Principal component analysis seeks a space
of lower dimensionality, known as the princi-
pal subspace and denoted by the magenta
line, such that the orthogonal projection of
the data points (red dots) onto this subspace
maximizes the variance of the projected points
(green dots). An alternative definition of PCA
is based on minimizing the sum-of-squares
of the projection errors, indicated by the blue
lines.
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a particular form of linear-Gaussian latent variable model. This probabilistic refor-Section 12.2
mulation brings many advantages, such as the use of EM for parameter estimation,
principled extensions to mixtures of PCA models, and Bayesian formulations that
allow the number of principal components to be determined automatically from the
data. Finally, we discuss briefly several generalizations of the latent variable concept
that go beyond the linear-Gaussian assumption including non-Gaussian latent vari-
ables, which leads to the framework of independent component analysis, as well as
models having a nonlinear relationship between latent and observed variables.Section 12.4

12.1. Principal Component Analysis

Principal component analysis, or PCA, is a technique that is widely used for appli-
cations such as dimensionality reduction, lossy data compression, feature extraction,
and data visualization (Jolliffe, 2002). It is also known as the Karhunen-Loève trans-
form.

There are two commonly used definitions of PCA that give rise to the same
algorithm. PCA can be defined as the orthogonal projection of the data onto a lower
dimensional linear space, known as the principal subspace, such that the variance of
the projected data is maximized (Hotelling, 1933). Equivalently, it can be defined as
the linear projection that minimizes the average projection cost, defined as the mean
squared distance between the data points and their projections (Pearson, 1901). The
process of orthogonal projection is illustrated in Figure 12.2. We consider each of
these definitions in turn.

12.1.1 Maximum variance formulation
Consider a data set of observations {xn} where n = 1, . . . , N , and xn is a

Euclidean variable with dimensionality D. Our goal is to project the data onto a
space having dimensionality M < D while maximizing the variance of the projected
data. For the moment, we shall assume that the value of M is given. Later in this
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562 12. CONTINUOUS LATENT VARIABLES

chapter, we shall consider techniques to determine an appropriate value of M from
the data.

To begin with, consider the projection onto a one-dimensional space (M = 1).
We can define the direction of this space using a D-dimensional vector u1, which
for convenience (and without loss of generality) we shall choose to be a unit vector
so that uT

1 u1 = 1 (note that we are only interested in the direction defined by u1,
not in the magnitude of u1 itself). Each data point xn is then projected onto a scalar
value uT

1 xn. The mean of the projected data is uT
1 x where x is the sample set mean

given by

x =
1
N

N∑

n=1

xn (12.1)

and the variance of the projected data is given by

1
N

N∑

n=1

{
uT

1 xn − uT
1 x

}2 = uT
1 Su1 (12.2)

where S is the data covariance matrix defined by

S =
1
N

N∑

n=1

(xn − x)(xn − x)T. (12.3)

We now maximize the projected variance uT
1 Su1 with respect to u1. Clearly, this has

to be a constrained maximization to prevent ∥u1∥ → ∞. The appropriate constraint
comes from the normalization condition uT

1 u1 = 1. To enforce this constraint,
we introduce a Lagrange multiplier that we shall denote by λ1, and then make anAppendix E
unconstrained maximization of

uT
1 Su1 + λ1

(
1 − uT

1 u1

)
. (12.4)

By setting the derivative with respect to u1 equal to zero, we see that this quantity
will have a stationary point when

Su1 = λ1u1 (12.5)

which says that u1 must be an eigenvector of S. If we left-multiply by uT
1 and make

use of uT
1 u1 = 1, we see that the variance is given by

uT
1 Su1 = λ1 (12.6)

and so the variance will be a maximum when we set u1 equal to the eigenvector
having the largest eigenvalue λ1. This eigenvector is known as the first principal
component.

We can define additional principal components in an incremental fashion by
choosing each new direction to be that which maximizes the projected variance
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• En pratique, on commence par soustraire la moyenne des 
données :

• Permet de centrer les données projetées
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• On peut utiliser l’ACP pour compresser les données

‣ on peut décompresser en 
multipliant chaque dimension 
par son vecteur ui
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12.1. Principal Component Analysis 561

Figure 12.2 Principal component analysis seeks a space
of lower dimensionality, known as the princi-
pal subspace and denoted by the magenta
line, such that the orthogonal projection of
the data points (red dots) onto this subspace
maximizes the variance of the projected points
(green dots). An alternative definition of PCA
is based on minimizing the sum-of-squares
of the projection errors, indicated by the blue
lines.
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a particular form of linear-Gaussian latent variable model. This probabilistic refor-Section 12.2
mulation brings many advantages, such as the use of EM for parameter estimation,
principled extensions to mixtures of PCA models, and Bayesian formulations that
allow the number of principal components to be determined automatically from the
data. Finally, we discuss briefly several generalizations of the latent variable concept
that go beyond the linear-Gaussian assumption including non-Gaussian latent vari-
ables, which leads to the framework of independent component analysis, as well as
models having a nonlinear relationship between latent and observed variables.Section 12.4

12.1. Principal Component Analysis

Principal component analysis, or PCA, is a technique that is widely used for appli-
cations such as dimensionality reduction, lossy data compression, feature extraction,
and data visualization (Jolliffe, 2002). It is also known as the Karhunen-Loève trans-
form.

There are two commonly used definitions of PCA that give rise to the same
algorithm. PCA can be defined as the orthogonal projection of the data onto a lower
dimensional linear space, known as the principal subspace, such that the variance of
the projected data is maximized (Hotelling, 1933). Equivalently, it can be defined as
the linear projection that minimizes the average projection cost, defined as the mean
squared distance between the data points and their projections (Pearson, 1901). The
process of orthogonal projection is illustrated in Figure 12.2. We consider each of
these definitions in turn.

12.1.1 Maximum variance formulation
Consider a data set of observations {xn} where n = 1, . . . , N , and xn is a

Euclidean variable with dimensionality D. Our goal is to project the data onto a
space having dimensionality M < D while maximizing the variance of the projected
data. For the moment, we shall assume that the value of M is given. Later in this
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Original M = 1 M = 10 M = 50 M = 250

Figure 12.5 An original example from the off-line digits data set together with its PCA reconstructions
obtained by retaining M principal components for various values of M . As M increases
the reconstruction becomes more accurate and would become perfect when M = D =
28 × 28 = 784.

where we have made use of the relation

x =
D∑

i=1

(
xTui

)
ui (12.21)

which follows from the completeness of the {ui}. This represents a compression
of the data set, because for each data point we have replaced the D-dimensional
vector xn with an M -dimensional vector having components

(
xT

nui − xTui

)
. The

smaller the value of M , the greater the degree of compression. Examples of PCA
reconstructions of data points for the digits data set are shown in Figure 12.5.

Another application of principal component analysis is to data pre-processing.
In this case, the goal is not dimensionality reduction but rather the transformation of
a data set in order to standardize certain of its properties. This can be important in
allowing subsequent pattern recognition algorithms to be applied successfully to the
data set. Typically, it is done when the original variables are measured in various dif-
ferent units or have significantly different variability. For instance in the Old Faithful
data set, the time between eruptions is typically an order of magnitude greater thanAppendix A
the duration of an eruption. When we applied the K-means algorithm to this data
set, we first made a separate linear re-scaling of the individual variables such thatSection 9.1
each variable had zero mean and unit variance. This is known as standardizing the
data, and the covariance matrix for the standardized data has components

ρij =
1
N

N∑

n=1

(xni − xi)
σi

(xnj − xj)
σj

(12.22)

where σi is the variance of xi. This is known as the correlation matrix of the original
data and has the property that if two components xi and xj of the data are perfectly
correlated, then ρij = 1, and if they are uncorrelated, then ρij = 0.

However, using PCA we can make a more substantial normalization of the data
to give it zero mean and unit covariance, so that different variables become decorre-
lated. To do this, we first write the eigenvector equation (12.17) in the form

SU = UL (12.23)
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566 12. CONTINUOUS LATENT VARIABLES

Mean λ1 = 3.4 · 105 λ2 = 2.8 · 105 λ3 = 2.4 · 105 λ4 = 1.6 · 105

Figure 12.3 The mean vector x along with the first four PCA eigenvectors u1, . . . ,u4 for the off-line
digits data set, together with the corresponding eigenvalues.

in the original D-dimensional space, we can represent the eigenvectors as images of
the same size as the data points. The first five eigenvectors, along with the corre-
sponding eigenvalues, are shown in Figure 12.3. A plot of the complete spectrum of
eigenvalues, sorted into decreasing order, is shown in Figure 12.4(a). The distortion
measure J associated with choosing a particular value of M is given by the sum
of the eigenvalues from M + 1 up to D and is plotted for different values of M in
Figure 12.4(b).

If we substitute (12.12) and (12.13) into (12.10), we can write the PCA approx-
imation to a data vector xn in the form

x̃n =
M∑

i=1

(xT
nui)ui +

D∑

i=M+1

(xTui)ui (12.19)

= x +
M∑

i=1

(
xT

nui − xTui

)
ui (12.20)
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Figure 12.4 (a) Plot of the eigenvalue spectrum for the off-line digits data set. (b) Plot of the sum of the
discarded eigenvalues, which represents the sum-of-squares distortion J introduced by projecting the data onto
a principal component subspace of dimensionality M .
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minimize J = uT
2 Su2, subject to the normalization constraint uT

2 u2 = 1. Using a
Lagrange multiplier λ2 to enforce the constraint, we consider the minimization of

J̃ = uT
2 Su2 + λ2

(
1 − uT

2 u2

)
. (12.16)

Setting the derivative with respect to u2 to zero, we obtain Su2 = λ2u2 so that u2

is an eigenvector of S with eigenvalue λ2. Thus any eigenvector will define a sta-
tionary point of the distortion measure. To find the value of J at the minimum, we
back-substitute the solution for u2 into the distortion measure to give J = λ2. We
therefore obtain the minimum value of J by choosing u2 to be the eigenvector corre-
sponding to the smaller of the two eigenvalues. Thus we should choose the principal
subspace to be aligned with the eigenvector having the larger eigenvalue. This result
accords with our intuition that, in order to minimize the average squared projection
distance, we should choose the principal component subspace to pass through the
mean of the data points and to be aligned with the directions of maximum variance.
For the case when the eigenvalues are equal, any choice of principal direction will
give rise to the same value of J .

The general solution to the minimization of J for arbitrary D and arbitrary M <Exercise 12.2
D is obtained by choosing the {ui} to be eigenvectors of the covariance matrix given
by

Sui = λiui (12.17)

where i = 1, . . . , D, and as usual the eigenvectors {ui} are chosen to be orthonor-
mal. The corresponding value of the distortion measure is then given by

J =
D∑

i=M+1

λi (12.18)

which is simply the sum of the eigenvalues of those eigenvectors that are orthogonal
to the principal subspace. We therefore obtain the minimum value of J by selecting
these eigenvectors to be those having the D − M smallest eigenvalues, and hence
the eigenvectors defining the principal subspace are those corresponding to the M
largest eigenvalues.

Although we have considered M < D, the PCA analysis still holds if M =
D, in which case there is no dimensionality reduction but simply a rotation of the
coordinate axes to align with principal components.

Finally, it is worth noting that there exists a closely related linear dimensionality
reduction technique called canonical correlation analysis, or CCA (Hotelling, 1936;
Bach and Jordan, 2002). Whereas PCA works with a single random variable, CCA
considers two (or more) variables and tries to find a corresponding pair of linear
subspaces that have high cross-correlation, so that each component within one of the
subspaces is correlated with a single component from the other subspace. Its solution
can be expressed in terms of a generalized eigenvector problem.

12.1.3 Applications of PCA
We can illustrate the use of PCA for data compression by considering the off-

line digits data set. Because each eigenvector of the covariance matrix is a vectorAppendix A
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678 A. DATA SETS

Figure A.1 One hundred examples of the
MNIST digits chosen at ran-
dom from the training set.

Oil Flow

This is a synthetic data set that arose out of a project aimed at measuring nonin-
vasively the proportions of oil, water, and gas in North Sea oil transfer pipelines
(Bishop and James, 1993). It is based on the principle of dual-energy gamma densit-
ometry. The ideas is that if a narrow beam of gamma rays is passed through the pipe,
the attenuation in the intensity of the beam provides information about the density of
material along its path. Thus, for instance, the beam will be attenuated more strongly
by oil than by gas.

A single attenuation measurement alone is not sufficient because there are two
degrees of freedom corresponding to the fraction of oil and the fraction of water (the
fraction of gas is redundant because the three fractions must add to one). To address
this, two gamma beams of different energies (in other words different frequencies or
wavelengths) are passed through the pipe along the same path, and the attenuation of
each is measured. Because the absorbtion properties of different materials vary dif-
ferently as a function of energy, measurement of the attenuations at the two energies
provides two independent pieces of information. Given the known absorbtion prop-
erties of oil, water, and gas at the two energies, it is then a simple matter to calculate
the average fractions of oil and water (and hence of gas) measured along the path of
the gamma beams.

There is a further complication, however, associated with the motion of the ma-
terials along the pipe. If the flow velocity is small, then the oil floats on top of the
water with the gas sitting above the oil. This is known as a laminar or stratified
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analyse en composantes principales
12.1. Principal Component Analysis 561

Figure 12.2 Principal component analysis seeks a space
of lower dimensionality, known as the princi-
pal subspace and denoted by the magenta
line, such that the orthogonal projection of
the data points (red dots) onto this subspace
maximizes the variance of the projected points
(green dots). An alternative definition of PCA
is based on minimizing the sum-of-squares
of the projection errors, indicated by the blue
lines.

x2
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xn
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a particular form of linear-Gaussian latent variable model. This probabilistic refor-Section 12.2
mulation brings many advantages, such as the use of EM for parameter estimation,
principled extensions to mixtures of PCA models, and Bayesian formulations that
allow the number of principal components to be determined automatically from the
data. Finally, we discuss briefly several generalizations of the latent variable concept
that go beyond the linear-Gaussian assumption including non-Gaussian latent vari-
ables, which leads to the framework of independent component analysis, as well as
models having a nonlinear relationship between latent and observed variables.Section 12.4

12.1. Principal Component Analysis

Principal component analysis, or PCA, is a technique that is widely used for appli-
cations such as dimensionality reduction, lossy data compression, feature extraction,
and data visualization (Jolliffe, 2002). It is also known as the Karhunen-Loève trans-
form.

There are two commonly used definitions of PCA that give rise to the same
algorithm. PCA can be defined as the orthogonal projection of the data onto a lower
dimensional linear space, known as the principal subspace, such that the variance of
the projected data is maximized (Hotelling, 1933). Equivalently, it can be defined as
the linear projection that minimizes the average projection cost, defined as the mean
squared distance between the data points and their projections (Pearson, 1901). The
process of orthogonal projection is illustrated in Figure 12.2. We consider each of
these definitions in turn.

12.1.1 Maximum variance formulation
Consider a data set of observations {xn} where n = 1, . . . , N , and xn is a

Euclidean variable with dimensionality D. Our goal is to project the data onto a
space having dimensionality M < D while maximizing the variance of the projected
data. For the moment, we shall assume that the value of M is given. Later in this
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12.1. Principal Component Analysis 567

Original M = 1 M = 10 M = 50 M = 250

Figure 12.5 An original example from the off-line digits data set together with its PCA reconstructions
obtained by retaining M principal components for various values of M . As M increases
the reconstruction becomes more accurate and would become perfect when M = D =
28 × 28 = 784.

where we have made use of the relation

x =
D∑

i=1

(
xTui

)
ui (12.21)

which follows from the completeness of the {ui}. This represents a compression
of the data set, because for each data point we have replaced the D-dimensional
vector xn with an M -dimensional vector having components

(
xT

nui − xTui

)
. The

smaller the value of M , the greater the degree of compression. Examples of PCA
reconstructions of data points for the digits data set are shown in Figure 12.5.

Another application of principal component analysis is to data pre-processing.
In this case, the goal is not dimensionality reduction but rather the transformation of
a data set in order to standardize certain of its properties. This can be important in
allowing subsequent pattern recognition algorithms to be applied successfully to the
data set. Typically, it is done when the original variables are measured in various dif-
ferent units or have significantly different variability. For instance in the Old Faithful
data set, the time between eruptions is typically an order of magnitude greater thanAppendix A
the duration of an eruption. When we applied the K-means algorithm to this data
set, we first made a separate linear re-scaling of the individual variables such thatSection 9.1
each variable had zero mean and unit variance. This is known as standardizing the
data, and the covariance matrix for the standardized data has components

ρij =
1
N

N∑

n=1

(xni − xi)
σi

(xnj − xj)
σj

(12.22)

where σi is the variance of xi. This is known as the correlation matrix of the original
data and has the property that if two components xi and xj of the data are perfectly
correlated, then ρij = 1, and if they are uncorrelated, then ρij = 0.

However, using PCA we can make a more substantial normalization of the data
to give it zero mean and unit covariance, so that different variables become decorre-
lated. To do this, we first write the eigenvector equation (12.17) in the form

SU = UL (12.23)
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which follows from the completeness of the {ui}. This represents a compression
of the data set, because for each data point we have replaced the D-dimensional
vector xn with an M -dimensional vector having components

(
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)
. The

smaller the value of M , the greater the degree of compression. Examples of PCA
reconstructions of data points for the digits data set are shown in Figure 12.5.

Another application of principal component analysis is to data pre-processing.
In this case, the goal is not dimensionality reduction but rather the transformation of
a data set in order to standardize certain of its properties. This can be important in
allowing subsequent pattern recognition algorithms to be applied successfully to the
data set. Typically, it is done when the original variables are measured in various dif-
ferent units or have significantly different variability. For instance in the Old Faithful
data set, the time between eruptions is typically an order of magnitude greater thanAppendix A
the duration of an eruption. When we applied the K-means algorithm to this data
set, we first made a separate linear re-scaling of the individual variables such thatSection 9.1
each variable had zero mean and unit variance. This is known as standardizing the
data, and the covariance matrix for the standardized data has components
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where σi is the variance of xi. This is known as the correlation matrix of the original
data and has the property that if two components xi and xj of the data are perfectly
correlated, then ρij = 1, and if they are uncorrelated, then ρij = 0.

However, using PCA we can make a more substantial normalization of the data
to give it zero mean and unit covariance, so that different variables become decorre-
lated. To do this, we first write the eigenvector equation (12.17) in the form

SU = UL (12.23)
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Figure 12.16 Schematic illustration of kernel PCA. A data set in the original data space (left-hand plot) is
projected by a nonlinear transformation φ(x) into a feature space (right-hand plot). By performing PCA in the
feature space, we obtain the principal components, of which the first is shown in blue and is denoted by the
vector v1. The green lines in feature space indicate the linear projections onto the first principal component,
which correspond to nonlinear projections in the original data space. Note that in general it is not possible to
represent the nonlinear principal component by a vector in x space.

now perform standard PCA in the feature space, which implicitly defines a nonlinear
principal component model in the original data space, as illustrated in Figure 12.16.

For the moment, let us assume that the projected data set also has zero mean,
so that

∑
n φ(xn) = 0. We shall return to this point shortly. The M × M sample

covariance matrix in feature space is given by

C =
1
N

N∑

n=1

φ(xn)φ(xn)T (12.73)

and its eigenvector expansion is defined by

Cvi = λivi (12.74)

i = 1, . . . , M . Our goal is to solve this eigenvalue problem without having to work
explicitly in the feature space. From the definition of C, the eigenvector equations
tells us that vi satisfies

1
N

N∑

n=1

φ(xn)
{
φ(xn)Tvi

}
= λivi (12.75)

and so we see that (provided λi > 0) the vector vi is given by a linear combination
of the φ(xn) and so can be written in the form

vi =
N∑

n=1

ainφ(xn). (12.76)

k(xn,xm) = �(xn)
T�(xm)
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represent the nonlinear principal component by a vector in x space.
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i = 1, . . . , M . Our goal is to solve this eigenvalue problem without having to work
explicitly in the feature space. From the definition of C, the eigenvector equations
tells us that vi satisfies
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represent the nonlinear principal component by a vector in x space.
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i = 1, . . . , M . Our goal is to solve this eigenvalue problem without having to work
explicitly in the feature space. From the definition of C, the eigenvector equations
tells us that vi satisfies
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{
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.

N
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so that
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and so we see that (provided λi > 0) the vector vi is given by a linear combination
of the φ(xn) and so can be written in the form
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ainφ(xn). (12.76)
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of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.
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Figure 12.16 Schematic illustration of kernel PCA. A data set in the original data space (left-hand plot) is
projected by a nonlinear transformation φ(x) into a feature space (right-hand plot). By performing PCA in the
feature space, we obtain the principal components, of which the first is shown in blue and is denoted by the
vector v1. The green lines in feature space indicate the linear projections onto the first principal component,
which correspond to nonlinear projections in the original data space. Note that in general it is not possible to
represent the nonlinear principal component by a vector in x space.

now perform standard PCA in the feature space, which implicitly defines a nonlinear
principal component model in the original data space, as illustrated in Figure 12.16.

For the moment, let us assume that the projected data set also has zero mean,
so that

∑
n φ(xn) = 0. We shall return to this point shortly. The M × M sample

covariance matrix in feature space is given by

C =
1
N

N∑

n=1

φ(xn)φ(xn)T (12.73)

and its eigenvector expansion is defined by

Cvi = λivi (12.74)

i = 1, . . . , M . Our goal is to solve this eigenvalue problem without having to work
explicitly in the feature space. From the definition of C, the eigenvector equations
tells us that vi satisfies

1
N

N∑

n=1

φ(xn)
{
φ(xn)Tvi

}
= λivi (12.75)

and so we see that (provided λi > 0) the vector vi is given by a linear combination
of the φ(xn) and so can be written in the form

vi =
N∑

n=1

ainφ(xn). (12.76)
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.
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Figure 12.16 Schematic illustration of kernel PCA. A data set in the original data space (left-hand plot) is
projected by a nonlinear transformation φ(x) into a feature space (right-hand plot). By performing PCA in the
feature space, we obtain the principal components, of which the first is shown in blue and is denoted by the
vector v1. The green lines in feature space indicate the linear projections onto the first principal component,
which correspond to nonlinear projections in the original data space. Note that in general it is not possible to
represent the nonlinear principal component by a vector in x space.

now perform standard PCA in the feature space, which implicitly defines a nonlinear
principal component model in the original data space, as illustrated in Figure 12.16.

For the moment, let us assume that the projected data set also has zero mean,
so that

∑
n φ(xn) = 0. We shall return to this point shortly. The M × M sample

covariance matrix in feature space is given by

C =
1
N

N∑

n=1

φ(xn)φ(xn)T (12.73)

and its eigenvector expansion is defined by

Cvi = λivi (12.74)

i = 1, . . . , M . Our goal is to solve this eigenvalue problem without having to work
explicitly in the feature space. From the definition of C, the eigenvector equations
tells us that vi satisfies

1
N

N∑

n=1

φ(xn)
{
φ(xn)Tvi

}
= λivi (12.75)

and so we see that (provided λi > 0) the vector vi is given by a linear combination
of the φ(xn) and so can be written in the form

vi =
N∑

n=1

ainφ(xn). (12.76)
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.
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Figure 12.16 Schematic illustration of kernel PCA. A data set in the original data space (left-hand plot) is
projected by a nonlinear transformation φ(x) into a feature space (right-hand plot). By performing PCA in the
feature space, we obtain the principal components, of which the first is shown in blue and is denoted by the
vector v1. The green lines in feature space indicate the linear projections onto the first principal component,
which correspond to nonlinear projections in the original data space. Note that in general it is not possible to
represent the nonlinear principal component by a vector in x space.

now perform standard PCA in the feature space, which implicitly defines a nonlinear
principal component model in the original data space, as illustrated in Figure 12.16.

For the moment, let us assume that the projected data set also has zero mean,
so that

∑
n φ(xn) = 0. We shall return to this point shortly. The M × M sample

covariance matrix in feature space is given by

C =
1
N

N∑

n=1

φ(xn)φ(xn)T (12.73)

and its eigenvector expansion is defined by

Cvi = λivi (12.74)

i = 1, . . . , M . Our goal is to solve this eigenvalue problem without having to work
explicitly in the feature space. From the definition of C, the eigenvector equations
tells us that vi satisfies

1
N

N∑

n=1

φ(xn)
{
φ(xn)Tvi

}
= λivi (12.75)

and so we see that (provided λi > 0) the vector vi is given by a linear combination
of the φ(xn) and so can be written in the form

vi =
N∑

n=1

ainφ(xn). (12.76)
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.
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Figure 12.16 Schematic illustration of kernel PCA. A data set in the original data space (left-hand plot) is
projected by a nonlinear transformation φ(x) into a feature space (right-hand plot). By performing PCA in the
feature space, we obtain the principal components, of which the first is shown in blue and is denoted by the
vector v1. The green lines in feature space indicate the linear projections onto the first principal component,
which correspond to nonlinear projections in the original data space. Note that in general it is not possible to
represent the nonlinear principal component by a vector in x space.

now perform standard PCA in the feature space, which implicitly defines a nonlinear
principal component model in the original data space, as illustrated in Figure 12.16.

For the moment, let us assume that the projected data set also has zero mean,
so that

∑
n φ(xn) = 0. We shall return to this point shortly. The M × M sample

covariance matrix in feature space is given by

C =
1
N

N∑

n=1

φ(xn)φ(xn)T (12.73)

and its eigenvector expansion is defined by

Cvi = λivi (12.74)

i = 1, . . . , M . Our goal is to solve this eigenvalue problem without having to work
explicitly in the feature space. From the definition of C, the eigenvector equations
tells us that vi satisfies

1
N

N∑

n=1

φ(xn)
{
φ(xn)Tvi

}
= λivi (12.75)

and so we see that (provided λi > 0) the vector vi is given by a linear combination
of the φ(xn) and so can be written in the form

vi =
N∑

n=1

ainφ(xn). (12.76)
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.
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Figure 12.16 Schematic illustration of kernel PCA. A data set in the original data space (left-hand plot) is
projected by a nonlinear transformation φ(x) into a feature space (right-hand plot). By performing PCA in the
feature space, we obtain the principal components, of which the first is shown in blue and is denoted by the
vector v1. The green lines in feature space indicate the linear projections onto the first principal component,
which correspond to nonlinear projections in the original data space. Note that in general it is not possible to
represent the nonlinear principal component by a vector in x space.

now perform standard PCA in the feature space, which implicitly defines a nonlinear
principal component model in the original data space, as illustrated in Figure 12.16.

For the moment, let us assume that the projected data set also has zero mean,
so that

∑
n φ(xn) = 0. We shall return to this point shortly. The M × M sample

covariance matrix in feature space is given by

C =
1
N

N∑

n=1

φ(xn)φ(xn)T (12.73)

and its eigenvector expansion is defined by

Cvi = λivi (12.74)

i = 1, . . . , M . Our goal is to solve this eigenvalue problem without having to work
explicitly in the feature space. From the definition of C, the eigenvector equations
tells us that vi satisfies

1
N

N∑

n=1

φ(xn)
{
φ(xn)Tvi

}
= λivi (12.75)

and so we see that (provided λi > 0) the vector vi is given by a linear combination
of the φ(xn) and so can be written in the form

vi =
N∑

n=1

ainφ(xn). (12.76)
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.

�iN
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• Finalement, on doit s’assurer que les vi soient de norme 1 

• On divise les ai par la racine carré des valeurs propres
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Figure 12.16 Schematic illustration of kernel PCA. A data set in the original data space (left-hand plot) is
projected by a nonlinear transformation φ(x) into a feature space (right-hand plot). By performing PCA in the
feature space, we obtain the principal components, of which the first is shown in blue and is denoted by the
vector v1. The green lines in feature space indicate the linear projections onto the first principal component,
which correspond to nonlinear projections in the original data space. Note that in general it is not possible to
represent the nonlinear principal component by a vector in x space.

now perform standard PCA in the feature space, which implicitly defines a nonlinear
principal component model in the original data space, as illustrated in Figure 12.16.

For the moment, let us assume that the projected data set also has zero mean,
so that

∑
n φ(xn) = 0. We shall return to this point shortly. The M × M sample

covariance matrix in feature space is given by

C =
1
N

N∑

n=1

φ(xn)φ(xn)T (12.73)

and its eigenvector expansion is defined by

Cvi = λivi (12.74)

i = 1, . . . , M . Our goal is to solve this eigenvalue problem without having to work
explicitly in the feature space. From the definition of C, the eigenvector equations
tells us that vi satisfies

1
N

N∑

n=1

φ(xn)
{
φ(xn)Tvi

}
= λivi (12.75)

and so we see that (provided λi > 0) the vector vi is given by a linear combination
of the φ(xn) and so can be written in the form

vi =
N∑

n=1

ainφ(xn). (12.76)
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.

�iN
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.
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Substituting this expansion back into the eigenvector equation, we obtain

1
N

N∑

n=1

φ(xn)φ(xn)T
N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn). (12.77)

The key step is now to express this in terms of the kernel function k(xn,xm) =
φ(xn)Tφ(xm), which we do by multiplying both sides by φ(xl)T to give

1
N

N∑

n=1

k(xl,xn)
m∑

m=1

aimk(xn,xm) = λi

N∑

n=1

aink(xl,xn). (12.78)

This can be written in matrix notation as

K2ai = λiNKai (12.79)

where ai is an N -dimensional column vector with elements ani for n = 1, . . . , N .
We can find solutions for ai by solving the following eigenvalue problem

Kai = λiNai (12.80)

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.Exercise 12.26

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

1 = vT
i vi =

N∑

n=1

N∑

m=1

ainaimφ(xn)Tφ(xm) = aT
i Kai = λiNaT

i ai. (12.81)

Having solved the eigenvector problem, the resulting principal component pro-
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

yi(x) = φ(x)Tvi =
N∑

n=1

ainφ(x)Tφ(xn) =
N∑

n=1

aink(x,xn) (12.82)

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N ) the covariance matrix in feature space has
rank at most equal to N . This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N × N matrix K.

y(x) = Ak(x)
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sont centrées (                 )
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Figure 12.16 Schematic illustration of kernel PCA. A data set in the original data space (left-hand plot) is
projected by a nonlinear transformation φ(x) into a feature space (right-hand plot). By performing PCA in the
feature space, we obtain the principal components, of which the first is shown in blue and is denoted by the
vector v1. The green lines in feature space indicate the linear projections onto the first principal component,
which correspond to nonlinear projections in the original data space. Note that in general it is not possible to
represent the nonlinear principal component by a vector in x space.

now perform standard PCA in the feature space, which implicitly defines a nonlinear
principal component model in the original data space, as illustrated in Figure 12.16.

For the moment, let us assume that the projected data set also has zero mean,
so that

∑
n φ(xn) = 0. We shall return to this point shortly. The M × M sample

covariance matrix in feature space is given by

C =
1
N

N∑

n=1

φ(xn)φ(xn)T (12.73)

and its eigenvector expansion is defined by

Cvi = λivi (12.74)

i = 1, . . . , M . Our goal is to solve this eigenvalue problem without having to work
explicitly in the feature space. From the definition of C, the eigenvector equations
tells us that vi satisfies

1
N

N∑
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12.3. Kernel PCA 589

So far we have assumed that the projected data set given by φ(xn) has zero
mean, which in general will not be the case. We cannot simply compute and then
subtract off the mean, since we wish to avoid working directly in feature space, and
so again, we formulate the algorithm purely in terms of the kernel function. The
projected data points after centralizing, denoted φ̃(xn), are given by

φ̃(xn) = φ(xn) − 1
N

N∑

l=1

φ(xl) (12.83)

and the corresponding elements of the Gram matrix are given by

K̃nm = φ̃(xn)Tφ̃(xm)

= φ(xn)Tφ(xm) − 1
N

N∑

l=1

φ(xn)Tφ(xl)

− 1
N

N∑

l=1

φ(xl)Tφ(xm) +
1

N2

N∑

j=1

N∑

l=1

φ(xj)Tφ(xl)

= k(xn,xm) − 1
N

N∑

l=1

k(xl,xm)

− 1
N

N∑

l=1

k(xn,xl) +
1

N2

N∑

j=1

N∑

l=1

k(xj ,xl). (12.84)

This can be expressed in matrix notation as

K̃ = K − 1NK − K1N + 1NK1N (12.85)

where 1N denotes the N × N matrix in which every element takes the value 1/N .
Thus we can evaluate K̃ using only the kernel function and then use K̃ to determine
the eigenvalues and eigenvectors. Note that the standard PCA algorithm is recovered
as a special case if we use a linear kernel k(x,x′) = xTx′. Figure 12.17 shows anExercise 12.27
example of kernel PCA applied to a synthetic data set (Schölkopf et al., 1998). Here
a ‘Gaussian’ kernel of the form

k(x,x′) = exp(−∥x − x′∥2/0.1) (12.86)

is applied to a synthetic data set. The lines correspond to contours along which the
projection onto the corresponding principal component, defined by

φ(x)Tvi =
N∑

n=1

aink(x,xn) (12.87)

is constant.
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Sujets: 

HUGO LAROCHELLE

ANALYSE EN COMPOSANTES PRINCIPALES

• Modèle :                                                                   

• Entraînement :  on maximise la variance des y(x)i

‣ extraire les vecteurs propres U et valeurs propres     de S                                                                                      

• Hyper-paramètres : M

• Prédiction : 

43

résumé de l’ACP

y(x) = Wx+ b

⇤

y(x) = ⇤�1/2
1:M,1:M (U:,1:M )T(x� x)

b = �⇤�1/2
1:M,1:M (U:,1:M )Tx

W = ⇤�1/2
1:M,1:M (U:,1:M )T



Sujets: 

HUGO LAROCHELLE

ACP À NOYAU

• Modèle :                                                                   

• Entraînement :  on maximise la variance des y(x)i (implicitement)
‣ extraire les M vecteurs propres ai avec plus grandes valeurs propres      (       ) 

de la matrice de Gram centrée 

‣                            

• Hyper-paramètres : M et ceux du noyau

• Prédiction : 
44

résumé de l’ACP à noyau

y(x) = W�(x) = Ak(x)

e�i �iN

ai  
aiq
e�i

y(x) = Ak(x)

‣  construire A en empilant les ai en rangées
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Sujets: 

HUGO LAROCHELLE

• Pour la visualisation

‣ M : 2 ou 3

- pas vraiment de choix ici, puisqu’on peut seulement visualiser en 2D ou 3D

‣ hyper-paramètres du noyau (ACP à noyau) : essai et erreur

- on tente différentes valeurs, où chaque choix est une «fenêtre» sur les données

RÉDUCTION DE DIMENSIONNALITÉ

45

choisir les hyper-paramètres



Sujets: 

HUGO LAROCHELLE

• Pour réduire le sur-apprentissage d’un autre algorithme 
(par exemple de classification), qui prend y(x) en entrée

‣ M et les hyper-paramètres de noyau : sélection de modèle

- on fait comme pour les autres hyper-paramètres de l’autre algorithme, et on tente 
de maximiser la performance de généralisation de cet algorithme par rapport aux 
hyper-paramètres de réduction de dimensionnalité

• Alternative, pour l’ACP (linéaire) : choisir M telle que 
l’erreur de compression (J) est moins de 1%
‣ utile si on veut simplement réduire la taille des données, pour 

accélérer les calculs

RÉDUCTION DE DIMENSIONNALITÉ
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choisir les hyper-paramètres



Sujets: 

HUGO LAROCHELLE

• On note que, pour l’ACP à noyau, M pourrait être plus 
grand que D
‣ c’est la dimensionnalité de           qu’on réduit

‣ si le noyau est gaussien, la dimensionnalité de           est infinie

• On peut donc aussi utiliser l’ACP à noyau pour faire de 
l’extraction de caractéristique
‣ la représentation non-linéaire y(x) est possiblement plus riche et 

utile

ACP À NOYAU

47

extraction de charactéristique

�(xn)

�(xn)



Sujets: 

HUGO LAROCHELLE

• Exemple :

ACP À NOYAU

48

extraction de charactéristique
590 12. CONTINUOUS LATENT VARIABLES

Figure 12.17 Example of kernel PCA, with a Gaussian kernel applied to a synthetic data set in two dimensions,
showing the first eight eigenfunctions along with their eigenvalues. The contours are lines along which the
projection onto the corresponding principal component is constant. Note how the first two eigenvectors separate
the three clusters, the next three eigenvectors split each of the cluster into halves, and the following three
eigenvectors again split the clusters into halves along directions orthogonal to the previous splits.

One obvious disadvantage of kernel PCA is that it involves finding the eigenvec-
tors of the N × N matrix K̃ rather than the D × D matrix S of conventional linear
PCA, and so in practice for large data sets approximations are often used.

Finally, we note that in standard linear PCA, we often retain some reduced num-
ber L < D of eigenvectors and then approximate a data vector xn by its projection
x̂n onto the L-dimensional principal subspace, defined by

x̂n =
L∑

i=1

(
xT

nui

)
ui. (12.88)

In kernel PCA, this will in general not be possible. To see this, note that the map-
ping φ(x) maps the D-dimensional x space into a D-dimensional manifold in the
M -dimensional feature space φ. The vector x is known as the pre-image of the
corresponding point φ(x). However, the projection of points in feature space onto
the linear PCA subspace in that space will typically not lie on the nonlinear D-
dimensional manifold and so will not have a corresponding pre-image in data space.
Techniques have therefore been proposed for finding approximate pre-images (Bakir
et al., 2004).



Sujets: 

HUGO LAROCHELLE

• Pour la réduction de dimensionnalité, les noyaux standards 
ne fonctionnent pas toujours bien

‣ Algorithme Isomap : estimer la distance sur la variété à l’aide de 
Dijkstra, et utiliser cette distance pour dériver un noyau

ISOMAP
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678 A. DATA SETS

Figure A.1 One hundred examples of the
MNIST digits chosen at ran-
dom from the training set.

Oil Flow

This is a synthetic data set that arose out of a project aimed at measuring nonin-
vasively the proportions of oil, water, and gas in North Sea oil transfer pipelines
(Bishop and James, 1993). It is based on the principle of dual-energy gamma densit-
ometry. The ideas is that if a narrow beam of gamma rays is passed through the pipe,
the attenuation in the intensity of the beam provides information about the density of
material along its path. Thus, for instance, the beam will be attenuated more strongly
by oil than by gas.

A single attenuation measurement alone is not sufficient because there are two
degrees of freedom corresponding to the fraction of oil and the fraction of water (the
fraction of gas is redundant because the three fractions must add to one). To address
this, two gamma beams of different energies (in other words different frequencies or
wavelengths) are passed through the pipe along the same path, and the attenuation of
each is measured. Because the absorbtion properties of different materials vary dif-
ferently as a function of energy, measurement of the attenuations at the two energies
provides two independent pieces of information. Given the known absorbtion prop-
erties of oil, water, and gas at the two energies, it is then a simple matter to calculate
the average fractions of oil and water (and hence of gas) measured along the path of
the gamma beams.

There is a further complication, however, associated with the motion of the ma-
terials along the pipe. If the flow velocity is small, then the oil floats on top of the
water with the gas sitting above the oil. This is known as a laminar or stratified
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ne fonctionnent pas toujours bien
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Dijkstra, et utiliser cette distance pour dériver un noyau
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tion to geodesic distance. For faraway points,
geodesic distance can be approximated by
adding up a sequence of “short hops” be-
tween neighboring points. These approxima-
tions are computed efficiently by finding
shortest paths in a graph with edges connect-
ing neighboring data points.

The complete isometric feature mapping,
or Isomap, algorithm has three steps, which
are detailed in Table 1. The first step deter-
mines which points are neighbors on the
manifold M, based on the distances dX (i, j)
between pairs of points i, j in the input space

X. Two simple methods are to connect each
point to all points within some fixed radius !,
or to all of its K nearest neighbors (15). These
neighborhood relations are represented as a
weighted graph G over the data points, with
edges of weight dX(i, j) between neighboring
points (Fig. 3B).

In its second step, Isomap estimates the
geodesic distances dM (i, j) between all pairs
of points on the manifold M by computing
their shortest path distances dG(i, j) in the
graph G. One simple algorithm (16) for find-
ing shortest paths is given in Table 1.

The final step applies classical MDS to
the matrix of graph distances DG " {dG(i, j)},
constructing an embedding of the data in a
d-dimensional Euclidean space Y that best
preserves the manifold’s estimated intrinsic
geometry (Fig. 3C). The coordinate vectors yi

for points in Y are chosen to minimize the
cost function

E ! !#$DG% " #$DY%!L2 (1)

where DY denotes the matrix of Euclidean
distances {dY(i, j) " !yi & yj!} and !A!L2

the L2 matrix norm '(i, j Ai j
2 . The # operator

Fig. 1. (A) A canonical dimensionality reduction
problem from visual perception. The input consists
of a sequence of 4096-dimensional vectors, rep-
resenting the brightness values of 64 pixel by 64
pixel images of a face rendered with different
poses and lighting directions. Applied to N " 698
raw images, Isomap (K" 6) learns a three-dimen-
sional embedding of the data’s intrinsic geometric
structure. A two-dimensional projection is shown,
with a sample of the original input images (red
circles) superimposed on all the data points (blue)
and horizontal sliders (under the images) repre-
senting the third dimension. Each coordinate axis
of the embedding correlates highly with one de-
gree of freedom underlying the original data: left-
right pose (x axis, R " 0.99), up-down pose ( y
axis, R " 0.90), and lighting direction (slider posi-
tion, R " 0.92). The input-space distances dX(i, j )
given to Isomap were Euclidean distances be-
tween the 4096-dimensional image vectors. (B)
Isomap applied to N " 1000 handwritten “2”s
from the MNIST database (40). The two most
significant dimensions in the Isomap embedding,
shown here, articulate the major features of the
“2”: bottom loop (x axis) and top arch ( y axis).
Input-space distances dX(i, j ) were measured by
tangent distance, a metric designed to capture the
invariances relevant in handwriting recognition
(41). Here we used !-Isomap (with ! " 4.2) be-
cause we did not expect a constant dimensionality
to hold over the whole data set; consistent with
this, Isomap finds several tendrils projecting from
the higher dimensional mass of data and repre-
senting successive exaggerations of an extra
stroke or ornament in the digit.
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