
Apprentissage automatique
Combinaison de modèles - motivation



Sujets: 

HUGO LAROCHELLE

APPRENTISSAGE AUTOMATIQUE

• Il existe différents types d’apprentissage

‣ apprentissage supervisé : il y a une cible à prédire

              = {(x1,t1), ... , (xN,tN)}

‣ apprentissage non-supervisé : cible n’est pas fournie

              = {x1, ... , xN}

‣ apprentissage par renforcement (non couvert dans ce cours)
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Sujets: 

HUGO LAROCHELLE

COMBINAISON DE MODÈLES

• Pourquoi utiliser un seul modèle ?

‣ un système combinant une multitude de modèles différents ne 
serait-il pas meilleur ?

• En pratique, la réponse presque toujours oui !

‣ le résultat de la combinaison de plusieurs modèles est appelée 
ensemble ou comité

3

ensemble, comité
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COMBINAISON DE MODÈLES

• La façon la plus simple d’obtenir M modèles est d’utiliser 
M algorithmes d’apprentissage différents

‣ pour m = 1, ..., M

- entraîner un modèle ym(x) à l’aide du me algorithme d’apprentissage

‣ retourner le modèle ensemble (comité)

- pour la régression : 

- pour la classification : yCOM(x) retourne la classe ayant le plus de votes

4

ensemble, comité

656 14. COMBINING MODELS

that when we trained multiple polynomials using the sinusoidal data, and then aver-
aged the resulting functions, the contribution arising from the variance term tended to
cancel, leading to improved predictions. When we averaged a set of low-bias mod-
els (corresponding to higher order polynomials), we obtained accurate predictions
for the underlying sinusoidal function from which the data were generated.

In practice, of course, we have only a single data set, and so we have to find
a way to introduce variability between the different models within the committee.
One approach is to use bootstrap data sets, discussed in Section 1.2.3. Consider a
regression problem in which we are trying to predict the value of a single continuous
variable, and suppose we generate M bootstrap data sets and then use each to train
a separate copy ym(x) of a predictive model where m = 1, . . . , M . The committee
prediction is given by

yCOM(x) =
1
M

M∑

m=1

ym(x). (14.7)

This procedure is known as bootstrap aggregation or bagging (Breiman, 1996).
Suppose the true regression function that we are trying to predict is given by

h(x), so that the output of each of the models can be written as the true value plus
an error in the form

ym(x) = h(x) + ϵm(x). (14.8)

The average sum-of-squares error then takes the form

Ex

[
{ym(x) − h(x)}2] = Ex

[
ϵm(x)2

]
(14.9)

where Ex[·] denotes a frequentist expectation with respect to the distribution of the
input vector x. The average error made by the models acting individually is therefore

EAV =
1
M

M∑

m=1

Ex

[
ϵm(x)2

]
. (14.10)

Similarly, the expected error from the committee (14.7) is given by

ECOM = Ex

⎡

⎣
{

1
M

M∑

m=1

ym(x) − h(x)

}2
⎤

⎦

= Ex

⎡

⎣
{

1
M

M∑

m=1

ϵm(x)

}2
⎤

⎦ (14.11)

If we assume that the errors have zero mean and are uncorrelated, so that

Ex [ϵm(x)] = 0 (14.12)
Ex [ϵm(x)ϵl(x)] = 0, m ̸= l (14.13)



Sujets: 

HUGO LAROCHELLE

COMBINAISON DE MODÈLES

• La façon la plus simple d’obtenir M modèles est d’utiliser 
M algorithmes d’apprentissage différents

‣ pour m = 1, ..., M

- entraîner un modèle ym(x) à l’aide du me algorithme d’apprentissage

‣ retourner le modèle ensemble (comité)

- pour la régression : 

- pour la classification : yCOM(x) retourne la classe ayant le plus de votes

4

ensemble, comité

656 14. COMBINING MODELS

that when we trained multiple polynomials using the sinusoidal data, and then aver-
aged the resulting functions, the contribution arising from the variance term tended to
cancel, leading to improved predictions. When we averaged a set of low-bias mod-
els (corresponding to higher order polynomials), we obtained accurate predictions
for the underlying sinusoidal function from which the data were generated.

In practice, of course, we have only a single data set, and so we have to find
a way to introduce variability between the different models within the committee.
One approach is to use bootstrap data sets, discussed in Section 1.2.3. Consider a
regression problem in which we are trying to predict the value of a single continuous
variable, and suppose we generate M bootstrap data sets and then use each to train
a separate copy ym(x) of a predictive model where m = 1, . . . , M . The committee
prediction is given by

yCOM(x) =
1
M

M∑

m=1

ym(x). (14.7)

This procedure is known as bootstrap aggregation or bagging (Breiman, 1996).
Suppose the true regression function that we are trying to predict is given by

h(x), so that the output of each of the models can be written as the true value plus
an error in the form

ym(x) = h(x) + ϵm(x). (14.8)

The average sum-of-squares error then takes the form
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{ym(x) − h(x)}2] = Ex

[
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(14.9)

where Ex[·] denotes a frequentist expectation with respect to the distribution of the
input vector x. The average error made by the models acting individually is therefore

EAV =
1
M

M∑
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[
ϵm(x)2

]
. (14.10)

Similarly, the expected error from the committee (14.7) is given by

ECOM = Ex

⎡

⎣
{

1
M

M∑
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ym(x) − h(x)

}2
⎤

⎦

= Ex

⎡

⎣
{

1
M

M∑
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ϵm(x)

}2
⎤

⎦ (14.11)

If we assume that the errors have zero mean and are uncorrelated, so that

Ex [ϵm(x)] = 0 (14.12)
Ex [ϵm(x)ϵl(x)] = 0, m ̸= l (14.13)

• Les M algorithmes pourraient aussi être le même 
algorithme, mais avec M choix d’hyper-paramètres différents
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COMBINAISON DE MODÈLES

• Même avec un seul algorithme sans hyper-paramètres, on 
peut améliorer sa performance à l’aide d’un ensemble

‣ Bagging : particulièrement approprié lorsque chaque modèle 
individuel a beaucoup de capacité

‣ Boosting : particulièrement approprié lorsque chaque modèle 
individuel n’a pas beaucoup de capacité

5
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COMBINAISON DE MODÈLES

• Même avec un seul algorithme, on peut améliorer sa 
performance à l’aide d’un ensemble

‣ Bagging : particulièrement approprié lorsque chaque modèle 
individuel a beaucoup de capacité

‣ Boosting : particulièrement approprié lorsque chaque modèle 
individuel n’a pas beaucoup de capacité
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DÉCOMPOSITION BIAIS-VARIANCE

• On peut montrer que :

8

biais, variance, bruit

ED
⇥
E(x,t)[L(t, y(x;D))]

⇤
=

3.2. The Bias-Variance Decomposition 149

inside the braces, and then expand, we obtain

{y(x;D) − ED[y(x;D)] + ED[y(x;D)] − h(x)}2

= {y(x;D) − ED[y(x;D)]}2 + {ED[y(x;D)] − h(x)}2

+2{y(x;D) − ED[y(x;D)]}{ED[y(x;D)] − h(x)}. (3.39)

We now take the expectation of this expression with respect to D and note that the
final term will vanish, giving

ED
[
{y(x;D) − h(x)}2

]

= {ED[y(x;D)] − h(x)}2

︸ ︷︷ ︸
(bias)2

+ ED
[
{y(x;D) − ED[y(x;D)]}2

]
︸ ︷︷ ︸

variance

. (3.40)

We see that the expected squared difference between y(x;D) and the regression
function h(x) can be expressed as the sum of two terms. The first term, called the
squared bias, represents the extent to which the average prediction over all data sets
differs from the desired regression function. The second term, called the variance,
measures the extent to which the solutions for individual data sets vary around their
average, and hence this measures the extent to which the function y(x;D) is sensitive
to the particular choice of data set. We shall provide some intuition to support these
definitions shortly when we consider a simple example.

So far, we have considered a single input value x. If we substitute this expansion
back into (3.37), we obtain the following decomposition of the expected squared loss

expected loss = (bias)2 + variance + noise (3.41)

where

(bias)2 =
∫

{ED[y(x;D)] − h(x)}2p(x) dx (3.42)

variance =
∫

ED
[
{y(x;D) − ED[y(x;D)]}2

]
p(x) dx (3.43)

noise =
∫

{h(x) − t}2p(x, t) dxdt (3.44)

and the bias and variance terms now refer to integrated quantities.
Our goal is to minimize the expected loss, which we have decomposed into the

sum of a (squared) bias, a variance, and a constant noise term. As we shall see, there
is a trade-off between bias and variance, with very flexible models having low bias
and high variance, and relatively rigid models having high bias and low variance.
The model with the optimal predictive capability is the one that leads to the best
balance between bias and variance. This is illustrated by considering the sinusoidal
data set from Chapter 1. Here we generate 100 data sets, each containing N = 25Appendix A
data points, independently from the sinusoidal curve h(x) = sin(2πx). The data
sets are indexed by l = 1, . . . , L, where L = 100, and for each data set D(l) we
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We see that the expected squared difference between y(x;D) and the regression
function h(x) can be expressed as the sum of two terms. The first term, called the
squared bias, represents the extent to which the average prediction over all data sets
differs from the desired regression function. The second term, called the variance,
measures the extent to which the solutions for individual data sets vary around their
average, and hence this measures the extent to which the function y(x;D) is sensitive
to the particular choice of data set. We shall provide some intuition to support these
definitions shortly when we consider a simple example.
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{h(x) − t}2p(x, t) dxdt (3.44)

and the bias and variance terms now refer to integrated quantities.
Our goal is to minimize the expected loss, which we have decomposed into the

sum of a (squared) bias, a variance, and a constant noise term. As we shall see, there
is a trade-off between bias and variance, with very flexible models having low bias
and high variance, and relatively rigid models having high bias and low variance.
The model with the optimal predictive capability is the one that leads to the best
balance between bias and variance. This is illustrated by considering the sinusoidal
data set from Chapter 1. Here we generate 100 data sets, each containing N = 25Appendix A
data points, independently from the sinusoidal curve h(x) = sin(2πx). The data
sets are indexed by l = 1, . . . , L, where L = 100, and for each data set D(l) we

RAPPEL



Sujets: 

HUGO LAROCHELLE

DÉCOMPOSITION BIAIS-VARIANCE

• Régression polynomiale de degré 25 
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réduction de variance

150 3. LINEAR MODELS FOR REGRESSION
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Figure 3.5 Illustration of the dependence of bias and variance on model complexity, governed by a regulariza-
tion parameter λ, using the sinusoidal data set from Chapter 1. There are L = 100 data sets, each having N = 25
data points, and there are 24 Gaussian basis functions in the model so that the total number of parameters is
M = 25 including the bias parameter. The left column shows the result of fitting the model to the data sets for
various values of ln λ (for clarity, only 20 of the 100 fits are shown). The right column shows the corresponding
average of the 100 fits (red) along with the sinusoidal function from which the data sets were generated (green).

100 modèles entraînés sur
100 ensembles d’entraînement différents

Ensemble des 100 modèles 
vs. vrai modèle
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• Régression polynomiale de degré 25 
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100 modèles entraînés sur
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Ensemble des 100 modèles 
vs. vrai modèle

La variance d’un ensemble de M modèles 
est plus petite que celle de chacun des M modèles 
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BOOTSTRAP

• À part pour des données synthétiques, on ne peut pas 
générer sur demande des ensembles d’entraînement

• Bootstrap : on simule chaque collection de nouvelles 
données comme suit :

‣              

‣ pour N itérations

- choisir aléatoirement et uniformément un entier n parmi {1,...,N}

-  

‣ retourner 

10

bootstrap

D
bootstrap
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bootstrap

[ {(xn, tn)}

D
bootstrap

 {}

D
bootstrap
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BAGGING

• Bagging : entraîne M modèles avec un algorithme donné, 
sur M ensembles de données bootstrap

‣ pour m = 1, ..., M

- génère un ensemble de données bootstrap                       à partir de  

- entraîner un modèle ym(x) sur

‣ retourner le modèle ensemble (comité)

11

bagging

656 14. COMBINING MODELS

that when we trained multiple polynomials using the sinusoidal data, and then aver-
aged the resulting functions, the contribution arising from the variance term tended to
cancel, leading to improved predictions. When we averaged a set of low-bias mod-
els (corresponding to higher order polynomials), we obtained accurate predictions
for the underlying sinusoidal function from which the data were generated.

In practice, of course, we have only a single data set, and so we have to find
a way to introduce variability between the different models within the committee.
One approach is to use bootstrap data sets, discussed in Section 1.2.3. Consider a
regression problem in which we are trying to predict the value of a single continuous
variable, and suppose we generate M bootstrap data sets and then use each to train
a separate copy ym(x) of a predictive model where m = 1, . . . , M . The committee
prediction is given by

yCOM(x) =
1
M

M∑

m=1

ym(x). (14.7)

This procedure is known as bootstrap aggregation or bagging (Breiman, 1996).
Suppose the true regression function that we are trying to predict is given by

h(x), so that the output of each of the models can be written as the true value plus
an error in the form

ym(x) = h(x) + ϵm(x). (14.8)

The average sum-of-squares error then takes the form

Ex

[
{ym(x) − h(x)}2] = Ex

[
ϵm(x)2

]
(14.9)

where Ex[·] denotes a frequentist expectation with respect to the distribution of the
input vector x. The average error made by the models acting individually is therefore

EAV =
1
M

M∑

m=1

Ex

[
ϵm(x)2

]
. (14.10)

Similarly, the expected error from the committee (14.7) is given by

ECOM = Ex

⎡

⎣
{

1
M

M∑

m=1

ym(x) − h(x)

}2
⎤

⎦

= Ex

⎡

⎣
{

1
M

M∑

m=1

ϵm(x)

}2
⎤

⎦ (14.11)

If we assume that the errors have zero mean and are uncorrelated, so that

Ex [ϵm(x)] = 0 (14.12)
Ex [ϵm(x)ϵl(x)] = 0, m ̸= l (14.13)

D
bootstrap

D
D

bootstrap

(régression)



Apprentissage automatique
Combinaison de modèles - propriétés du bagging
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BAGGING

• Bagging : entraîne M modèles avec un algorithme donné, 
sur M ensembles de données bootstrap

‣ pour m = 1, ..., M

- génère un ensemble de données bootstrap                       à partir de  

- entraîner un modèle ym(x) sur

‣ retourner le modèle ensemble (comité)
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bagging
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that when we trained multiple polynomials using the sinusoidal data, and then aver-
aged the resulting functions, the contribution arising from the variance term tended to
cancel, leading to improved predictions. When we averaged a set of low-bias mod-
els (corresponding to higher order polynomials), we obtained accurate predictions
for the underlying sinusoidal function from which the data were generated.

In practice, of course, we have only a single data set, and so we have to find
a way to introduce variability between the different models within the committee.
One approach is to use bootstrap data sets, discussed in Section 1.2.3. Consider a
regression problem in which we are trying to predict the value of a single continuous
variable, and suppose we generate M bootstrap data sets and then use each to train
a separate copy ym(x) of a predictive model where m = 1, . . . , M . The committee
prediction is given by

yCOM(x) =
1
M

M∑

m=1

ym(x). (14.7)

This procedure is known as bootstrap aggregation or bagging (Breiman, 1996).
Suppose the true regression function that we are trying to predict is given by

h(x), so that the output of each of the models can be written as the true value plus
an error in the form

ym(x) = h(x) + ϵm(x). (14.8)

The average sum-of-squares error then takes the form

Ex

[
{ym(x) − h(x)}2] = Ex

[
ϵm(x)2

]
(14.9)

where Ex[·] denotes a frequentist expectation with respect to the distribution of the
input vector x. The average error made by the models acting individually is therefore

EAV =
1
M

M∑

m=1

Ex

[
ϵm(x)2

]
. (14.10)

Similarly, the expected error from the committee (14.7) is given by

ECOM = Ex

⎡

⎣
{

1
M

M∑

m=1

ym(x) − h(x)

}2
⎤

⎦

= Ex

⎡

⎣
{

1
M

M∑

m=1

ϵm(x)

}2
⎤

⎦ (14.11)

If we assume that the errors have zero mean and are uncorrelated, so that

Ex [ϵm(x)] = 0 (14.12)
Ex [ϵm(x)ϵl(x)] = 0, m ̸= l (14.13)

D
bootstrap

D
D

bootstrap

(régression)
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BAGGING

• On va analyser théoriquement l’erreur de l’ensemble

‣ on va considérer le cas de la régression

• Soit h(x) le vrai modèle à apprendre

• Alors, on peut noter chaque modèle ym(x) de l’ensemble 

14

analyse théorique de l’erreur
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that when we trained multiple polynomials using the sinusoidal data, and then aver-
aged the resulting functions, the contribution arising from the variance term tended to
cancel, leading to improved predictions. When we averaged a set of low-bias mod-
els (corresponding to higher order polynomials), we obtained accurate predictions
for the underlying sinusoidal function from which the data were generated.

In practice, of course, we have only a single data set, and so we have to find
a way to introduce variability between the different models within the committee.
One approach is to use bootstrap data sets, discussed in Section 1.2.3. Consider a
regression problem in which we are trying to predict the value of a single continuous
variable, and suppose we generate M bootstrap data sets and then use each to train
a separate copy ym(x) of a predictive model where m = 1, . . . , M . The committee
prediction is given by

yCOM(x) =
1
M

M∑

m=1

ym(x). (14.7)

This procedure is known as bootstrap aggregation or bagging (Breiman, 1996).
Suppose the true regression function that we are trying to predict is given by

h(x), so that the output of each of the models can be written as the true value plus
an error in the form

ym(x) = h(x) + ϵm(x). (14.8)

The average sum-of-squares error then takes the form

Ex

[
{ym(x) − h(x)}2] = Ex

[
ϵm(x)2

]
(14.9)

where Ex[·] denotes a frequentist expectation with respect to the distribution of the
input vector x. The average error made by the models acting individually is therefore

EAV =
1
M

M∑

m=1

Ex

[
ϵm(x)2

]
. (14.10)

Similarly, the expected error from the committee (14.7) is given by

ECOM = Ex

⎡

⎣
{

1
M
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}2
⎤

⎦

= Ex

⎡
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⎤
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If we assume that the errors have zero mean and are uncorrelated, so that

Ex [ϵm(x)] = 0 (14.12)
Ex [ϵm(x)ϵl(x)] = 0, m ̸= l (14.13)
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that when we trained multiple polynomials using the sinusoidal data, and then aver-
aged the resulting functions, the contribution arising from the variance term tended to
cancel, leading to improved predictions. When we averaged a set of low-bias mod-
els (corresponding to higher order polynomials), we obtained accurate predictions
for the underlying sinusoidal function from which the data were generated.

In practice, of course, we have only a single data set, and so we have to find
a way to introduce variability between the different models within the committee.
One approach is to use bootstrap data sets, discussed in Section 1.2.3. Consider a
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then we obtainExercise 14.2
ECOM =

1
M

EAV. (14.14)

This apparently dramatic result suggests that the average error of a model can be
reduced by a factor of M simply by averaging M versions of the model. Unfortu-
nately, it depends on the key assumption that the errors due to the individual models
are uncorrelated. In practice, the errors are typically highly correlated, and the reduc-
tion in overall error is generally small. It can, however, be shown that the expected
committee error will not exceed the expected error of the constituent models, so that
ECOM ! EAV. In order to achieve more significant improvements, we turn to a moreExercise 14.3
sophisticated technique for building committees, known as boosting.

14.3. Boosting

Boosting is a powerful technique for combining multiple ‘base’ classifiers to produce
a form of committee whose performance can be significantly better than that of any
of the base classifiers. Here we describe the most widely used form of boosting
algorithm called AdaBoost, short for ‘adaptive boosting’, developed by Freund and
Schapire (1996). Boosting can give good results even if the base classifiers have a
performance that is only slightly better than random, and hence sometimes the base
classifiers are known as weak learners. Originally designed for solving classification
problems, boosting can also be extended to regression (Friedman, 2001).

The principal difference between boosting and the committee methods such as
bagging discussed above, is that the base classifiers are trained in sequence, and
each base classifier is trained using a weighted form of the data set in which the
weighting coefficient associated with each data point depends on the performance
of the previous classifiers. In particular, points that are misclassified by one of the
base classifiers are given greater weight when used to train the next classifier in
the sequence. Once all the classifiers have been trained, their predictions are then
combined through a weighted majority voting scheme, as illustrated schematically
in Figure 14.1.

Consider a two-class classification problem, in which the training data comprises
input vectors x1, . . . ,xN along with corresponding binary target variables t1, . . . , tN
where tn ∈ {−1, 1}. Each data point is given an associated weighting parameter
wn, which is initially set 1/N for all data points. We shall suppose that we have
a procedure available for training a base classifier using weighted data to give a
function y(x) ∈ {−1, 1}. At each stage of the algorithm, AdaBoost trains a new
classifier using a data set in which the weighting coefficients are adjusted according
to the performance of the previously trained classifier so as to give greater weight
to the misclassified data points. Finally, when the desired number of base classifiers
have been trained, they are combined to form a committee using coefficients that
give different weight to different base classifiers. The precise form of the AdaBoost
algorithm is given below.

où
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• On pourrait réduire l’erreur d’un facteur 1/M !

• Par contre, la supposition d’erreurs non-corrélées n’est 
pas vraie en pratique

‣ les ym(x) font souvent le «même genre» d’erreurs

• On peut quand même démontrer que l’erreur ECOM de 
l’ensemble ne va pas dépasser l’erreur moyenne EAV des 
ym(x)
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COMBINAISON DE MODÈLES

• Même avec un seul algorithme, on peut améliorer sa 
performance à l’aide d’un ensemble

‣ Bagging : particulièrement approprié lorsque chaque modèle 
individuel a beaucoup de capacité

‣ Boosting : particulièrement approprié lorsque chaque modèle 
individuel n’a pas beaucoup de capacité

19
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CLASSIFICATION

• Cas spécial : classification binaire

‣ classe      correspond à t = 1

‣ classe      correspond à t = 0 (ou t = -1)

• Cas spécial : classification linéaire

‣ la surface de décision entre chaque paire de régions de décision est 
linéaire, i.e. un hyperplan (droite pour D=2)

‣ on dit qu’un problème est linéairement séparable si une 
surface linéaire permet de classifier parfaitement

20
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BOOSTING

• Si les modèles n’ont pas beaucoup de capacité, leur variance 
sera déjà petite

‣ on appelle de tels modèles des weak learners

• Peut-être devraient-ils plutôt se diviser le travail

• C’est le principe derrière le boosting

‣ on entraîne les modèles en séquence

‣ chaque modèle se concentre sur les exemples mal modélisés par les 
modèles précédents

- pour le me modèle, chaque exemple (xn,tn) aura un poids wn(m) 
21
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• Illustration du boosting
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658 14. COMBINING MODELS

Figure 14.1 Schematic illustration of the
boosting framework. Each
base classifier ym(x) is trained
on a weighted form of the train-
ing set (blue arrows) in which
the weights w(m)

n depend on
the performance of the pre-
vious base classifier ym−1(x)
(green arrows). Once all base
classifiers have been trained,
they are combined to give
the final classifier YM (x) (red
arrows).

{w(1)
n } {w(2)

n } {w(M)
n }

y1(x) y2(x) yM (x)

YM (x) = sign

(
M∑

m

αmym(x)

)

AdaBoost

1. Initialize the data weighting coefficients {wn} by setting w(1)
n = 1/N for

n = 1, . . . , N .

2. For m = 1, . . . , M :

(a) Fit a classifier ym(x) to the training data by minimizing the weighted
error function

Jm =
N∑

n=1

w(m)
n I(ym(xn) ̸= tn) (14.15)

where I(ym(xn) ̸= tn) is the indicator function and equals 1 when
ym(xn) ̸= tn and 0 otherwise.

(b) Evaluate the quantities

ϵm =

N∑

n=1

w(m)
n I(ym(xn) ̸= tn)

N∑

n=1

w(m)
n

(14.16)

and then use these to evaluate

αm = ln
{

1 − ϵm

ϵm

}
. (14.17)

(c) Update the data weighting coefficients

w(m+1)
n = w(m)

n exp {αmI(ym(xn) ̸= tn)} (14.18)

(classification)
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they are combined to give
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arrows).
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(green arrows). Once all base
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they are combined to give
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arrows).
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Figure 14.1 Schematic illustration of the
boosting framework. Each
base classifier ym(x) is trained
on a weighted form of the train-
ing set (blue arrows) in which
the weights w(m)

n depend on
the performance of the pre-
vious base classifier ym−1(x)
(green arrows). Once all base
classifiers have been trained,
they are combined to give
the final classifier YM (x) (red
arrows).
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1. Initialize the data weighting coefficients {wn} by setting w(1)
n = 1/N for

n = 1, . . . , N .

2. For m = 1, . . . , M :
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error function
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(c) Update the data weighting coefficients
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Figure 14.1 Schematic illustration of the
boosting framework. Each
base classifier ym(x) is trained
on a weighted form of the train-
ing set (blue arrows) in which
the weights w(m)

n depend on
the performance of the pre-
vious base classifier ym−1(x)
(green arrows). Once all base
classifiers have been trained,
they are combined to give
the final classifier YM (x) (red
arrows).
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(b) Evaluate the quantities

ϵm =

N∑

n=1

w(m)
n I(ym(xn) ̸= tn)

N∑

n=1

w(m)
n

(14.16)

and then use these to evaluate

αm = ln
{

1 − ϵm

ϵm

}
. (14.17)

(c) Update the data weighting coefficients

w(m+1)
n = w(m)

n exp {αmI(ym(xn) ̸= tn)} (14.18)

...

658 14. COMBINING MODELS

Figure 14.1 Schematic illustration of the
boosting framework. Each
base classifier ym(x) is trained
on a weighted form of the train-
ing set (blue arrows) in which
the weights w(m)

n depend on
the performance of the pre-
vious base classifier ym−1(x)
(green arrows). Once all base
classifiers have been trained,
they are combined to give
the final classifier YM (x) (red
arrows).

{w(1)
n } {w(2)

n } {w(M)
n }

y1(x) y2(x) yM (x)

YM (x) = sign

(
M∑

m

αmym(x)

)

AdaBoost

1. Initialize the data weighting coefficients {wn} by setting w(1)
n = 1/N for

n = 1, . . . , N .
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classifiers have been trained,
they are combined to give
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arrows).
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3. Make predictions using the final model, which is given by

YM (x) = sign

(
M∑

m=1

αmym(x)

)
. (14.19)

We see that the first base classifier y1(x) is trained using weighting coeffi-
cients w(1)

n that are all equal, which therefore corresponds to the usual procedure
for training a single classifier. From (14.18), we see that in subsequent iterations
the weighting coefficients w(m)

n are increased for data points that are misclassified
and decreased for data points that are correctly classified. Successive classifiers are
therefore forced to place greater emphasis on points that have been misclassified by
previous classifiers, and data points that continue to be misclassified by successive
classifiers receive ever greater weight. The quantities ϵm represent weighted mea-
sures of the error rates of each of the base classifiers on the data set. We therefore
see that the weighting coefficients αm defined by (14.17) give greater weight to the
more accurate classifiers when computing the overall output given by (14.19).

The AdaBoost algorithm is illustrated in Figure 14.2, using a subset of 30 data
points taken from the toy classification data set shown in Figure A.7. Here each base
learners consists of a threshold on one of the input variables. This simple classifier
corresponds to a form of decision tree known as a ‘decision stumps’, i.e., a deci-Section 14.4
sion tree with a single node. Thus each base learner classifies an input according to
whether one of the input features exceeds some threshold and therefore simply parti-
tions the space into two regions separated by a linear decision surface that is parallel
to one of the axes.

14.3.1 Minimizing exponential error
Boosting was originally motivated using statistical learning theory, leading to

upper bounds on the generalization error. However, these bounds turn out to be too
loose to have practical value, and the actual performance of boosting is much better
than the bounds alone would suggest. Friedman et al. (2000) gave a different and
very simple interpretation of boosting in terms of the sequential minimization of an
exponential error function.

Consider the exponential error function defined by

E =
N∑

n=1

exp {−tnfm(xn)} (14.20)

where fm(x) is a classifier defined in terms of a linear combination of base classifiers
yl(x) of the form

fm(x) =
1
2

m∑

l=1

αlyl(x) (14.21)

and tn ∈ {−1, 1} are the training set target values. Our goal is to minimize E with
respect to both the weighting coefficients αl and the parameters of the base classifiers
yl(x).
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We see that the first base classifier y1(x) is trained using weighting coeffi-
cients w(1)

n that are all equal, which therefore corresponds to the usual procedure
for training a single classifier. From (14.18), we see that in subsequent iterations
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and decreased for data points that are correctly classified. Successive classifiers are
therefore forced to place greater emphasis on points that have been misclassified by
previous classifiers, and data points that continue to be misclassified by successive
classifiers receive ever greater weight. The quantities ϵm represent weighted mea-
sures of the error rates of each of the base classifiers on the data set. We therefore
see that the weighting coefficients αm defined by (14.17) give greater weight to the
more accurate classifiers when computing the overall output given by (14.19).

The AdaBoost algorithm is illustrated in Figure 14.2, using a subset of 30 data
points taken from the toy classification data set shown in Figure A.7. Here each base
learners consists of a threshold on one of the input variables. This simple classifier
corresponds to a form of decision tree known as a ‘decision stumps’, i.e., a deci-Section 14.4
sion tree with a single node. Thus each base learner classifies an input according to
whether one of the input features exceeds some threshold and therefore simply parti-
tions the space into two regions separated by a linear decision surface that is parallel
to one of the axes.

14.3.1 Minimizing exponential error
Boosting was originally motivated using statistical learning theory, leading to

upper bounds on the generalization error. However, these bounds turn out to be too
loose to have practical value, and the actual performance of boosting is much better
than the bounds alone would suggest. Friedman et al. (2000) gave a different and
very simple interpretation of boosting in terms of the sequential minimization of an
exponential error function.

Consider the exponential error function defined by

E =
N∑

n=1

exp {−tnfm(xn)} (14.20)

where fm(x) is a classifier defined in terms of a linear combination of base classifiers
yl(x) of the form

fm(x) =
1
2
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αlyl(x) (14.21)

and tn ∈ {−1, 1} are the training set target values. Our goal is to minimize E with
respect to both the weighting coefficients αl and the parameters of the base classifiers
yl(x).

}

ym(x) ∈ {-1,1} ym(x) est la fonction

discriminante( )
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Figure 14.2 Illustration of boosting in which the base learners consist of simple thresholds applied to one or
other of the axes. Each figure shows the number m of base learners trained so far, along with the decision
boundary of the most recent base learner (dashed black line) and the combined decision boundary of the en-
semble (solid green line). Each data point is depicted by a circle whose radius indicates the weight assigned to
that data point when training the most recently added base learner. Thus, for instance, we see that points that
are misclassified by the m = 1 base learner are given greater weight when training the m = 2 base learner.

Instead of doing a global error function minimization, however, we shall sup-
pose that the base classifiers y1(x), . . . , ym−1(x) are fixed, as are their coefficients
α1, . . . , αm−1, and so we are minimizing only with respect to αm and ym(x). Sep-
arating off the contribution from base classifier ym(x), we can then write the error
function in the form

E =
N∑

n=1

exp
{
−tnfm−1(xn) − 1

2
tnαmym(xn)

}

=
N∑

n=1

w(m)
n exp

{
−1

2
tnαmym(xn)

}
(14.22)

where the coefficients w(m)
n = exp{−tnfm−1(xn)} can be viewed as constants

because we are optimizing only αm and ym(x). If we denote by Tm the set of
data points that are correctly classified by ym(x), and if we denote the remaining
misclassified points by Mm, then we can in turn rewrite the error function in the
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Figure 14.1 Schematic illustration of the
boosting framework. Each
base classifier ym(x) is trained
on a weighted form of the train-
ing set (blue arrows) in which
the weights w(m)

n depend on
the performance of the pre-
vious base classifier ym−1(x)
(green arrows). Once all base
classifiers have been trained,
they are combined to give
the final classifier YM (x) (red
arrows).

{w(1)
n } {w(2)

n } {w(M)
n }

y1(x) y2(x) yM (x)

YM (x) = sign

(
M∑

m

αmym(x)

)

AdaBoost

1. Initialize the data weighting coefficients {wn} by setting w(1)
n = 1/N for

n = 1, . . . , N .

2. For m = 1, . . . , M :

(a) Fit a classifier ym(x) to the training data by minimizing the weighted
error function

Jm =
N∑

n=1

w(m)
n I(ym(xn) ̸= tn) (14.15)

where I(ym(xn) ̸= tn) is the indicator function and equals 1 when
ym(xn) ̸= tn and 0 otherwise.

(b) Evaluate the quantities

ϵm =

N∑

n=1

w(m)
n I(ym(xn) ̸= tn)

N∑

n=1

w(m)
n

(14.16)

and then use these to evaluate

αm = ln
{

1 − ϵm

ϵm

}
. (14.17)

(c) Update the data weighting coefficients

w(m+1)
n = w(m)

n exp {αmI(ym(xn) ̸= tn)} (14.18)
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HUGO LAROCHELLE

BOOTSTRAP

• À part pour des données synthétiques, on ne peut pas 
générer sur demande des ensembles d’entraînement

• Bootstrap : on simule chaque collection de nouvelles 
données comme suit :

‣              

‣ pour N itérations

- choisir aléatoirement et uniformément un entier n parmi {1,...,N}

-  

‣ retourner 
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Apprentissage automatique
Combinaison de modèles - propriétés du boosting
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HUGO LAROCHELLE

BOOSTING

• Si les modèles n’ont pas beaucoup de capacité, leur variance 
sera déjà petite

‣ on appelle de tels modèles des weak learners

• Peut-être devraient-ils se plutôt se diviser le travail

• C’est le principe derrière le boosting

‣ on entraîne les modèles en séquence

‣ chaque modèle se concentre sur les exemples mal modélisés par les 
modèles précédents

- pour le me modèle, chaque exemple (xn,tn) aura un poids wn(m) 
32

weak learner, boosting
RAPPEL



Sujets: 

HUGO LAROCHELLE

ADABOOST

• On peut voir AdaBoost comme optimisant la somme d’une 
perte exponentielle

où fm(xn) est le score pour la classe tn=1 :
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3. Make predictions using the final model, which is given by

YM (x) = sign

(
M∑

m=1

αmym(x)

)
. (14.19)

We see that the first base classifier y1(x) is trained using weighting coeffi-
cients w(1)

n that are all equal, which therefore corresponds to the usual procedure
for training a single classifier. From (14.18), we see that in subsequent iterations
the weighting coefficients w(m)

n are increased for data points that are misclassified
and decreased for data points that are correctly classified. Successive classifiers are
therefore forced to place greater emphasis on points that have been misclassified by
previous classifiers, and data points that continue to be misclassified by successive
classifiers receive ever greater weight. The quantities ϵm represent weighted mea-
sures of the error rates of each of the base classifiers on the data set. We therefore
see that the weighting coefficients αm defined by (14.17) give greater weight to the
more accurate classifiers when computing the overall output given by (14.19).

The AdaBoost algorithm is illustrated in Figure 14.2, using a subset of 30 data
points taken from the toy classification data set shown in Figure A.7. Here each base
learners consists of a threshold on one of the input variables. This simple classifier
corresponds to a form of decision tree known as a ‘decision stumps’, i.e., a deci-Section 14.4
sion tree with a single node. Thus each base learner classifies an input according to
whether one of the input features exceeds some threshold and therefore simply parti-
tions the space into two regions separated by a linear decision surface that is parallel
to one of the axes.

14.3.1 Minimizing exponential error
Boosting was originally motivated using statistical learning theory, leading to

upper bounds on the generalization error. However, these bounds turn out to be too
loose to have practical value, and the actual performance of boosting is much better
than the bounds alone would suggest. Friedman et al. (2000) gave a different and
very simple interpretation of boosting in terms of the sequential minimization of an
exponential error function.

Consider the exponential error function defined by

E =
N∑

n=1

exp {−tnfm(xn)} (14.20)

where fm(x) is a classifier defined in terms of a linear combination of base classifiers
yl(x) of the form

fm(x) =
1
2

m∑

l=1

αlyl(x) (14.21)

and tn ∈ {−1, 1} are the training set target values. Our goal is to minimize E with
respect to both the weighting coefficients αl and the parameters of the base classifiers
yl(x).
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ADABOOST

• AdaBoost optimise ces pertes séquentiellement

‣ à partir de l’ensemble fm-1(x) de l’itération précédente, on veut y 
ajouter un nouveau modèle ym(x) 
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Figure 14.2 Illustration of boosting in which the base learners consist of simple thresholds applied to one or
other of the axes. Each figure shows the number m of base learners trained so far, along with the decision
boundary of the most recent base learner (dashed black line) and the combined decision boundary of the en-
semble (solid green line). Each data point is depicted by a circle whose radius indicates the weight assigned to
that data point when training the most recently added base learner. Thus, for instance, we see that points that
are misclassified by the m = 1 base learner are given greater weight when training the m = 2 base learner.

Instead of doing a global error function minimization, however, we shall sup-
pose that the base classifiers y1(x), . . . , ym−1(x) are fixed, as are their coefficients
α1, . . . , αm−1, and so we are minimizing only with respect to αm and ym(x). Sep-
arating off the contribution from base classifier ym(x), we can then write the error
function in the form

E =
N∑

n=1

exp
{
−tnfm−1(xn) − 1

2
tnαmym(xn)

}

=
N∑

n=1

w(m)
n exp

{
−1

2
tnαmym(xn)

}
(14.22)

where the coefficients w(m)
n = exp{−tnfm−1(xn)} can be viewed as constants

because we are optimizing only αm and ym(x). If we denote by Tm the set of
data points that are correctly classified by ym(x), and if we denote the remaining
misclassified points by Mm, then we can in turn rewrite the error function in the



Sujets: 

HUGO LAROCHELLE

ADABOOST

• AdaBoost optimise ces pertes séquentiellement

‣ le meilleur ym(x) à ajouter sera celui qui optimise E, qui équivaut à 
optimiser Jm
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form

E = e−αm/2
∑

n∈Tm

w(m)
n + eαm/2

∑

n∈Mm

w(m)
n

= (eαm/2 − e−αm/2)
N∑

n=1

w(m)
n I(ym(xn) ̸= tn) + e−αm/2

N∑

n=1

w(m)
n .

(14.23)

When we minimize this with respect to ym(x), we see that the second term is con-
stant, and so this is equivalent to minimizing (14.15) because the overall multiplica-
tive factor in front of the summation does not affect the location of the minimum.
Similarly, minimizing with respect to αm, we obtain (14.17) in which ϵm is defined
by (14.16).Exercise 14.6

From (14.22) we see that, having found αm and ym(x), the weights on the data
points are updated using

w(m+1)
n = w(m)

n exp
{
−1

2
tnαmym(xn)

}
. (14.24)

Making use of the fact that

tnym(xn) = 1 − 2I(ym(xn) ̸= tn) (14.25)

we see that the weights w(m)
n are updated at the next iteration using

w(m+1)
n = w(m)

n exp(−αm/2) exp {αmI(ym(xn) ̸= tn)} . (14.26)

Because the term exp(−αm/2) is independent of n, we see that it weights all data
points by the same factor and so can be discarded. Thus we obtain (14.18).

Finally, once all the base classifiers are trained, new data points are classified by
evaluating the sign of the combined function defined according to (14.21). Because
the factor of 1/2 does not affect the sign it can be omitted, giving (14.19).

14.3.2 Error functions for boosting
The exponential error function that is minimized by the AdaBoost algorithm

differs from those considered in previous chapters. To gain some insight into the
nature of the exponential error function, we first consider the expected error given
by

Ex,t [exp{−ty(x)}] =
∑

t

∫
exp{−ty(x)}p(t|x)p(x) dx. (14.27)

If we perform a variational minimization with respect to all possible functions y(x),
we obtainExercise 14.7

y(x) =
1
2

ln
{

p(t = 1|x)
p(t = −1|x)

}
(14.28)
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Figure 14.2 Illustration of boosting in which the base learners consist of simple thresholds applied to one or
other of the axes. Each figure shows the number m of base learners trained so far, along with the decision
boundary of the most recent base learner (dashed black line) and the combined decision boundary of the en-
semble (solid green line). Each data point is depicted by a circle whose radius indicates the weight assigned to
that data point when training the most recently added base learner. Thus, for instance, we see that points that
are misclassified by the m = 1 base learner are given greater weight when training the m = 2 base learner.

Instead of doing a global error function minimization, however, we shall sup-
pose that the base classifiers y1(x), . . . , ym−1(x) are fixed, as are their coefficients
α1, . . . , αm−1, and so we are minimizing only with respect to αm and ym(x). Sep-
arating off the contribution from base classifier ym(x), we can then write the error
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where the coefficients w(m)
n = exp{−tnfm−1(xn)} can be viewed as constants

because we are optimizing only αm and ym(x). If we denote by Tm the set of
data points that are correctly classified by ym(x), and if we denote the remaining
misclassified points by Mm, then we can in turn rewrite the error function in the
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Instead of doing a global error function minimization, however, we shall sup-
pose that the base classifiers y1(x), . . . , ym−1(x) are fixed, as are their coefficients
α1, . . . , αm−1, and so we are minimizing only with respect to αm and ym(x). Sep-
arating off the contribution from base classifier ym(x), we can then write the error
function in the form

E =
N∑

n=1

exp
{
−tnfm−1(xn) − 1

2
tnαmym(xn)

}

=
N∑

n=1

w(m)
n exp
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−1

2
tnαmym(xn)
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(14.22)

where the coefficients w(m)
n = exp{−tnfm−1(xn)} can be viewed as constants

because we are optimizing only αm and ym(x). If we denote by Tm the set of
data points that are correctly classified by ym(x), and if we denote the remaining
misclassified points by Mm, then we can in turn rewrite the error function in the

exemples bien classifiés par ym(x)

exemples mal classifiés par ym(x)
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form

E = e−αm/2
∑

n∈Tm

w(m)
n + eαm/2

∑

n∈Mm

w(m)
n

= (eαm/2 − e−αm/2)
N∑

n=1

w(m)
n I(ym(xn) ̸= tn) + e−αm/2

N∑

n=1

w(m)
n .

(14.23)

When we minimize this with respect to ym(x), we see that the second term is con-
stant, and so this is equivalent to minimizing (14.15) because the overall multiplica-
tive factor in front of the summation does not affect the location of the minimum.
Similarly, minimizing with respect to αm, we obtain (14.17) in which ϵm is defined
by (14.16).Exercise 14.6

From (14.22) we see that, having found αm and ym(x), the weights on the data
points are updated using

w(m+1)
n = w(m)

n exp
{
−1

2
tnαmym(xn)

}
. (14.24)

Making use of the fact that

tnym(xn) = 1 − 2I(ym(xn) ̸= tn) (14.25)

we see that the weights w(m)
n are updated at the next iteration using

w(m+1)
n = w(m)

n exp(−αm/2) exp {αmI(ym(xn) ̸= tn)} . (14.26)

Because the term exp(−αm/2) is independent of n, we see that it weights all data
points by the same factor and so can be discarded. Thus we obtain (14.18).

Finally, once all the base classifiers are trained, new data points are classified by
evaluating the sign of the combined function defined according to (14.21). Because
the factor of 1/2 does not affect the sign it can be omitted, giving (14.19).

14.3.2 Error functions for boosting
The exponential error function that is minimized by the AdaBoost algorithm

differs from those considered in previous chapters. To gain some insight into the
nature of the exponential error function, we first consider the expected error given
by

Ex,t [exp{−ty(x)}] =
∑

t

∫
exp{−ty(x)}p(t|x)p(x) dx. (14.27)

If we perform a variational minimization with respect to all possible functions y(x),
we obtainExercise 14.7

y(x) =
1
2

ln
{

p(t = 1|x)
p(t = −1|x)

}
(14.28)
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Figure 14.2 Illustration of boosting in which the base learners consist of simple thresholds applied to one or
other of the axes. Each figure shows the number m of base learners trained so far, along with the decision
boundary of the most recent base learner (dashed black line) and the combined decision boundary of the en-
semble (solid green line). Each data point is depicted by a circle whose radius indicates the weight assigned to
that data point when training the most recently added base learner. Thus, for instance, we see that points that
are misclassified by the m = 1 base learner are given greater weight when training the m = 2 base learner.

Instead of doing a global error function minimization, however, we shall sup-
pose that the base classifiers y1(x), . . . , ym−1(x) are fixed, as are their coefficients
α1, . . . , αm−1, and so we are minimizing only with respect to αm and ym(x). Sep-
arating off the contribution from base classifier ym(x), we can then write the error
function in the form

E =
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where the coefficients w(m)
n = exp{−tnfm−1(xn)} can be viewed as constants

because we are optimizing only αm and ym(x). If we denote by Tm the set of
data points that are correctly classified by ym(x), and if we denote the remaining
misclassified points by Mm, then we can in turn rewrite the error function in the
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Instead of doing a global error function minimization, however, we shall sup-
pose that the base classifiers y1(x), . . . , ym−1(x) are fixed, as are their coefficients
α1, . . . , αm−1, and so we are minimizing only with respect to αm and ym(x). Sep-
arating off the contribution from base classifier ym(x), we can then write the error
function in the form

E =
N∑

n=1

exp
{
−tnfm−1(xn) − 1

2
tnαmym(xn)

}

=
N∑

n=1

w(m)
n exp
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−1

2
tnαmym(xn)

}
(14.22)

where the coefficients w(m)
n = exp{−tnfm−1(xn)} can be viewed as constants

because we are optimizing only αm and ym(x). If we denote by Tm the set of
data points that are correctly classified by ym(x), and if we denote the remaining
misclassified points by Mm, then we can in turn rewrite the error function in the

exemples bien classifiés par ym(x)

exemples mal classifiés par ym(x)
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‣ on trouve le poids       de ym(x) en optimisant aussi E, mais cette 
fois par rapport à 
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form

E = e−αm/2
∑

n∈Tm

w(m)
n + eαm/2

∑

n∈Mm

w(m)
n

= (eαm/2 − e−αm/2)
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w(m)
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w(m)
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When we minimize this with respect to ym(x), we see that the second term is con-
stant, and so this is equivalent to minimizing (14.15) because the overall multiplica-
tive factor in front of the summation does not affect the location of the minimum.
Similarly, minimizing with respect to αm, we obtain (14.17) in which ϵm is defined
by (14.16).Exercise 14.6

From (14.22) we see that, having found αm and ym(x), the weights on the data
points are updated using

w(m+1)
n = w(m)

n exp
{
−1

2
tnαmym(xn)

}
. (14.24)

Making use of the fact that

tnym(xn) = 1 − 2I(ym(xn) ̸= tn) (14.25)

we see that the weights w(m)
n are updated at the next iteration using

w(m+1)
n = w(m)

n exp(−αm/2) exp {αmI(ym(xn) ̸= tn)} . (14.26)

Because the term exp(−αm/2) is independent of n, we see that it weights all data
points by the same factor and so can be discarded. Thus we obtain (14.18).

Finally, once all the base classifiers are trained, new data points are classified by
evaluating the sign of the combined function defined according to (14.21). Because
the factor of 1/2 does not affect the sign it can be omitted, giving (14.19).

14.3.2 Error functions for boosting
The exponential error function that is minimized by the AdaBoost algorithm

differs from those considered in previous chapters. To gain some insight into the
nature of the exponential error function, we first consider the expected error given
by

Ex,t [exp{−ty(x)}] =
∑

t

∫
exp{−ty(x)}p(t|x)p(x) dx. (14.27)

If we perform a variational minimization with respect to all possible functions y(x),
we obtainExercise 14.7

y(x) =
1
2

ln
{

p(t = 1|x)
p(t = −1|x)

}
(14.28)
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Figure 14.2 Illustration of boosting in which the base learners consist of simple thresholds applied to one or
other of the axes. Each figure shows the number m of base learners trained so far, along with the decision
boundary of the most recent base learner (dashed black line) and the combined decision boundary of the en-
semble (solid green line). Each data point is depicted by a circle whose radius indicates the weight assigned to
that data point when training the most recently added base learner. Thus, for instance, we see that points that
are misclassified by the m = 1 base learner are given greater weight when training the m = 2 base learner.

Instead of doing a global error function minimization, however, we shall sup-
pose that the base classifiers y1(x), . . . , ym−1(x) are fixed, as are their coefficients
α1, . . . , αm−1, and so we are minimizing only with respect to αm and ym(x). Sep-
arating off the contribution from base classifier ym(x), we can then write the error
function in the form

E =
N∑

n=1

exp
{
−tnfm−1(xn) − 1

2
tnαmym(xn)

}

=
N∑

n=1

w(m)
n exp

{
−1

2
tnαmym(xn)

}
(14.22)

where the coefficients w(m)
n = exp{−tnfm−1(xn)} can be viewed as constants

because we are optimizing only αm and ym(x). If we denote by Tm the set of
data points that are correctly classified by ym(x), and if we denote the remaining
misclassified points by Mm, then we can in turn rewrite the error function in the
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where the coefficients w(m)
n = exp{−tnfm−1(xn)} can be viewed as constants

because we are optimizing only αm and ym(x). If we denote by Tm the set of
data points that are correctly classified by ym(x), and if we denote the remaining
misclassified points by Mm, then we can in turn rewrite the error function in the

exemples bien classifiés par ym(x)

exemples mal classifiés par ym(x)
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Figure 14.1 Schematic illustration of the
boosting framework. Each
base classifier ym(x) is trained
on a weighted form of the train-
ing set (blue arrows) in which
the weights w(m)

n depend on
the performance of the pre-
vious base classifier ym−1(x)
(green arrows). Once all base
classifiers have been trained,
they are combined to give
the final classifier YM (x) (red
arrows).

{w(1)
n } {w(2)

n } {w(M)
n }

y1(x) y2(x) yM (x)

YM (x) = sign

(
M∑

m

αmym(x)

)

AdaBoost

1. Initialize the data weighting coefficients {wn} by setting w(1)
n = 1/N for

n = 1, . . . , N .

2. For m = 1, . . . , M :

(a) Fit a classifier ym(x) to the training data by minimizing the weighted
error function

Jm =
N∑

n=1

w(m)
n I(ym(xn) ̸= tn) (14.15)

where I(ym(xn) ̸= tn) is the indicator function and equals 1 when
ym(xn) ̸= tn and 0 otherwise.

(b) Evaluate the quantities

ϵm =

N∑

n=1

w(m)
n I(ym(xn) ̸= tn)

N∑

n=1

w(m)
n

(14.16)

and then use these to evaluate

αm = ln
{

1 − ϵm

ϵm

}
. (14.17)

(c) Update the data weighting coefficients

w(m+1)
n = w(m)

n exp {αmI(ym(xn) ̸= tn)} (14.18)
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‣ on trouve le poids       de ym(x) en optimisant aussi E, mais cette 
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form

E = e−αm/2
∑

n∈Tm

w(m)
n + eαm/2

∑

n∈Mm

w(m)
n

= (eαm/2 − e−αm/2)
N∑

n=1

w(m)
n I(ym(xn) ̸= tn) + e−αm/2

N∑

n=1

w(m)
n .

(14.23)

When we minimize this with respect to ym(x), we see that the second term is con-
stant, and so this is equivalent to minimizing (14.15) because the overall multiplica-
tive factor in front of the summation does not affect the location of the minimum.
Similarly, minimizing with respect to αm, we obtain (14.17) in which ϵm is defined
by (14.16).Exercise 14.6

From (14.22) we see that, having found αm and ym(x), the weights on the data
points are updated using

w(m+1)
n = w(m)

n exp
{
−1

2
tnαmym(xn)

}
. (14.24)

Making use of the fact that

tnym(xn) = 1 − 2I(ym(xn) ̸= tn) (14.25)

we see that the weights w(m)
n are updated at the next iteration using

w(m+1)
n = w(m)

n exp(−αm/2) exp {αmI(ym(xn) ̸= tn)} . (14.26)

Because the term exp(−αm/2) is independent of n, we see that it weights all data
points by the same factor and so can be discarded. Thus we obtain (14.18).

Finally, once all the base classifiers are trained, new data points are classified by
evaluating the sign of the combined function defined according to (14.21). Because
the factor of 1/2 does not affect the sign it can be omitted, giving (14.19).

14.3.2 Error functions for boosting
The exponential error function that is minimized by the AdaBoost algorithm

differs from those considered in previous chapters. To gain some insight into the
nature of the exponential error function, we first consider the expected error given
by

Ex,t [exp{−ty(x)}] =
∑

t

∫
exp{−ty(x)}p(t|x)p(x) dx. (14.27)

If we perform a variational minimization with respect to all possible functions y(x),
we obtainExercise 14.7

y(x) =
1
2

ln
{

p(t = 1|x)
p(t = −1|x)

}
(14.28)
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Figure 14.2 Illustration of boosting in which the base learners consist of simple thresholds applied to one or
other of the axes. Each figure shows the number m of base learners trained so far, along with the decision
boundary of the most recent base learner (dashed black line) and the combined decision boundary of the en-
semble (solid green line). Each data point is depicted by a circle whose radius indicates the weight assigned to
that data point when training the most recently added base learner. Thus, for instance, we see that points that
are misclassified by the m = 1 base learner are given greater weight when training the m = 2 base learner.

Instead of doing a global error function minimization, however, we shall sup-
pose that the base classifiers y1(x), . . . , ym−1(x) are fixed, as are their coefficients
α1, . . . , αm−1, and so we are minimizing only with respect to αm and ym(x). Sep-
arating off the contribution from base classifier ym(x), we can then write the error
function in the form

E =
N∑

n=1

exp
{
−tnfm−1(xn) − 1

2
tnαmym(xn)

}

=
N∑

n=1

w(m)
n exp
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2
tnαmym(xn)

}
(14.22)

where the coefficients w(m)
n = exp{−tnfm−1(xn)} can be viewed as constants

because we are optimizing only αm and ym(x). If we denote by Tm the set of
data points that are correctly classified by ym(x), and if we denote the remaining
misclassified points by Mm, then we can in turn rewrite the error function in the
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where the coefficients w(m)
n = exp{−tnfm−1(xn)} can be viewed as constants

because we are optimizing only αm and ym(x). If we denote by Tm the set of
data points that are correctly classified by ym(x), and if we denote the remaining
misclassified points by Mm, then we can in turn rewrite the error function in the
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n = 1/N for

n = 1, . . . , N .

2. For m = 1, . . . , M :

(a) Fit a classifier ym(x) to the training data by minimizing the weighted
error function

Jm =
N∑

n=1

w(m)
n I(ym(xn) ̸= tn) (14.15)

where I(ym(xn) ̸= tn) is the indicator function and equals 1 when
ym(xn) ̸= tn and 0 otherwise.

(b) Evaluate the quantities

ϵm =

N∑

n=1

w(m)
n I(ym(xn) ̸= tn)

N∑

n=1

w(m)
n

(14.16)

and then use these to evaluate

αm = ln
{

1 − ϵm

ϵm

}
. (14.17)

(c) Update the data weighting coefficients

w(m+1)
n = w(m)

n exp {αmI(ym(xn) ̸= tn)} (14.18)
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form

E = e−αm/2
∑

n∈Tm

w(m)
n + eαm/2

∑

n∈Mm

w(m)
n

= (eαm/2 − e−αm/2)
N∑

n=1

w(m)
n I(ym(xn) ̸= tn) + e−αm/2

N∑

n=1

w(m)
n .

(14.23)

When we minimize this with respect to ym(x), we see that the second term is con-
stant, and so this is equivalent to minimizing (14.15) because the overall multiplica-
tive factor in front of the summation does not affect the location of the minimum.
Similarly, minimizing with respect to αm, we obtain (14.17) in which ϵm is defined
by (14.16).Exercise 14.6

From (14.22) we see that, having found αm and ym(x), the weights on the data
points are updated using

w(m+1)
n = w(m)

n exp
{
−1

2
tnαmym(xn)

}
. (14.24)

Making use of the fact that

tnym(xn) = 1 − 2I(ym(xn) ̸= tn) (14.25)

we see that the weights w(m)
n are updated at the next iteration using

w(m+1)
n = w(m)

n exp(−αm/2) exp {αmI(ym(xn) ̸= tn)} . (14.26)

Because the term exp(−αm/2) is independent of n, we see that it weights all data
points by the same factor and so can be discarded. Thus we obtain (14.18).

Finally, once all the base classifiers are trained, new data points are classified by
evaluating the sign of the combined function defined according to (14.21). Because
the factor of 1/2 does not affect the sign it can be omitted, giving (14.19).

14.3.2 Error functions for boosting
The exponential error function that is minimized by the AdaBoost algorithm

differs from those considered in previous chapters. To gain some insight into the
nature of the exponential error function, we first consider the expected error given
by

Ex,t [exp{−ty(x)}] =
∑

t

∫
exp{−ty(x)}p(t|x)p(x) dx. (14.27)

If we perform a variational minimization with respect to all possible functions y(x),
we obtainExercise 14.7

y(x) =
1
2

ln
{

p(t = 1|x)
p(t = −1|x)

}
(14.28)
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Figure 14.2 Illustration of boosting in which the base learners consist of simple thresholds applied to one or
other of the axes. Each figure shows the number m of base learners trained so far, along with the decision
boundary of the most recent base learner (dashed black line) and the combined decision boundary of the en-
semble (solid green line). Each data point is depicted by a circle whose radius indicates the weight assigned to
that data point when training the most recently added base learner. Thus, for instance, we see that points that
are misclassified by the m = 1 base learner are given greater weight when training the m = 2 base learner.

Instead of doing a global error function minimization, however, we shall sup-
pose that the base classifiers y1(x), . . . , ym−1(x) are fixed, as are their coefficients
α1, . . . , αm−1, and so we are minimizing only with respect to αm and ym(x). Sep-
arating off the contribution from base classifier ym(x), we can then write the error
function in the form

E =
N∑

n=1

exp
{
−tnfm−1(xn) − 1

2
tnαmym(xn)

}

=
N∑

n=1
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(14.22)

where the coefficients w(m)
n = exp{−tnfm−1(xn)} can be viewed as constants

because we are optimizing only αm and ym(x). If we denote by Tm the set of
data points that are correctly classified by ym(x), and if we denote the remaining
misclassified points by Mm, then we can in turn rewrite the error function in the
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Instead of doing a global error function minimization, however, we shall sup-
pose that the base classifiers y1(x), . . . , ym−1(x) are fixed, as are their coefficients
α1, . . . , αm−1, and so we are minimizing only with respect to αm and ym(x). Sep-
arating off the contribution from base classifier ym(x), we can then write the error
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where the coefficients w(m)
n = exp{−tnfm−1(xn)} can be viewed as constants

because we are optimizing only αm and ym(x). If we denote by Tm the set of
data points that are correctly classified by ym(x), and if we denote the remaining
misclassified points by Mm, then we can in turn rewrite the error function in the
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(a) Fit a classifier ym(x) to the training data by minimizing the weighted
error function

Jm =
N∑
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w(m)
n I(ym(xn) ̸= tn) (14.15)

where I(ym(xn) ̸= tn) is the indicator function and equals 1 when
ym(xn) ̸= tn and 0 otherwise.

(b) Evaluate the quantities

ϵm =
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(14.16)

and then use these to evaluate

αm = ln
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}
. (14.17)

(c) Update the data weighting coefficients

w(m+1)
n = w(m)

n exp {αmI(ym(xn) ̸= tn)} (14.18)
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‣ étant donné que                                                 , alors 

où on peut ignorer                    puisqu’il ne dépend pas de n
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form

E = e−αm/2
∑

n∈Tm

w(m)
n + eαm/2

∑

n∈Mm

w(m)
n

= (eαm/2 − e−αm/2)
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n=1

w(m)
n I(ym(xn) ̸= tn) + e−αm/2

N∑

n=1

w(m)
n .

(14.23)

When we minimize this with respect to ym(x), we see that the second term is con-
stant, and so this is equivalent to minimizing (14.15) because the overall multiplica-
tive factor in front of the summation does not affect the location of the minimum.
Similarly, minimizing with respect to αm, we obtain (14.17) in which ϵm is defined
by (14.16).Exercise 14.6

From (14.22) we see that, having found αm and ym(x), the weights on the data
points are updated using

w(m+1)
n = w(m)

n exp
{
−1

2
tnαmym(xn)

}
. (14.24)

Making use of the fact that

tnym(xn) = 1 − 2I(ym(xn) ̸= tn) (14.25)

we see that the weights w(m)
n are updated at the next iteration using

w(m+1)
n = w(m)

n exp(−αm/2) exp {αmI(ym(xn) ̸= tn)} . (14.26)

Because the term exp(−αm/2) is independent of n, we see that it weights all data
points by the same factor and so can be discarded. Thus we obtain (14.18).

Finally, once all the base classifiers are trained, new data points are classified by
evaluating the sign of the combined function defined according to (14.21). Because
the factor of 1/2 does not affect the sign it can be omitted, giving (14.19).

14.3.2 Error functions for boosting
The exponential error function that is minimized by the AdaBoost algorithm

differs from those considered in previous chapters. To gain some insight into the
nature of the exponential error function, we first consider the expected error given
by

Ex,t [exp{−ty(x)}] =
∑

t

∫
exp{−ty(x)}p(t|x)p(x) dx. (14.27)

If we perform a variational minimization with respect to all possible functions y(x),
we obtainExercise 14.7

y(x) =
1
2

ln
{

p(t = 1|x)
p(t = −1|x)

}
(14.28)
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When we minimize this with respect to ym(x), we see that the second term is con-
stant, and so this is equivalent to minimizing (14.15) because the overall multiplica-
tive factor in front of the summation does not affect the location of the minimum.
Similarly, minimizing with respect to αm, we obtain (14.17) in which ϵm is defined
by (14.16).Exercise 14.6
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Because the term exp(−αm/2) is independent of n, we see that it weights all data
points by the same factor and so can be discarded. Thus we obtain (14.18).

Finally, once all the base classifiers are trained, new data points are classified by
evaluating the sign of the combined function defined according to (14.21). Because
the factor of 1/2 does not affect the sign it can be omitted, giving (14.19).

14.3.2 Error functions for boosting
The exponential error function that is minimized by the AdaBoost algorithm

differs from those considered in previous chapters. To gain some insight into the
nature of the exponential error function, we first consider the expected error given
by

Ex,t [exp{−ty(x)}] =
∑

t

∫
exp{−ty(x)}p(t|x)p(x) dx. (14.27)

If we perform a variational minimization with respect to all possible functions y(x),
we obtainExercise 14.7

y(x) =
1
2

ln
{

p(t = 1|x)
p(t = −1|x)

}
(14.28)

14.3. Boosting 661

form

E = e−αm/2
∑

n∈Tm

w(m)
n + eαm/2

∑

n∈Mm

w(m)
n

= (eαm/2 − e−αm/2)
N∑

n=1

w(m)
n I(ym(xn) ̸= tn) + e−αm/2

N∑

n=1

w(m)
n .

(14.23)

When we minimize this with respect to ym(x), we see that the second term is con-
stant, and so this is equivalent to minimizing (14.15) because the overall multiplica-
tive factor in front of the summation does not affect the location of the minimum.
Similarly, minimizing with respect to αm, we obtain (14.17) in which ϵm is defined
by (14.16).Exercise 14.6

From (14.22) we see that, having found αm and ym(x), the weights on the data
points are updated using
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Making use of the fact that

tnym(xn) = 1 − 2I(ym(xn) ̸= tn) (14.25)

we see that the weights w(m)
n are updated at the next iteration using

w(m+1)
n = w(m)

n exp(−αm/2) exp {αmI(ym(xn) ̸= tn)} . (14.26)

Because the term exp(−αm/2) is independent of n, we see that it weights all data
points by the same factor and so can be discarded. Thus we obtain (14.18).

Finally, once all the base classifiers are trained, new data points are classified by
evaluating the sign of the combined function defined according to (14.21). Because
the factor of 1/2 does not affect the sign it can be omitted, giving (14.19).

14.3.2 Error functions for boosting
The exponential error function that is minimized by the AdaBoost algorithm

differs from those considered in previous chapters. To gain some insight into the
nature of the exponential error function, we first consider the expected error given
by

Ex,t [exp{−ty(x)}] =
∑

t

∫
exp{−ty(x)}p(t|x)p(x) dx. (14.27)

If we perform a variational minimization with respect to all possible functions y(x),
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When we minimize this with respect to ym(x), we see that the second term is con-
stant, and so this is equivalent to minimizing (14.15) because the overall multiplica-
tive factor in front of the summation does not affect the location of the minimum.
Similarly, minimizing with respect to αm, we obtain (14.17) in which ϵm is defined
by (14.16).Exercise 14.6

From (14.22) we see that, having found αm and ym(x), the weights on the data
points are updated using

w(m+1)
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Making use of the fact that

tnym(xn) = 1 − 2I(ym(xn) ̸= tn) (14.25)

we see that the weights w(m)
n are updated at the next iteration using

w(m+1)
n = w(m)

n exp(−αm/2) exp {αmI(ym(xn) ̸= tn)} . (14.26)

Because the term exp(−αm/2) is independent of n, we see that it weights all data
points by the same factor and so can be discarded. Thus we obtain (14.18).

Finally, once all the base classifiers are trained, new data points are classified by
evaluating the sign of the combined function defined according to (14.21). Because
the factor of 1/2 does not affect the sign it can be omitted, giving (14.19).

14.3.2 Error functions for boosting
The exponential error function that is minimized by the AdaBoost algorithm

differs from those considered in previous chapters. To gain some insight into the
nature of the exponential error function, we first consider the expected error given
by

Ex,t [exp{−ty(x)}] =
∑

t

∫
exp{−ty(x)}p(t|x)p(x) dx. (14.27)

If we perform a variational minimization with respect to all possible functions y(x),
we obtainExercise 14.7
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1
2

ln
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HUGO LAROCHELLE

ADABOOST

• AdaBoost optimise ces pertes séquentiellement

‣ à la prochaine itération, le poids de chaque exemple devra être

‣ étant donné que                                                 , alors 

où on peut ignorer                    puisqu’il ne dépend pas de n
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When we minimize this with respect to ym(x), we see that the second term is con-
stant, and so this is equivalent to minimizing (14.15) because the overall multiplica-
tive factor in front of the summation does not affect the location of the minimum.
Similarly, minimizing with respect to αm, we obtain (14.17) in which ϵm is defined
by (14.16).Exercise 14.6

From (14.22) we see that, having found αm and ym(x), the weights on the data
points are updated using
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Making use of the fact that

tnym(xn) = 1 − 2I(ym(xn) ̸= tn) (14.25)

we see that the weights w(m)
n are updated at the next iteration using

w(m+1)
n = w(m)

n exp(−αm/2) exp {αmI(ym(xn) ̸= tn)} . (14.26)

Because the term exp(−αm/2) is independent of n, we see that it weights all data
points by the same factor and so can be discarded. Thus we obtain (14.18).

Finally, once all the base classifiers are trained, new data points are classified by
evaluating the sign of the combined function defined according to (14.21). Because
the factor of 1/2 does not affect the sign it can be omitted, giving (14.19).

14.3.2 Error functions for boosting
The exponential error function that is minimized by the AdaBoost algorithm

differs from those considered in previous chapters. To gain some insight into the
nature of the exponential error function, we first consider the expected error given
by

Ex,t [exp{−ty(x)}] =
∑

t

∫
exp{−ty(x)}p(t|x)p(x) dx. (14.27)

If we perform a variational minimization with respect to all possible functions y(x),
we obtainExercise 14.7
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When we minimize this with respect to ym(x), we see that the second term is con-
stant, and so this is equivalent to minimizing (14.15) because the overall multiplica-
tive factor in front of the summation does not affect the location of the minimum.
Similarly, minimizing with respect to αm, we obtain (14.17) in which ϵm is defined
by (14.16).Exercise 14.6

From (14.22) we see that, having found αm and ym(x), the weights on the data
points are updated using

w(m+1)
n = w(m)

n exp
{
−1

2
tnαmym(xn)

}
. (14.24)

Making use of the fact that

tnym(xn) = 1 − 2I(ym(xn) ̸= tn) (14.25)

we see that the weights w(m)
n are updated at the next iteration using
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n = w(m)

n exp(−αm/2) exp {αmI(ym(xn) ̸= tn)} . (14.26)

Because the term exp(−αm/2) is independent of n, we see that it weights all data
points by the same factor and so can be discarded. Thus we obtain (14.18).

Finally, once all the base classifiers are trained, new data points are classified by
evaluating the sign of the combined function defined according to (14.21). Because
the factor of 1/2 does not affect the sign it can be omitted, giving (14.19).

14.3.2 Error functions for boosting
The exponential error function that is minimized by the AdaBoost algorithm

differs from those considered in previous chapters. To gain some insight into the
nature of the exponential error function, we first consider the expected error given
by

Ex,t [exp{−ty(x)}] =
∑

t

∫
exp{−ty(x)}p(t|x)p(x) dx. (14.27)

If we perform a variational minimization with respect to all possible functions y(x),
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When we minimize this with respect to ym(x), we see that the second term is con-
stant, and so this is equivalent to minimizing (14.15) because the overall multiplica-
tive factor in front of the summation does not affect the location of the minimum.
Similarly, minimizing with respect to αm, we obtain (14.17) in which ϵm is defined
by (14.16).Exercise 14.6
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Because the term exp(−αm/2) is independent of n, we see that it weights all data
points by the same factor and so can be discarded. Thus we obtain (14.18).

Finally, once all the base classifiers are trained, new data points are classified by
evaluating the sign of the combined function defined according to (14.21). Because
the factor of 1/2 does not affect the sign it can be omitted, giving (14.19).
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by
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When we minimize this with respect to ym(x), we see that the second term is con-
stant, and so this is equivalent to minimizing (14.15) because the overall multiplica-
tive factor in front of the summation does not affect the location of the minimum.
Similarly, minimizing with respect to αm, we obtain (14.17) in which ϵm is defined
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n exp(−αm/2) exp {αmI(ym(xn) ̸= tn)} . (14.26)

Because the term exp(−αm/2) is independent of n, we see that it weights all data
points by the same factor and so can be discarded. Thus we obtain (14.18).

Finally, once all the base classifiers are trained, new data points are classified by
evaluating the sign of the combined function defined according to (14.21). Because
the factor of 1/2 does not affect the sign it can be omitted, giving (14.19).

14.3.2 Error functions for boosting
The exponential error function that is minimized by the AdaBoost algorithm

differs from those considered in previous chapters. To gain some insight into the
nature of the exponential error function, we first consider the expected error given
by
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• Ainsi, on peut généraliser AdaBoost à d’autres problèmes 
que la classification binaire en

1. utilisant une perte adaptée à notre problème, autre que la perte 
exponentielle (p. ex. la différence au carré en régression)

2. suivant les mêmes étapes de dérivation d’Adaboost pour trouver 
comment entraîner chaque ym(xn) à partir de fm-1(xn) et comment 
obtenir
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Figure 14.1 Schematic illustration of the
boosting framework. Each
base classifier ym(x) is trained
on a weighted form of the train-
ing set (blue arrows) in which
the weights w(m)

n depend on
the performance of the pre-
vious base classifier ym−1(x)
(green arrows). Once all base
classifiers have been trained,
they are combined to give
the final classifier YM (x) (red
arrows).

{w(1)
n } {w(2)

n } {w(M)
n }

y1(x) y2(x) yM (x)

YM (x) = sign

(
M∑

m

αmym(x)

)

AdaBoost

1. Initialize the data weighting coefficients {wn} by setting w(1)
n = 1/N for

n = 1, . . . , N .

2. For m = 1, . . . , M :

(a) Fit a classifier ym(x) to the training data by minimizing the weighted
error function

Jm =
N∑

n=1

w(m)
n I(ym(xn) ̸= tn) (14.15)

where I(ym(xn) ̸= tn) is the indicator function and equals 1 when
ym(xn) ̸= tn and 0 otherwise.

(b) Evaluate the quantities

ϵm =

N∑

n=1

w(m)
n I(ym(xn) ̸= tn)

N∑

n=1

w(m)
n

(14.16)

and then use these to evaluate

αm = ln
{

1 − ϵm

ϵm

}
. (14.17)

(c) Update the data weighting coefficients

w(m+1)
n = w(m)

n exp {αmI(ym(xn) ̸= tn)} (14.18)



Apprentissage automatique
Combinaison de modèles - résumé



Sujets: 

HUGO LAROCHELLE

ENSEMBLE

• Modèle

‣ régression : la cible est mieux prédite par une moyenne de plusieurs 
modèles

‣ classification : la cible est mieux prédite par le vote majoritaire de 
plusieurs modèles

• Entraînement :  

‣  exécute M algorithmes d’apprentissage différents

• Prédiction :  
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résumé de la création d’ensemble

656 14. COMBINING MODELS

that when we trained multiple polynomials using the sinusoidal data, and then aver-
aged the resulting functions, the contribution arising from the variance term tended to
cancel, leading to improved predictions. When we averaged a set of low-bias mod-
els (corresponding to higher order polynomials), we obtained accurate predictions
for the underlying sinusoidal function from which the data were generated.

In practice, of course, we have only a single data set, and so we have to find
a way to introduce variability between the different models within the committee.
One approach is to use bootstrap data sets, discussed in Section 1.2.3. Consider a
regression problem in which we are trying to predict the value of a single continuous
variable, and suppose we generate M bootstrap data sets and then use each to train
a separate copy ym(x) of a predictive model where m = 1, . . . , M . The committee
prediction is given by

yCOM(x) =
1
M

M∑

m=1

ym(x). (14.7)

This procedure is known as bootstrap aggregation or bagging (Breiman, 1996).
Suppose the true regression function that we are trying to predict is given by

h(x), so that the output of each of the models can be written as the true value plus
an error in the form

ym(x) = h(x) + ϵm(x). (14.8)

The average sum-of-squares error then takes the form

Ex

[
{ym(x) − h(x)}2] = Ex

[
ϵm(x)2

]
(14.9)

where Ex[·] denotes a frequentist expectation with respect to the distribution of the
input vector x. The average error made by the models acting individually is therefore

EAV =
1
M

M∑

m=1

Ex

[
ϵm(x)2

]
. (14.10)

Similarly, the expected error from the committee (14.7) is given by

ECOM = Ex

⎡

⎣
{

1
M

M∑

m=1

ym(x) − h(x)

}2
⎤

⎦

= Ex

⎡

⎣
{

1
M

M∑

m=1

ϵm(x)

}2
⎤

⎦ (14.11)

If we assume that the errors have zero mean and are uncorrelated, so that

Ex [ϵm(x)] = 0 (14.12)
Ex [ϵm(x)ϵl(x)] = 0, m ̸= l (14.13)

(régression)



Sujets: 
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BAGGING

• Modèle : 

‣ on suppose qu’on a le bon modèle (algorithme d’apprentissage) mais 
pas assez de données pour bien l’entraîner sans sur-apprentissage 
(trop de variance)

• Entraînement :  réduction de variance

‣ génère M ensembles de données bootstrap et entraîne un modèle 
sur chacun, avec le même algorithme d’apprentissage

• Prédiction :  
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résumé du bagging
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that when we trained multiple polynomials using the sinusoidal data, and then aver-
aged the resulting functions, the contribution arising from the variance term tended to
cancel, leading to improved predictions. When we averaged a set of low-bias mod-
els (corresponding to higher order polynomials), we obtained accurate predictions
for the underlying sinusoidal function from which the data were generated.

In practice, of course, we have only a single data set, and so we have to find
a way to introduce variability between the different models within the committee.
One approach is to use bootstrap data sets, discussed in Section 1.2.3. Consider a
regression problem in which we are trying to predict the value of a single continuous
variable, and suppose we generate M bootstrap data sets and then use each to train
a separate copy ym(x) of a predictive model where m = 1, . . . , M . The committee
prediction is given by

yCOM(x) =
1
M

M∑

m=1

ym(x). (14.7)

This procedure is known as bootstrap aggregation or bagging (Breiman, 1996).
Suppose the true regression function that we are trying to predict is given by

h(x), so that the output of each of the models can be written as the true value plus
an error in the form

ym(x) = h(x) + ϵm(x). (14.8)

The average sum-of-squares error then takes the form
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where Ex[·] denotes a frequentist expectation with respect to the distribution of the
input vector x. The average error made by the models acting individually is therefore
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Similarly, the expected error from the committee (14.7) is given by

ECOM = Ex

⎡
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If we assume that the errors have zero mean and are uncorrelated, so that

Ex [ϵm(x)] = 0 (14.12)
Ex [ϵm(x)ϵl(x)] = 0, m ̸= l (14.13)

(régression)
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• Modèle : 

‣ un seul modèle est trop faible et il vaut mieux en entraîner 
plusieurs, de façon synchronisée et où chaque modèle a un poids 
différent

• Entraînement :  minimise une perte exponentielle

‣ on entraîne M modèles en séquence, où chaque modèle se 
concentre sur les exemples mal classifiés par les modèles 
précédents

• Prédiction : 

43

résumé de AdaBoost

14.3. Boosting 659

3. Make predictions using the final model, which is given by

YM (x) = sign

(
M∑

m=1

αmym(x)

)
. (14.19)

We see that the first base classifier y1(x) is trained using weighting coeffi-
cients w(1)

n that are all equal, which therefore corresponds to the usual procedure
for training a single classifier. From (14.18), we see that in subsequent iterations
the weighting coefficients w(m)

n are increased for data points that are misclassified
and decreased for data points that are correctly classified. Successive classifiers are
therefore forced to place greater emphasis on points that have been misclassified by
previous classifiers, and data points that continue to be misclassified by successive
classifiers receive ever greater weight. The quantities ϵm represent weighted mea-
sures of the error rates of each of the base classifiers on the data set. We therefore
see that the weighting coefficients αm defined by (14.17) give greater weight to the
more accurate classifiers when computing the overall output given by (14.19).

The AdaBoost algorithm is illustrated in Figure 14.2, using a subset of 30 data
points taken from the toy classification data set shown in Figure A.7. Here each base
learners consists of a threshold on one of the input variables. This simple classifier
corresponds to a form of decision tree known as a ‘decision stumps’, i.e., a deci-Section 14.4
sion tree with a single node. Thus each base learner classifies an input according to
whether one of the input features exceeds some threshold and therefore simply parti-
tions the space into two regions separated by a linear decision surface that is parallel
to one of the axes.

14.3.1 Minimizing exponential error
Boosting was originally motivated using statistical learning theory, leading to

upper bounds on the generalization error. However, these bounds turn out to be too
loose to have practical value, and the actual performance of boosting is much better
than the bounds alone would suggest. Friedman et al. (2000) gave a different and
very simple interpretation of boosting in terms of the sequential minimization of an
exponential error function.

Consider the exponential error function defined by

E =
N∑

n=1

exp {−tnfm(xn)} (14.20)

where fm(x) is a classifier defined in terms of a linear combination of base classifiers
yl(x) of the form

fm(x) =
1
2

m∑

l=1

αlyl(x) (14.21)

and tn ∈ {−1, 1} are the training set target values. Our goal is to minimize E with
respect to both the weighting coefficients αl and the parameters of the base classifiers
yl(x).



Sujets: 

HUGO LAROCHELLE

COMBINAISON DE MODÈLES

• Il existe plusieurs autres types de combinaisons

‣ arbre de décision (voir section 14.4)

- on utilise un seul modèle à la fois pour prédire la cible à partir de x

- le choix du modèle change en fonction de x et est déterminé par une série de 
questions structurées en arbre

‣ mélange d’experts (voir section 14.5.3)

- on utilise une moyenne pondérée de modèles (appelés «experts»)

- le poids de chaque expert varie en fonction de x
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arbre de décisions


