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TYPES D’APPRENTISSAGE

• L’apprentissage supervisé est lorsqu’on a une cible à 
prédire

‣ classification : la cible est un indice de classe t ∈{1, ... , K}
- exemple : reconnaissance de caractères

✓ x : vecteur des intensités de tous les pixels de l’image

✓ t : identité du caractère

‣ régression : la cible est un nombre réel t ∈ ℝ
- exemple : prédiction de la valeur d’une action à la bourse

✓ x : vecteur contenant l’information sur l’activité économique de la journée

✓ t : valeur d’une action à la bourse le lendemain
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EXEMPLE: RÉGRESSION

• Comme trouver w ? (problème d’apprentissage)

‣ on cherche le w★ qui minimise la somme de 
notre perte / erreur / coût sur l’ensemble d’entraînement

‣ le «    » n’est pas important (mais simplifiera certains calculs)

• Un algorithme d’apprentissage résoudrait ce problème

‣ à partir des données, il va retourner w★

3

minimisation de perte (coût, erreur)

4 1. INTRODUCTION

Figure 1.2 Plot of a training data set of N =
10 points, shown as blue circles,
each comprising an observation
of the input variable x along with
the corresponding target variable
t. The green curve shows the
function sin(2πx) used to gener-
ate the data. Our goal is to pre-
dict the value of t for some new
value of x, without knowledge of
the green curve.
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detailed treatment lies beyond the scope of this book.
Although each of these tasks needs its own tools and techniques, many of the

key ideas that underpin them are common to all such problems. One of the main
goals of this chapter is to introduce, in a relatively informal way, several of the most
important of these concepts and to illustrate them using simple examples. Later in
the book we shall see these same ideas re-emerge in the context of more sophisti-
cated models that are applicable to real-world pattern recognition applications. This
chapter also provides a self-contained introduction to three important tools that will
be used throughout the book, namely probability theory, decision theory, and infor-
mation theory. Although these might sound like daunting topics, they are in fact
straightforward, and a clear understanding of them is essential if machine learning
techniques are to be used to best effect in practical applications.

1.1. Example: Polynomial Curve Fitting

We begin by introducing a simple regression problem, which we shall use as a run-
ning example throughout this chapter to motivate a number of key concepts. Sup-
pose we observe a real-valued input variable x and we wish to use this observation to
predict the value of a real-valued target variable t. For the present purposes, it is in-
structive to consider an artificial example using synthetically generated data because
we then know the precise process that generated the data for comparison against any
learned model. The data for this example is generated from the function sin(2πx)
with random noise included in the target values, as described in detail in Appendix A.

Now suppose that we are given a training set comprising N observations of x,
written x ≡ (x1, . . . , xN )T, together with corresponding observations of the values
of t, denoted t ≡ (t1, . . . , tN )T. Figure 1.2 shows a plot of a training set comprising
N = 10 data points. The input data set x in Figure 1.2 was generated by choos-
ing values of xn, for n = 1, . . . , N , spaced uniformly in range [0, 1], and the target
data set t was obtained by first computing the corresponding values of the function

1.1. Example: Polynomial Curve Fitting 5

sin(2πx) and then adding a small level of random noise having a Gaussian distri-
bution (the Gaussian distribution is discussed in Section 1.2.4) to each such point in
order to obtain the corresponding value tn. By generating data in this way, we are
capturing a property of many real data sets, namely that they possess an underlying
regularity, which we wish to learn, but that individual observations are corrupted by
random noise. This noise might arise from intrinsically stochastic (i.e. random) pro-
cesses such as radioactive decay but more typically is due to there being sources of
variability that are themselves unobserved.

Our goal is to exploit this training set in order to make predictions of the value
t̂ of the target variable for some new value x̂ of the input variable. As we shall see
later, this involves implicitly trying to discover the underlying function sin(2πx).
This is intrinsically a difficult problem as we have to generalize from a finite data
set. Furthermore the observed data are corrupted with noise, and so for a given x̂
there is uncertainty as to the appropriate value for t̂. Probability theory, discussed
in Section 1.2, provides a framework for expressing such uncertainty in a precise
and quantitative manner, and decision theory, discussed in Section 1.5, allows us to
exploit this probabilistic representation in order to make predictions that are optimal
according to appropriate criteria.

For the moment, however, we shall proceed rather informally and consider a
simple approach based on curve fitting. In particular, we shall fit the data using a
polynomial function of the form

y(x,w) = w0 + w1x + w2x
2 + . . . + wMxM =

M∑

j=0

wjx
j (1.1)

where M is the order of the polynomial, and xj denotes x raised to the power of j.
The polynomial coefficients w0, . . . , wM are collectively denoted by the vector w.
Note that, although the polynomial function y(x,w) is a nonlinear function of x, it
is a linear function of the coefficients w. Functions, such as the polynomial, which
are linear in the unknown parameters have important properties and are called linear
models and will be discussed extensively in Chapters 3 and 4.

The values of the coefficients will be determined by fitting the polynomial to the
training data. This can be done by minimizing an error function that measures the
misfit between the function y(x,w), for any given value of w, and the training set
data points. One simple choice of error function, which is widely used, is given by
the sum of the squares of the errors between the predictions y(xn,w) for each data
point xn and the corresponding target values tn, so that we minimize

E(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 (1.2)

where the factor of 1/2 is included for later convenience. We shall discuss the mo-
tivation for this choice of error function later in this chapter. For the moment we
simply note that it is a nonnegative quantity that would be zero if, and only if, the
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set. Furthermore the observed data are corrupted with noise, and so for a given x̂
there is uncertainty as to the appropriate value for t̂. Probability theory, discussed
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exploit this probabilistic representation in order to make predictions that are optimal
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• Régularisation : on réduit la capacité autrement
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‣ où 
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Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter λ corresponding to ln λ = −18 and ln λ = 0. The
case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

Ẽ(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 +
λ

2
∥w∥2 (1.4)

where ∥w∥2 ≡ wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient λ governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing
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Again we can first determine the parameter vector wML governing the mean and sub-
sequently use this to find the precision βML as was the case for the simple Gaussian
distribution.Section 1.2.4

Having determined the parameters w and β, we can now make predictions for
new values of x. Because we now have a probabilistic model, these are expressed
in terms of the predictive distribution that gives the probability distribution over t,
rather than simply a point estimate, and is obtained by substituting the maximum
likelihood parameters into (1.60) to give

p(t|x,wML, βML) = N
(
t|y(x,wML), β−1

ML

)
. (1.64)

Now let us take a step towards a more Bayesian approach and introduce a prior
distribution over the polynomial coefficients w. For simplicity, let us consider a
Gaussian distribution of the form

p(w|α) = N (w|0, α−1I) =
( α

2π

)(M+1)/2

exp
{
−α

2
wTw

}
(1.65)

where α is the precision of the distribution, and M+1 is the total number of elements
in the vector w for an M th order polynomial. Variables such as α, which control
the distribution of model parameters, are called hyperparameters. Using Bayes’
theorem, the posterior distribution for w is proportional to the product of the prior
distribution and the likelihood function

p(w|x, t, α, β) ∝ p(t|x,w, β)p(w|α). (1.66)

We can now determine w by finding the most probable value of w given the data,
in other words by maximizing the posterior distribution. This technique is called
maximum posterior, or simply MAP. Taking the negative logarithm of (1.66) and
combining with (1.62) and (1.65), we find that the maximum of the posterior is
given by the minimum of

β

2

N∑

n=1

{y(xn,w) − tn}2 +
α

2
wTw. (1.67)

Thus we see that maximizing the posterior distribution is equivalent to minimizing
the regularized sum-of-squares error function encountered earlier in the form (1.4),
with a regularization parameter given by λ = α/β.

1.2.6 Bayesian curve fitting
Although we have included a prior distribution p(w|α), we are so far still mak-

ing a point estimate of w and so this does not yet amount to a Bayesian treatment. In
a fully Bayesian approach, we should consistently apply the sum and product rules
of probability, which requires, as we shall see shortly, that we integrate over all val-
ues of w. Such marginalizations lie at the heart of Bayesian methods for pattern
recognition.

30 1. INTRODUCTION

Again we can first determine the parameter vector wML governing the mean and sub-
sequently use this to find the precision βML as was the case for the simple Gaussian
distribution.Section 1.2.4

Having determined the parameters w and β, we can now make predictions for
new values of x. Because we now have a probabilistic model, these are expressed
in terms of the predictive distribution that gives the probability distribution over t,
rather than simply a point estimate, and is obtained by substituting the maximum
likelihood parameters into (1.60) to give

p(t|x,wML, βML) = N
(
t|y(x,wML), β−1

ML

)
. (1.64)

Now let us take a step towards a more Bayesian approach and introduce a prior
distribution over the polynomial coefficients w. For simplicity, let us consider a
Gaussian distribution of the form

p(w|α) = N (w|0, α−1I) =
( α

2π

)(M+1)/2

exp
{
−α

2
wTw

}
(1.65)

where α is the precision of the distribution, and M+1 is the total number of elements
in the vector w for an M th order polynomial. Variables such as α, which control
the distribution of model parameters, are called hyperparameters. Using Bayes’
theorem, the posterior distribution for w is proportional to the product of the prior
distribution and the likelihood function

p(w|x, t, α, β) ∝ p(t|x,w, β)p(w|α). (1.66)

We can now determine w by finding the most probable value of w given the data,
in other words by maximizing the posterior distribution. This technique is called
maximum posterior, or simply MAP. Taking the negative logarithm of (1.66) and
combining with (1.62) and (1.65), we find that the maximum of the posterior is
given by the minimum of

β

2

N∑

n=1

{y(xn,w) − tn}2 +
α

2
wTw. (1.67)

Thus we see that maximizing the posterior distribution is equivalent to minimizing
the regularized sum-of-squares error function encountered earlier in the form (1.4),
with a regularization parameter given by λ = α/β.

1.2.6 Bayesian curve fitting
Although we have included a prior distribution p(w|α), we are so far still mak-

ing a point estimate of w and so this does not yet amount to a Bayesian treatment. In
a fully Bayesian approach, we should consistently apply the sum and product rules
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Again we can first determine the parameter vector wML governing the mean and sub-
sequently use this to find the precision βML as was the case for the simple Gaussian
distribution.Section 1.2.4

Having determined the parameters w and β, we can now make predictions for
new values of x. Because we now have a probabilistic model, these are expressed
in terms of the predictive distribution that gives the probability distribution over t,
rather than simply a point estimate, and is obtained by substituting the maximum
likelihood parameters into (1.60) to give

p(t|x,wML, βML) = N
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Now let us take a step towards a more Bayesian approach and introduce a prior
distribution over the polynomial coefficients w. For simplicity, let us consider a
Gaussian distribution of the form
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where α is the precision of the distribution, and M+1 is the total number of elements
in the vector w for an M th order polynomial. Variables such as α, which control
the distribution of model parameters, are called hyperparameters. Using Bayes’
theorem, the posterior distribution for w is proportional to the product of the prior
distribution and the likelihood function

p(w|x, t, α, β) ∝ p(t|x,w, β)p(w|α). (1.66)

We can now determine w by finding the most probable value of w given the data,
in other words by maximizing the posterior distribution. This technique is called
maximum posterior, or simply MAP. Taking the negative logarithm of (1.66) and
combining with (1.62) and (1.65), we find that the maximum of the posterior is
given by the minimum of

β

2

N∑

n=1

{y(xn,w) − tn}2 +
α

2
wTw. (1.67)

Thus we see that maximizing the posterior distribution is equivalent to minimizing
the regularized sum-of-squares error function encountered earlier in the form (1.4),
with a regularization parameter given by λ = α/β.

1.2.6 Bayesian curve fitting
Although we have included a prior distribution p(w|α), we are so far still mak-
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Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter λ corresponding to ln λ = −18 and ln λ = 0. The
case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

Ẽ(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 +
λ

2
∥w∥2 (1.4)

where ∥w∥2 ≡ wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient λ governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing
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sequently use this to find the precision βML as was the case for the simple Gaussian
distribution.Section 1.2.4

Having determined the parameters w and β, we can now make predictions for
new values of x. Because we now have a probabilistic model, these are expressed
in terms of the predictive distribution that gives the probability distribution over t,
rather than simply a point estimate, and is obtained by substituting the maximum
likelihood parameters into (1.60) to give
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where α is the precision of the distribution, and M+1 is the total number of elements
in the vector w for an M th order polynomial. Variables such as α, which control
the distribution of model parameters, are called hyperparameters. Using Bayes’
theorem, the posterior distribution for w is proportional to the product of the prior
distribution and the likelihood function

p(w|x, t, α, β) ∝ p(t|x,w, β)p(w|α). (1.66)

We can now determine w by finding the most probable value of w given the data,
in other words by maximizing the posterior distribution. This technique is called
maximum posterior, or simply MAP. Taking the negative logarithm of (1.66) and
combining with (1.62) and (1.65), we find that the maximum of the posterior is
given by the minimum of
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Thus we see that maximizing the posterior distribution is equivalent to minimizing
the regularized sum-of-squares error function encountered earlier in the form (1.4),
with a regularization parameter given by λ = α/β.

1.2.6 Bayesian curve fitting
Although we have included a prior distribution p(w|α), we are so far still mak-

ing a point estimate of w and so this does not yet amount to a Bayesian treatment. In
a fully Bayesian approach, we should consistently apply the sum and product rules
of probability, which requires, as we shall see shortly, that we integrate over all val-
ues of w. Such marginalizations lie at the heart of Bayesian methods for pattern
recognition.
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Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter λ corresponding to ln λ = −18 and ln λ = 0. The
case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.
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rather than simply a point estimate, and is obtained by substituting the maximum
likelihood parameters into (1.60) to give

p(t|x,wML, βML) = N
(
t|y(x,wML), β−1

ML

)
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Now let us take a step towards a more Bayesian approach and introduce a prior
distribution over the polynomial coefficients w. For simplicity, let us consider a
Gaussian distribution of the form

p(w|α) = N (w|0, α−1I) =
( α

2π

)(M+1)/2

exp
{
−α

2
wTw

}
(1.65)

where α is the precision of the distribution, and M+1 is the total number of elements
in the vector w for an M th order polynomial. Variables such as α, which control
the distribution of model parameters, are called hyperparameters. Using Bayes’
theorem, the posterior distribution for w is proportional to the product of the prior
distribution and the likelihood function

p(w|x, t, α, β) ∝ p(t|x,w, β)p(w|α). (1.66)

We can now determine w by finding the most probable value of w given the data,
in other words by maximizing the posterior distribution. This technique is called
maximum posterior, or simply MAP. Taking the negative logarithm of (1.66) and
combining with (1.62) and (1.65), we find that the maximum of the posterior is
given by the minimum of

β

2

N∑

n=1

{y(xn,w) − tn}2 +
α

2
wTw. (1.67)

Thus we see that maximizing the posterior distribution is equivalent to minimizing
the regularized sum-of-squares error function encountered earlier in the form (1.4),
with a regularization parameter given by λ = α/β.

1.2.6 Bayesian curve fitting
Although we have included a prior distribution p(w|α), we are so far still mak-

ing a point estimate of w and so this does not yet amount to a Bayesian treatment. In
a fully Bayesian approach, we should consistently apply the sum and product rules
of probability, which requires, as we shall see shortly, that we integrate over all val-
ues of w. Such marginalizations lie at the heart of Bayesian methods for pattern
recognition.
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where α is the precision of the distribution, and M+1 is the total number of elements
in the vector w for an M th order polynomial. Variables such as α, which control
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Thus we see that maximizing the posterior distribution is equivalent to minimizing
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with a regularization parameter given by λ = α/β.

1.2.6 Bayesian curve fitting
Although we have included a prior distribution p(w|α), we are so far still mak-

ing a point estimate of w and so this does not yet amount to a Bayesian treatment. In
a fully Bayesian approach, we should consistently apply the sum and product rules
of probability, which requires, as we shall see shortly, that we integrate over all val-
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will be simply

E[t|x] =
∫

tp(t|x) dt = y(x,w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t1, . . . , tN . We group the target variables {tn} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that
these data points are drawn independently from the distribution (3.8), we obtain the
following expression for the likelihood function, which is a function of the adjustable
parameters w and β, in the form

p(t|X,w, β) =
N∏

n=1

N (tn|wTφ(xn), β−1) (3.10)

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the input
variables. Thus x will always appear in the set of conditioning variables, and so
from now on we will drop the explicit x from expressions such as p(t|x,w, β) in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

ln p(t|w, β) =
N∑

n=1

lnN (tn|wTφ(xn), β−1)

=
N

2
ln β − N

2
ln(2π) − βED(w) (3.11)

where the sum-of-squares error function is defined by

ED(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2. (3.12)

Having written down the likelihood function, we can use maximum likelihood to
determine w and β. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

∇ ln p(t|w, β) =
N∑

n=1

{
tn − wTφ(xn)

}
φ(xn)T. (3.13)

t = ���w + ✏✏✏

✏✏✏ ��1I
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Having written down the likelihood function, we can use maximum likelihood to
determine w and β. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

∇ ln p(t|w, β) =
N∑

n=1

{
tn − wTφ(xn)

}
φ(xn)T. (3.13)
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(2.70) that depend on xa, we obtain

1
2

[Λbbµb − Λba(xa − µa)]T Λ−1
bb [Λbbµb − Λba(xa − µa)]

−1
2
xT

a Λaaxa + xT
a (Λaaµa + Λabµb) + const

= −1
2
xT

a (Λaa − ΛabΛ−1
bb Λba)xa

+xT
a (Λaa − ΛabΛ−1

bb Λba)−1µa + const (2.87)

where ‘const’ denotes quantities independent of xa. Again, by comparison with
(2.71), we see that the covariance of the marginal distribution of p(xa) is given by

Σa = (Λaa − ΛabΛ−1
bb Λba)−1. (2.88)

Similarly, the mean is given by

Σa(Λaa − ΛabΛ−1
bb Λba)µa = µa (2.89)

where we have used (2.88). The covariance in (2.88) is expressed in terms of the
partitioned precision matrix given by (2.69). We can rewrite this in terms of the
corresponding partitioning of the covariance matrix given by (2.67), as we did for
the conditional distribution. These partitioned matrices are related by

(
Λaa Λab

Λba Λbb

)−1

=
(

Σaa Σab

Σba Σbb

)
(2.90)

Making use of (2.76), we then have
(
Λaa − ΛabΛ−1

bb Λba

)−1 = Σaa. (2.91)

Thus we obtain the intuitively satisfying result that the marginal distribution p(xa)
has mean and covariance given by

E[xa] = µa (2.92)
cov[xa] = Σaa. (2.93)

We see that for a marginal distribution, the mean and covariance are most simply ex-
pressed in terms of the partitioned covariance matrix, in contrast to the conditional
distribution for which the partitioned precision matrix gives rise to simpler expres-
sions.

Our results for the marginal and conditional distributions of a partitioned Gaus-
sian are summarized below.

Partitioned Gaussians

Given a joint Gaussian distribution N (x|µ,Σ) with Λ ≡ Σ−1 and

x =
(

xa

xb

)
, µ =

(
µa
µb

)
(2.94)

90 2. PROBABILITY DISTRIBUTIONS
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Figure 2.9 The plot on the left shows the contours of a Gaussian distribution p(xa, xb) over two variables, and
the plot on the right shows the marginal distribution p(xa) (blue curve) and the conditional distribution p(xa|xb)
for xb = 0.7 (red curve).

Σ =
(

Σaa Σab

Σba Σbb

)
, Λ =

(
Λaa Λab

Λba Λbb

)
. (2.95)

Conditional distribution:

p(xa|xb) = N (x|µa|b,Λ
−1
aa ) (2.96)

µa|b = µa − Λ−1
aa Λab(xb − µb). (2.97)

Marginal distribution:

p(xa) = N (xa|µa,Σaa). (2.98)

We illustrate the idea of conditional and marginal distributions associated with
a multivariate Gaussian using an example involving two variables in Figure 2.9.

2.3.3 Bayes’ theorem for Gaussian variables
In Sections 2.3.1 and 2.3.2, we considered a Gaussian p(x) in which we parti-

tioned the vector x into two subvectors x = (xa,xb) and then found expressions for
the conditional distribution p(xa|xb) and the marginal distribution p(xa). We noted
that the mean of the conditional distribution p(xa|xb) was a linear function of xb.
Here we shall suppose that we are given a Gaussian marginal distribution p(x) and a
Gaussian conditional distribution p(y|x) in which p(y|x) has a mean that is a linear
function of x, and a covariance which is independent of x. This is an example of

2.3. The Gaussian Distribution 87

Now consider all of the terms in (2.70) that are linear in xa

xT
a {Λaaµa − Λab(xb − µb)} (2.74)

where we have used ΛT
ba = Λab. From our discussion of the general form (2.71),

the coefficient of xa in this expression must equal Σ−1
a|bµa|b and hence

µa|b = Σa|b {Λaaµa − Λab(xb − µb)}
= µa − Λ−1

aa Λab(xb − µb) (2.75)

where we have made use of (2.73).
The results (2.73) and (2.75) are expressed in terms of the partitioned precision

matrix of the original joint distribution p(xa,xb). We can also express these results
in terms of the corresponding partitioned covariance matrix. To do this, we make use
of the following identity for the inverse of a partitioned matrixExercise 2.24

(
A B
C D

)−1

=
(

M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)
(2.76)

where we have defined
M = (A − BD−1C)−1. (2.77)

The quantity M−1 is known as the Schur complement of the matrix on the left-hand
side of (2.76) with respect to the submatrix D. Using the definition

(
Σaa Σab

Σba Σbb

)−1

=
(

Λaa Λab

Λba Λbb

)
(2.78)

and making use of (2.76), we have

Λaa = (Σaa − ΣabΣ−1
bb Σba)−1 (2.79)

Λab = −(Σaa − ΣabΣ−1
bb Σba)−1ΣabΣ−1

bb . (2.80)

From these we obtain the following expressions for the mean and covariance of the
conditional distribution p(xa|xb)

µa|b = µa + ΣabΣ−1
bb (xb − µb) (2.81)

Σa|b = Σaa − ΣabΣ−1
bb Σba. (2.82)

Comparing (2.73) and (2.82), we see that the conditional distribution p(xa|xb) takes
a simpler form when expressed in terms of the partitioned precision matrix than
when it is expressed in terms of the partitioned covariance matrix. Note that the
mean of the conditional distribution p(xa|xb), given by (2.81), is a linear function of
xb and that the covariance, given by (2.82), is independent of xa. This represents an
example of a linear-Gaussian model.Section 8.1.4
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Figure 3.7 Illustration of sequential Bayesian learning for a simple linear model of the form y(x,w) =
w0 + w1x. A detailed description of this figure is given in the text.
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posterior distribution would become a delta function centred on the true parameter
values, shown by the white cross.

Other forms of prior over the parameters can be considered. For instance, we
can generalize the Gaussian prior to give

p(w|α) =
[

q

2

(α

2

)1/q 1
Γ(1/q)

]M

exp

(
−α

2

M∑

j=1

|wj |q
)

(3.56)

in which q = 2 corresponds to the Gaussian distribution, and only in this case is the
prior conjugate to the likelihood function (3.10). Finding the maximum of the poste-
rior distribution over w corresponds to minimization of the regularized error function
(3.29). In the case of the Gaussian prior, the mode of the posterior distribution was
equal to the mean, although this will no longer hold if q ̸= 2.

3.3.2 Predictive distribution
In practice, we are not usually interested in the value of w itself but rather in

making predictions of t for new values of x. This requires that we evaluate the
predictive distribution defined by

p(t|t, α, β) =
∫

p(t|w, β)p(w|t, α, β) dw (3.57)

in which t is the vector of target values from the training set, and we have omitted the
corresponding input vectors from the right-hand side of the conditioning statements
to simplify the notation. The conditional distribution p(t|x,w, β) of the target vari-
able is given by (3.8), and the posterior weight distribution is given by (3.49). We
see that (3.57) involves the convolution of two Gaussian distributions, and so making
use of the result (2.115) from Section 8.1.4, we see that the predictive distribution
takes the formExercise 3.10

p(t|x, t, α, β) = N (t|mT
Nφ(x), σ2

N (x)) (3.58)

where the variance σ2
N (x) of the predictive distribution is given by

σ2
N (x) =

1
β

+ φ(x)TSNφ(x). (3.59)

The first term in (3.59) represents the noise on the data whereas the second term
reflects the uncertainty associated with the parameters w. Because the noise process
and the distribution of w are independent Gaussians, their variances are additive.
Note that, as additional data points are observed, the posterior distribution becomes
narrower. As a consequence it can be shown (Qazaz et al., 1997) that σ2

N+1(x) !
σ2

N (x). In the limit N → ∞, the second term in (3.59) goes to zero, and the varianceExercise 3.11
of the predictive distribution arises solely from the additive noise governed by the
parameter β.

As an illustration of the predictive distribution for Bayesian linear regression
models, let us return to the synthetic sinusoidal data set of Section 1.1. In Figure 3.8,
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in which q = 2 corresponds to the Gaussian distribution, and only in this case is the
prior conjugate to the likelihood function (3.10). Finding the maximum of the poste-
rior distribution over w corresponds to minimization of the regularized error function
(3.29). In the case of the Gaussian prior, the mode of the posterior distribution was
equal to the mean, although this will no longer hold if q ̸= 2.

3.3.2 Predictive distribution
In practice, we are not usually interested in the value of w itself but rather in
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As an illustration of the predictive distribution for Bayesian linear regression
models, let us return to the synthetic sinusoidal data set of Section 1.1. In Figure 3.8,
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in which q = 2 corresponds to the Gaussian distribution, and only in this case is the
prior conjugate to the likelihood function (3.10). Finding the maximum of the poste-
rior distribution over w corresponds to minimization of the regularized error function
(3.29). In the case of the Gaussian prior, the mode of the posterior distribution was
equal to the mean, although this will no longer hold if q ̸= 2.
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use of the result (2.115) from Section 8.1.4, we see that the predictive distribution
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where the variance σ2
N (x) of the predictive distribution is given by
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The first term in (3.59) represents the noise on the data whereas the second term
reflects the uncertainty associated with the parameters w. Because the noise process
and the distribution of w are independent Gaussians, their variances are additive.
Note that, as additional data points are observed, the posterior distribution becomes
narrower. As a consequence it can be shown (Qazaz et al., 1997) that σ2

N+1(x) !
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N (x). In the limit N → ∞, the second term in (3.59) goes to zero, and the varianceExercise 3.11
of the predictive distribution arises solely from the additive noise governed by the
parameter β.

As an illustration of the predictive distribution for Bayesian linear regression
models, let us return to the synthetic sinusoidal data set of Section 1.1. In Figure 3.8,
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Figure 3.8 Examples of the predictive distribution (3.58) for a model consisting of 9 Gaussian basis functions
of the form (3.4) using the synthetic sinusoidal data set of Section 1.1. See the text for a detailed discussion.

we fit a model comprising a linear combination of Gaussian basis functions to data
sets of various sizes and then look at the corresponding posterior distributions. Here
the green curves correspond to the function sin(2πx) from which the data points
were generated (with the addition of Gaussian noise). Data sets of size N = 1,
N = 2, N = 4, and N = 25 are shown in the four plots by the blue circles. For
each plot, the red curve shows the mean of the corresponding Gaussian predictive
distribution, and the red shaded region spans one standard deviation either side of
the mean. Note that the predictive uncertainty depends on x and is smallest in the
neighbourhood of the data points. Also note that the level of uncertainty decreases
as more data points are observed.

The plots in Figure 3.8 only show the point-wise predictive variance as a func-
tion of x. In order to gain insight into the covariance between the predictions at
different values of x, we can draw samples from the posterior distribution over w,
and then plot the corresponding functions y(x,w), as shown in Figure 3.9.
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Figure 3.8 Examples of the predictive distribution (3.58) for a model consisting of 9 Gaussian basis functions
of the form (3.4) using the synthetic sinusoidal data set of Section 1.1. See the text for a detailed discussion.

we fit a model comprising a linear combination of Gaussian basis functions to data
sets of various sizes and then look at the corresponding posterior distributions. Here
the green curves correspond to the function sin(2πx) from which the data points
were generated (with the addition of Gaussian noise). Data sets of size N = 1,
N = 2, N = 4, and N = 25 are shown in the four plots by the blue circles. For
each plot, the red curve shows the mean of the corresponding Gaussian predictive
distribution, and the red shaded region spans one standard deviation either side of
the mean. Note that the predictive uncertainty depends on x and is smallest in the
neighbourhood of the data points. Also note that the level of uncertainty decreases
as more data points are observed.

The plots in Figure 3.8 only show the point-wise predictive variance as a func-
tion of x. In order to gain insight into the covariance between the predictions at
different values of x, we can draw samples from the posterior distribution over w,
and then plot the corresponding functions y(x,w), as shown in Figure 3.9.
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Figure 3.8 Examples of the predictive distribution (3.58) for a model consisting of 9 Gaussian basis functions
of the form (3.4) using the synthetic sinusoidal data set of Section 1.1. See the text for a detailed discussion.

we fit a model comprising a linear combination of Gaussian basis functions to data
sets of various sizes and then look at the corresponding posterior distributions. Here
the green curves correspond to the function sin(2πx) from which the data points
were generated (with the addition of Gaussian noise). Data sets of size N = 1,
N = 2, N = 4, and N = 25 are shown in the four plots by the blue circles. For
each plot, the red curve shows the mean of the corresponding Gaussian predictive
distribution, and the red shaded region spans one standard deviation either side of
the mean. Note that the predictive uncertainty depends on x and is smallest in the
neighbourhood of the data points. Also note that the level of uncertainty decreases
as more data points are observed.

The plots in Figure 3.8 only show the point-wise predictive variance as a func-
tion of x. In order to gain insight into the covariance between the predictions at
different values of x, we can draw samples from the posterior distribution over w,
and then plot the corresponding functions y(x,w), as shown in Figure 3.9.
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Figure 3.8 Examples of the predictive distribution (3.58) for a model consisting of 9 Gaussian basis functions
of the form (3.4) using the synthetic sinusoidal data set of Section 1.1. See the text for a detailed discussion.

we fit a model comprising a linear combination of Gaussian basis functions to data
sets of various sizes and then look at the corresponding posterior distributions. Here
the green curves correspond to the function sin(2πx) from which the data points
were generated (with the addition of Gaussian noise). Data sets of size N = 1,
N = 2, N = 4, and N = 25 are shown in the four plots by the blue circles. For
each plot, the red curve shows the mean of the corresponding Gaussian predictive
distribution, and the red shaded region spans one standard deviation either side of
the mean. Note that the predictive uncertainty depends on x and is smallest in the
neighbourhood of the data points. Also note that the level of uncertainty decreases
as more data points are observed.

The plots in Figure 3.8 only show the point-wise predictive variance as a func-
tion of x. In order to gain insight into the covariance between the predictions at
different values of x, we can draw samples from the posterior distribution over w,
and then plot the corresponding functions y(x,w), as shown in Figure 3.9.
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posterior distribution would become a delta function centred on the true parameter
values, shown by the white cross.

Other forms of prior over the parameters can be considered. For instance, we
can generalize the Gaussian prior to give

p(w|α) =
[

q

2

(α

2

)1/q 1
Γ(1/q)

]M

exp

(
−α

2

M∑

j=1

|wj |q
)

(3.56)

in which q = 2 corresponds to the Gaussian distribution, and only in this case is the
prior conjugate to the likelihood function (3.10). Finding the maximum of the poste-
rior distribution over w corresponds to minimization of the regularized error function
(3.29). In the case of the Gaussian prior, the mode of the posterior distribution was
equal to the mean, although this will no longer hold if q ̸= 2.

3.3.2 Predictive distribution
In practice, we are not usually interested in the value of w itself but rather in

making predictions of t for new values of x. This requires that we evaluate the
predictive distribution defined by

p(t|t, α, β) =
∫

p(t|w, β)p(w|t, α, β) dw (3.57)

in which t is the vector of target values from the training set, and we have omitted the
corresponding input vectors from the right-hand side of the conditioning statements
to simplify the notation. The conditional distribution p(t|x,w, β) of the target vari-
able is given by (3.8), and the posterior weight distribution is given by (3.49). We
see that (3.57) involves the convolution of two Gaussian distributions, and so making
use of the result (2.115) from Section 8.1.4, we see that the predictive distribution
takes the formExercise 3.10

p(t|x, t, α, β) = N (t|mT
Nφ(x), σ2

N (x)) (3.58)

where the variance σ2
N (x) of the predictive distribution is given by

σ2
N (x) =

1
β

+ φ(x)TSNφ(x). (3.59)

The first term in (3.59) represents the noise on the data whereas the second term
reflects the uncertainty associated with the parameters w. Because the noise process
and the distribution of w are independent Gaussians, their variances are additive.
Note that, as additional data points are observed, the posterior distribution becomes
narrower. As a consequence it can be shown (Qazaz et al., 1997) that σ2

N+1(x) !
σ2

N (x). In the limit N → ∞, the second term in (3.59) goes to zero, and the varianceExercise 3.11
of the predictive distribution arises solely from the additive noise governed by the
parameter β.

As an illustration of the predictive distribution for Bayesian linear regression
models, let us return to the synthetic sinusoidal data set of Section 1.1. In Figure 3.8,
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x1, . . . ,xN . We are therefore interested in the joint distribution of the function val-
ues y(x1), . . . , y(xN ), which we denote by the vector y with elements yn = y(xn)
for n = 1, . . . , N . From (6.49), this vector is given by

y = Φw (6.51)

where Φ is the design matrix with elements Φnk = φk(xn). We can find the proba-
bility distribution of y as follows. First of all we note that y is a linear combination of
Gaussian distributed variables given by the elements of w and hence is itself Gaus-
sian. We therefore need only to find its mean and covariance, which are given fromExercise 2.31
(6.50) by

E[y] = ΦE[w] = 0 (6.52)

cov[y] = E
[
yyT

]
= ΦE

[
wwT

]
ΦT =

1
α
ΦΦT = K (6.53)

where K is the Gram matrix with elements

Knm = k(xn,xm) =
1
α

φ(xn)Tφ(xm) (6.54)

and k(x,x′) is the kernel function.
This model provides us with a particular example of a Gaussian process. In gen-

eral, a Gaussian process is defined as a probability distribution over functions y(x)
such that the set of values of y(x) evaluated at an arbitrary set of points x1, . . . ,xN

jointly have a Gaussian distribution. In cases where the input vector x is two di-
mensional, this may also be known as a Gaussian random field. More generally, a
stochastic process y(x) is specified by giving the joint probability distribution for
any finite set of values y(x1), . . . , y(xN ) in a consistent manner.

A key point about Gaussian stochastic processes is that the joint distribution
over N variables y1, . . . , yN is specified completely by the second-order statistics,
namely the mean and the covariance. In most applications, we will not have any
prior knowledge about the mean of y(x) and so by symmetry we take it to be zero.
This is equivalent to choosing the mean of the prior over weight values p(w|α) to
be zero in the basis function viewpoint. The specification of the Gaussian process is
then completed by giving the covariance of y(x) evaluated at any two values of x,
which is given by the kernel function

E [y(xn)y(xm)] = k(xn,xm). (6.55)

For the specific case of a Gaussian process defined by the linear regression model
(6.49) with a weight prior (6.50), the kernel function is given by (6.54).

We can also define the kernel function directly, rather than indirectly through a
choice of basis function. Figure 6.4 shows samples of functions drawn from Gaus-
sian processes for two different choices of kernel function. The first of these is a
‘Gaussian’ kernel of the form (6.23), and the second is the exponential kernel given
by

k(x, x′) = exp (−θ |x − x′|) (6.56)

which corresponds to the Ornstein-Uhlenbeck process originally introduced by Uh-
lenbeck and Ornstein (1930) to describe Brownian motion.
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x1, . . . ,xN . We are therefore interested in the joint distribution of the function val-
ues y(x1), . . . , y(xN ), which we denote by the vector y with elements yn = y(xn)
for n = 1, . . . , N . From (6.49), this vector is given by

y = Φw (6.51)

where Φ is the design matrix with elements Φnk = φk(xn). We can find the proba-
bility distribution of y as follows. First of all we note that y is a linear combination of
Gaussian distributed variables given by the elements of w and hence is itself Gaus-
sian. We therefore need only to find its mean and covariance, which are given fromExercise 2.31
(6.50) by

E[y] = ΦE[w] = 0 (6.52)

cov[y] = E
[
yyT

]
= ΦE

[
wwT

]
ΦT =

1
α
ΦΦT = K (6.53)

where K is the Gram matrix with elements

Knm = k(xn,xm) =
1
α

φ(xn)Tφ(xm) (6.54)

and k(x,x′) is the kernel function.
This model provides us with a particular example of a Gaussian process. In gen-

eral, a Gaussian process is defined as a probability distribution over functions y(x)
such that the set of values of y(x) evaluated at an arbitrary set of points x1, . . . ,xN

jointly have a Gaussian distribution. In cases where the input vector x is two di-
mensional, this may also be known as a Gaussian random field. More generally, a
stochastic process y(x) is specified by giving the joint probability distribution for
any finite set of values y(x1), . . . , y(xN ) in a consistent manner.

A key point about Gaussian stochastic processes is that the joint distribution
over N variables y1, . . . , yN is specified completely by the second-order statistics,
namely the mean and the covariance. In most applications, we will not have any
prior knowledge about the mean of y(x) and so by symmetry we take it to be zero.
This is equivalent to choosing the mean of the prior over weight values p(w|α) to
be zero in the basis function viewpoint. The specification of the Gaussian process is
then completed by giving the covariance of y(x) evaluated at any two values of x,
which is given by the kernel function

E [y(xn)y(xm)] = k(xn,xm). (6.55)

For the specific case of a Gaussian process defined by the linear regression model
(6.49) with a weight prior (6.50), the kernel function is given by (6.54).

We can also define the kernel function directly, rather than indirectly through a
choice of basis function. Figure 6.4 shows samples of functions drawn from Gaus-
sian processes for two different choices of kernel function. The first of these is a
‘Gaussian’ kernel of the form (6.23), and the second is the exponential kernel given
by

k(x, x′) = exp (−θ |x − x′|) (6.56)

which corresponds to the Ornstein-Uhlenbeck process originally introduced by Uh-
lenbeck and Ornstein (1930) to describe Brownian motion.
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any finite set of values y(x1), . . . , y(xN ) in a consistent manner.

A key point about Gaussian stochastic processes is that the joint distribution
over N variables y1, . . . , yN is specified completely by the second-order statistics,
namely the mean and the covariance. In most applications, we will not have any
prior knowledge about the mean of y(x) and so by symmetry we take it to be zero.
This is equivalent to choosing the mean of the prior over weight values p(w|α) to
be zero in the basis function viewpoint. The specification of the Gaussian process is
then completed by giving the covariance of y(x) evaluated at any two values of x,
which is given by the kernel function

E [y(xn)y(xm)] = k(xn,xm). (6.55)

For the specific case of a Gaussian process defined by the linear regression model
(6.49) with a weight prior (6.50), the kernel function is given by (6.54).

We can also define the kernel function directly, rather than indirectly through a
choice of basis function. Figure 6.4 shows samples of functions drawn from Gaus-
sian processes for two different choices of kernel function. The first of these is a
‘Gaussian’ kernel of the form (6.23), and the second is the exponential kernel given
by

k(x, x′) = exp (−θ |x − x′|) (6.56)

which corresponds to the Ornstein-Uhlenbeck process originally introduced by Uh-
lenbeck and Ornstein (1930) to describe Brownian motion.
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jointly have a Gaussian distribution. In cases where the input vector x is two di-
mensional, this may also be known as a Gaussian random field. More generally, a
stochastic process y(x) is specified by giving the joint probability distribution for
any finite set of values y(x1), . . . , y(xN ) in a consistent manner.

A key point about Gaussian stochastic processes is that the joint distribution
over N variables y1, . . . , yN is specified completely by the second-order statistics,
namely the mean and the covariance. In most applications, we will not have any
prior knowledge about the mean of y(x) and so by symmetry we take it to be zero.
This is equivalent to choosing the mean of the prior over weight values p(w|α) to
be zero in the basis function viewpoint. The specification of the Gaussian process is
then completed by giving the covariance of y(x) evaluated at any two values of x,
which is given by the kernel function

E [y(xn)y(xm)] = k(xn,xm). (6.55)

For the specific case of a Gaussian process defined by the linear regression model
(6.49) with a weight prior (6.50), the kernel function is given by (6.54).

We can also define the kernel function directly, rather than indirectly through a
choice of basis function. Figure 6.4 shows samples of functions drawn from Gaus-
sian processes for two different choices of kernel function. The first of these is a
‘Gaussian’ kernel of the form (6.23), and the second is the exponential kernel given
by

k(x, x′) = exp (−θ |x − x′|) (6.56)

which corresponds to the Ornstein-Uhlenbeck process originally introduced by Uh-
lenbeck and Ornstein (1930) to describe Brownian motion.
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faite par le modèle (sa variance)
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• On va dériver le même algorithme autrement, sans 
supposer 

• On va plutôt poser                     et traiter y(x) comme 

une variable aléatoire

‣ notre a priori sur la fonction y(x) est qu’elle a été générée par un 

processus gaussien
‣ en d’autres mots, on va utiliser un processus gaussien pour notre 

p(«modèle»)
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• Si y(x) est généré d’un processus gaussien, alors la loi de 

probabilité de tout vecteur y = (y(x1),...,y(xN))T est

peu importe la valeur des xn et leur nombre N

• Un processus gaussien est défini par le noyau k(xn,xm)

‣ on l’appelle fonction de covariance : cov[y(xn),y(xm)] = k(xn,xm)
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Figure 6.4 Samples from Gaus-
sian processes for a ‘Gaussian’ ker-
nel (left) and an exponential kernel
(right).
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6.4.2 Gaussian processes for regression
In order to apply Gaussian process models to the problem of regression, we need

to take account of the noise on the observed target values, which are given by

tn = yn + ϵn (6.57)

where yn = y(xn), and ϵn is a random noise variable whose value is chosen inde-
pendently for each observation n. Here we shall consider noise processes that have
a Gaussian distribution, so that

p(tn|yn) = N (tn|yn, β−1) (6.58)

where β is a hyperparameter representing the precision of the noise. Because the
noise is independent for each data point, the joint distribution of the target values
t = (t1, . . . , tN )T conditioned on the values of y = (y1, . . . , yN )T is given by an
isotropic Gaussian of the form

p(t|y) = N (t|y, β−1IN ) (6.59)

where IN denotes the N ×N unit matrix. From the definition of a Gaussian process,
the marginal distribution p(y) is given by a Gaussian whose mean is zero and whose
covariance is defined by a Gram matrix K so that

p(y) = N (y|0,K). (6.60)

The kernel function that determines K is typically chosen to express the property
that, for points xn and xm that are similar, the corresponding values y(xn) and
y(xm) will be more strongly correlated than for dissimilar points. Here the notion
of similarity will depend on the application.

In order to find the marginal distribution p(t), conditioned on the input values
x1, . . . ,xN , we need to integrate over y. This can be done by making use of the
results from Section 2.3.3 for the linear-Gaussian model. Using (2.115), we see that
the marginal distribution of t is given by

p(t) =
∫

p(t|y)p(y) dy = N (t|0,C) (6.61)
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6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑

n=1

{
wTφ(xn) − tn

}2 +
λ

2
wTw (6.2)

where λ ! 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑

n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑

n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN )T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN )T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN )−1 t. (6.8)
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Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is
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Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above
each plot denotes (θ0, θ1, θ2, θ3).

c = k(xN+1,xN+1)+β−1. Using the results (2.81) and (2.82), we see that the con-
ditional distribution p(tN+1|t) is a Gaussian distribution with mean and covariance
given by

m(xN+1) = kTC−1
N t (6.66)

σ2(xN+1) = c − kTC−1
N k. (6.67)

These are the key results that define Gaussian process regression. Because the vector
k is a function of the test point input value xN+1, we see that the predictive distribu-
tion is a Gaussian whose mean and variance both depend on xN+1. An example of
Gaussian process regression is shown in Figure 6.8.

The only restriction on the kernel function is that the covariance matrix given by
(6.62) must be positive definite. If λi is an eigenvalue of K, then the corresponding
eigenvalue of C will be λi + β−1. It is therefore sufficient that the kernel matrix
k(xn,xm) be positive semidefinite for any pair of points xn and xm, so that λi ! 0,
because any eigenvalue λi that is zero will still give rise to a positive eigenvalue
for C because β > 0. This is the same restriction on the kernel function discussed
earlier, and so we can again exploit all of the techniques in Section 6.2 to construct
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Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above
each plot denotes (θ0, θ1, θ2, θ3).

c = k(xN+1,xN+1)+β−1. Using the results (2.81) and (2.82), we see that the con-
ditional distribution p(tN+1|t) is a Gaussian distribution with mean and covariance
given by

m(xN+1) = kTC−1
N t (6.66)

σ2(xN+1) = c − kTC−1
N k. (6.67)

These are the key results that define Gaussian process regression. Because the vector
k is a function of the test point input value xN+1, we see that the predictive distribu-
tion is a Gaussian whose mean and variance both depend on xN+1. An example of
Gaussian process regression is shown in Figure 6.8.

The only restriction on the kernel function is that the covariance matrix given by
(6.62) must be positive definite. If λi is an eigenvalue of K, then the corresponding
eigenvalue of C will be λi + β−1. It is therefore sufficient that the kernel matrix
k(xn,xm) be positive semidefinite for any pair of points xn and xm, so that λi ! 0,
because any eigenvalue λi that is zero will still give rise to a positive eigenvalue
for C because β > 0. This is the same restriction on the kernel function discussed
earlier, and so we can again exploit all of the techniques in Section 6.2 to construct
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ditional distribution p(tN+1|t) is a Gaussian distribution with mean and covariance
given by

m(xN+1) = kTC−1
N t (6.66)

σ2(xN+1) = c − kTC−1
N k. (6.67)

These are the key results that define Gaussian process regression. Because the vector
k is a function of the test point input value xN+1, we see that the predictive distribu-
tion is a Gaussian whose mean and variance both depend on xN+1. An example of
Gaussian process regression is shown in Figure 6.8.

The only restriction on the kernel function is that the covariance matrix given by
(6.62) must be positive definite. If λi is an eigenvalue of K, then the corresponding
eigenvalue of C will be λi + β−1. It is therefore sufficient that the kernel matrix
k(xn,xm) be positive semidefinite for any pair of points xn and xm, so that λi ! 0,
because any eigenvalue λi that is zero will still give rise to a positive eigenvalue
for C because β > 0. This is the same restriction on the kernel function discussed
earlier, and so we can again exploit all of the techniques in Section 6.2 to construct
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where the covariance matrix C has elements

C(xn,xm) = k(xn,xm) + β−1δnm. (6.62)

This result reflects the fact that the two Gaussian sources of randomness, namely
that associated with y(x) and that associated with ϵ, are independent and so their
covariances simply add.

One widely used kernel function for Gaussian process regression is given by the
exponential of a quadratic form, with the addition of constant and linear terms to
give

k(xn,xm) = θ0 exp
{
−θ1

2
∥xn − xm∥2

}
+ θ2 + θ3xT

nxm. (6.63)

Note that the term involving θ3 corresponds to a parametric model that is a linear
function of the input variables. Samples from this prior are plotted for various values
of the parameters θ0, . . . , θ3 in Figure 6.5, and Figure 6.6 shows a set of points sam-
pled from the joint distribution (6.60) along with the corresponding values defined
by (6.61).

So far, we have used the Gaussian process viewpoint to build a model of the
joint distribution over sets of data points. Our goal in regression, however, is to
make predictions of the target variables for new inputs, given a set of training data.
Let us suppose that tN = (t1, . . . , tN )T, corresponding to input values x1, . . . ,xN ,
comprise the observed training set, and our goal is to predict the target variable tN+1

for a new input vector xN+1. This requires that we evaluate the predictive distri-
bution p(tN+1|tN ). Note that this distribution is conditioned also on the variables
x1, . . . ,xN and xN+1. However, to keep the notation simple we will not show these
conditioning variables explicitly.

To find the conditional distribution p(tN+1|t), we begin by writing down the
joint distribution p(tN+1), where tN+1 denotes the vector (t1, . . . , tN , tN+1)T. We
then apply the results from Section 2.3.1 to obtain the required conditional distribu-
tion, as illustrated in Figure 6.7.

From (6.61), the joint distribution over t1, . . . , tN+1 will be given by

p(tN+1) = N (tN+1|0,CN+1) (6.64)

where CN+1 is an (N + 1) × (N + 1) covariance matrix with elements given by
(6.62). Because this joint distribution is Gaussian, we can apply the results from
Section 2.3.1 to find the conditional Gaussian distribution. To do this, we partition
the covariance matrix as follows

CN+1 =
(

CN k
kT c

)
(6.65)

where CN is the N ×N covariance matrix with elements given by (6.62) for n, m =
1, . . . , N , the vector k has elements k(xn,xN+1) for n = 1, . . . , N , and the scalar

CN+1 = KN+1 + ��1I
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where the covariance matrix C has elements

C(xn,xm) = k(xn,xm) + β−1δnm. (6.62)

This result reflects the fact that the two Gaussian sources of randomness, namely
that associated with y(x) and that associated with ϵ, are independent and so their
covariances simply add.

One widely used kernel function for Gaussian process regression is given by the
exponential of a quadratic form, with the addition of constant and linear terms to
give

k(xn,xm) = θ0 exp
{
−θ1

2
∥xn − xm∥2

}
+ θ2 + θ3xT

nxm. (6.63)

Note that the term involving θ3 corresponds to a parametric model that is a linear
function of the input variables. Samples from this prior are plotted for various values
of the parameters θ0, . . . , θ3 in Figure 6.5, and Figure 6.6 shows a set of points sam-
pled from the joint distribution (6.60) along with the corresponding values defined
by (6.61).

So far, we have used the Gaussian process viewpoint to build a model of the
joint distribution over sets of data points. Our goal in regression, however, is to
make predictions of the target variables for new inputs, given a set of training data.
Let us suppose that tN = (t1, . . . , tN )T, corresponding to input values x1, . . . ,xN ,
comprise the observed training set, and our goal is to predict the target variable tN+1

for a new input vector xN+1. This requires that we evaluate the predictive distri-
bution p(tN+1|tN ). Note that this distribution is conditioned also on the variables
x1, . . . ,xN and xN+1. However, to keep the notation simple we will not show these
conditioning variables explicitly.

To find the conditional distribution p(tN+1|t), we begin by writing down the
joint distribution p(tN+1), where tN+1 denotes the vector (t1, . . . , tN , tN+1)T. We
then apply the results from Section 2.3.1 to obtain the required conditional distribu-
tion, as illustrated in Figure 6.7.

From (6.61), the joint distribution over t1, . . . , tN+1 will be given by

p(tN+1) = N (tN+1|0,CN+1) (6.64)

where CN+1 is an (N + 1) × (N + 1) covariance matrix with elements given by
(6.62). Because this joint distribution is Gaussian, we can apply the results from
Section 2.3.1 to find the conditional Gaussian distribution. To do this, we partition
the covariance matrix as follows

CN+1 =
(

CN k
kT c

)
(6.65)

where CN is the N ×N covariance matrix with elements given by (6.62) for n, m =
1, . . . , N , the vector k has elements k(xn,xN+1) for n = 1, . . . , N , and the scalar

CN+1 = KN+1 + ��1I
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where the covariance matrix C has elements

C(xn,xm) = k(xn,xm) + β−1δnm. (6.62)

This result reflects the fact that the two Gaussian sources of randomness, namely
that associated with y(x) and that associated with ϵ, are independent and so their
covariances simply add.

One widely used kernel function for Gaussian process regression is given by the
exponential of a quadratic form, with the addition of constant and linear terms to
give

k(xn,xm) = θ0 exp
{
−θ1

2
∥xn − xm∥2
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+ θ2 + θ3xT

nxm. (6.63)

Note that the term involving θ3 corresponds to a parametric model that is a linear
function of the input variables. Samples from this prior are plotted for various values
of the parameters θ0, . . . , θ3 in Figure 6.5, and Figure 6.6 shows a set of points sam-
pled from the joint distribution (6.60) along with the corresponding values defined
by (6.61).

So far, we have used the Gaussian process viewpoint to build a model of the
joint distribution over sets of data points. Our goal in regression, however, is to
make predictions of the target variables for new inputs, given a set of training data.
Let us suppose that tN = (t1, . . . , tN )T, corresponding to input values x1, . . . ,xN ,
comprise the observed training set, and our goal is to predict the target variable tN+1

for a new input vector xN+1. This requires that we evaluate the predictive distri-
bution p(tN+1|tN ). Note that this distribution is conditioned also on the variables
x1, . . . ,xN and xN+1. However, to keep the notation simple we will not show these
conditioning variables explicitly.

To find the conditional distribution p(tN+1|t), we begin by writing down the
joint distribution p(tN+1), where tN+1 denotes the vector (t1, . . . , tN , tN+1)T. We
then apply the results from Section 2.3.1 to obtain the required conditional distribu-
tion, as illustrated in Figure 6.7.

From (6.61), the joint distribution over t1, . . . , tN+1 will be given by

p(tN+1) = N (tN+1|0,CN+1) (6.64)

where CN+1 is an (N + 1) × (N + 1) covariance matrix with elements given by
(6.62). Because this joint distribution is Gaussian, we can apply the results from
Section 2.3.1 to find the conditional Gaussian distribution. To do this, we partition
the covariance matrix as follows

CN+1 =
(
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kT c

)
(6.65)

where CN is the N ×N covariance matrix with elements given by (6.62) for n, m =
1, . . . , N , the vector k has elements k(xn,xN+1) for n = 1, . . . , N , and the scalar
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where the covariance matrix C has elements

C(xn,xm) = k(xn,xm) + β−1δnm. (6.62)

This result reflects the fact that the two Gaussian sources of randomness, namely
that associated with y(x) and that associated with ϵ, are independent and so their
covariances simply add.

One widely used kernel function for Gaussian process regression is given by the
exponential of a quadratic form, with the addition of constant and linear terms to
give

k(xn,xm) = θ0 exp
{
−θ1
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+ θ2 + θ3xT

nxm. (6.63)

Note that the term involving θ3 corresponds to a parametric model that is a linear
function of the input variables. Samples from this prior are plotted for various values
of the parameters θ0, . . . , θ3 in Figure 6.5, and Figure 6.6 shows a set of points sam-
pled from the joint distribution (6.60) along with the corresponding values defined
by (6.61).

So far, we have used the Gaussian process viewpoint to build a model of the
joint distribution over sets of data points. Our goal in regression, however, is to
make predictions of the target variables for new inputs, given a set of training data.
Let us suppose that tN = (t1, . . . , tN )T, corresponding to input values x1, . . . ,xN ,
comprise the observed training set, and our goal is to predict the target variable tN+1

for a new input vector xN+1. This requires that we evaluate the predictive distri-
bution p(tN+1|tN ). Note that this distribution is conditioned also on the variables
x1, . . . ,xN and xN+1. However, to keep the notation simple we will not show these
conditioning variables explicitly.

To find the conditional distribution p(tN+1|t), we begin by writing down the
joint distribution p(tN+1), where tN+1 denotes the vector (t1, . . . , tN , tN+1)T. We
then apply the results from Section 2.3.1 to obtain the required conditional distribu-
tion, as illustrated in Figure 6.7.

From (6.61), the joint distribution over t1, . . . , tN+1 will be given by

p(tN+1) = N (tN+1|0,CN+1) (6.64)

where CN+1 is an (N + 1) × (N + 1) covariance matrix with elements given by
(6.62). Because this joint distribution is Gaussian, we can apply the results from
Section 2.3.1 to find the conditional Gaussian distribution. To do this, we partition
the covariance matrix as follows

CN+1 =
(

CN k
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)
(6.65)

where CN is the N ×N covariance matrix with elements given by (6.62) for n, m =
1, . . . , N , the vector k has elements k(xn,xN+1) for n = 1, . . . , N , and the scalar
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where the covariance matrix C has elements

C(xn,xm) = k(xn,xm) + β−1δnm. (6.62)

This result reflects the fact that the two Gaussian sources of randomness, namely
that associated with y(x) and that associated with ϵ, are independent and so their
covariances simply add.

One widely used kernel function for Gaussian process regression is given by the
exponential of a quadratic form, with the addition of constant and linear terms to
give

k(xn,xm) = θ0 exp
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−θ1

2
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+ θ2 + θ3xT

nxm. (6.63)

Note that the term involving θ3 corresponds to a parametric model that is a linear
function of the input variables. Samples from this prior are plotted for various values
of the parameters θ0, . . . , θ3 in Figure 6.5, and Figure 6.6 shows a set of points sam-
pled from the joint distribution (6.60) along with the corresponding values defined
by (6.61).

So far, we have used the Gaussian process viewpoint to build a model of the
joint distribution over sets of data points. Our goal in regression, however, is to
make predictions of the target variables for new inputs, given a set of training data.
Let us suppose that tN = (t1, . . . , tN )T, corresponding to input values x1, . . . ,xN ,
comprise the observed training set, and our goal is to predict the target variable tN+1

for a new input vector xN+1. This requires that we evaluate the predictive distri-
bution p(tN+1|tN ). Note that this distribution is conditioned also on the variables
x1, . . . ,xN and xN+1. However, to keep the notation simple we will not show these
conditioning variables explicitly.

To find the conditional distribution p(tN+1|t), we begin by writing down the
joint distribution p(tN+1), where tN+1 denotes the vector (t1, . . . , tN , tN+1)T. We
then apply the results from Section 2.3.1 to obtain the required conditional distribu-
tion, as illustrated in Figure 6.7.

From (6.61), the joint distribution over t1, . . . , tN+1 will be given by

p(tN+1) = N (tN+1|0,CN+1) (6.64)

where CN+1 is an (N + 1) × (N + 1) covariance matrix with elements given by
(6.62). Because this joint distribution is Gaussian, we can apply the results from
Section 2.3.1 to find the conditional Gaussian distribution. To do this, we partition
the covariance matrix as follows

CN+1 =
(

CN k
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)
(6.65)

where CN is the N ×N covariance matrix with elements given by (6.62) for n, m =
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Now consider all of the terms in (2.70) that are linear in xa

xT
a {Λaaµa − Λab(xb − µb)} (2.74)

where we have used ΛT
ba = Λab. From our discussion of the general form (2.71),

the coefficient of xa in this expression must equal Σ−1
a|bµa|b and hence

µa|b = Σa|b {Λaaµa − Λab(xb − µb)}
= µa − Λ−1

aa Λab(xb − µb) (2.75)

where we have made use of (2.73).
The results (2.73) and (2.75) are expressed in terms of the partitioned precision

matrix of the original joint distribution p(xa,xb). We can also express these results
in terms of the corresponding partitioned covariance matrix. To do this, we make use
of the following identity for the inverse of a partitioned matrixExercise 2.24

(
A B
C D

)−1

=
(

M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)
(2.76)

where we have defined
M = (A − BD−1C)−1. (2.77)

The quantity M−1 is known as the Schur complement of the matrix on the left-hand
side of (2.76) with respect to the submatrix D. Using the definition

(
Σaa Σab

Σba Σbb

)−1

=
(

Λaa Λab

Λba Λbb

)
(2.78)

and making use of (2.76), we have

Λaa = (Σaa − ΣabΣ−1
bb Σba)−1 (2.79)

Λab = −(Σaa − ΣabΣ−1
bb Σba)−1ΣabΣ−1

bb . (2.80)

From these we obtain the following expressions for the mean and covariance of the
conditional distribution p(xa|xb)

µa|b = µa + ΣabΣ−1
bb (xb − µb) (2.81)

Σa|b = Σaa − ΣabΣ−1
bb Σba. (2.82)

Comparing (2.73) and (2.82), we see that the conditional distribution p(xa|xb) takes
a simpler form when expressed in terms of the partitioned precision matrix than
when it is expressed in terms of the partitioned covariance matrix. Note that the
mean of the conditional distribution p(xa|xb), given by (2.81), is a linear function of
xb and that the covariance, given by (2.82), is independent of xa. This represents an
example of a linear-Gaussian model.Section 8.1.4
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

on a regular lattice, such as the successive time points in a temporal sequence, or the
pixels in an image. Useful texts on wavelets include Ogden (1997), Mallat (1999),
and Vidakovic (1999).

Most of the discussion in this chapter, however, is independent of the particular
choice of basis function set, and so for most of our discussion we shall not specify
the particular form of the basis functions, except for the purposes of numerical il-
lustration. Indeed, much of our discussion will be equally applicable to the situation
in which the vector φ(x) of basis functions is simply the identity φ(x) = x. Fur-
thermore, in order to keep the notation simple, we shall focus on the case of a single
target variable t. However, in Section 3.1.5, we consider briefly the modifications
needed to deal with multiple target variables.

3.1.1 Maximum likelihood and least squares
In Chapter 1, we fitted polynomial functions to data sets by minimizing a sum-

of-squares error function. We also showed that this error function could be motivated
as the maximum likelihood solution under an assumed Gaussian noise model. Let
us return to this discussion and consider the least squares approach, and its relation
to maximum likelihood, in more detail.

As before, we assume that the target variable t is given by a deterministic func-
tion y(x,w) with additive Gaussian noise so that

t = y(x,w) + ϵ (3.7)

where ϵ is a zero mean Gaussian random variable with precision (inverse variance)
β. Thus we can write

p(t|x,w, β) = N (t|y(x,w), β−1). (3.8)

Recall that, if we assume a squared loss function, then the optimal prediction, for a
new value of x, will be given by the conditional mean of the target variable. In theSection 1.5.5
case of a Gaussian conditional distribution of the form (3.8), the conditional mean

30 1. INTRODUCTION

Again we can first determine the parameter vector wML governing the mean and sub-
sequently use this to find the precision βML as was the case for the simple Gaussian
distribution.Section 1.2.4

Having determined the parameters w and β, we can now make predictions for
new values of x. Because we now have a probabilistic model, these are expressed
in terms of the predictive distribution that gives the probability distribution over t,
rather than simply a point estimate, and is obtained by substituting the maximum
likelihood parameters into (1.60) to give

p(t|x,wML, βML) = N
(
t|y(x,wML), β−1

ML

)
. (1.64)

Now let us take a step towards a more Bayesian approach and introduce a prior
distribution over the polynomial coefficients w. For simplicity, let us consider a
Gaussian distribution of the form

p(w|α) = N (w|0, α−1I) =
( α

2π

)(M+1)/2

exp
{
−α

2
wTw

}
(1.65)

where α is the precision of the distribution, and M+1 is the total number of elements
in the vector w for an M th order polynomial. Variables such as α, which control
the distribution of model parameters, are called hyperparameters. Using Bayes’
theorem, the posterior distribution for w is proportional to the product of the prior
distribution and the likelihood function

p(w|x, t, α, β) ∝ p(t|x,w, β)p(w|α). (1.66)

We can now determine w by finding the most probable value of w given the data,
in other words by maximizing the posterior distribution. This technique is called
maximum posterior, or simply MAP. Taking the negative logarithm of (1.66) and
combining with (1.62) and (1.65), we find that the maximum of the posterior is
given by the minimum of

β

2

N∑

n=1

{y(xn,w) − tn}2 +
α

2
wTw. (1.67)

Thus we see that maximizing the posterior distribution is equivalent to minimizing
the regularized sum-of-squares error function encountered earlier in the form (1.4),
with a regularization parameter given by λ = α/β.

1.2.6 Bayesian curve fitting
Although we have included a prior distribution p(w|α), we are so far still mak-

ing a point estimate of w and so this does not yet amount to a Bayesian treatment. In
a fully Bayesian approach, we should consistently apply the sum and product rules
of probability, which requires, as we shall see shortly, that we integrate over all val-
ues of w. Such marginalizations lie at the heart of Bayesian methods for pattern
recognition.

µµµw|t = ↵�1���T(↵�1������T + ��1I)�1t

⌃⌃⌃w|t = ↵�1I� ↵�2���T(↵�1������T + ��1I)�1���

↵,�

�(x)T⌃⌃⌃w|t�(x) +
1
�

�(x)Tµµµw|t

y(x,w) = w

T�(x)
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PROCESSUS GAUSSIEN

• Modèle :                                                                   

• Entraînement :  calcul de K                                            

• Hyper-paramètres :    et ceux dans le noyau k(xn,xm) 

• Prédiction :

(variance :                                                        )
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résumé de la régression avec processus gaussien

t = y(x) + ✏

306 6. KERNEL METHODS

Figure 6.4 Samples from Gaus-
sian processes for a ‘Gaussian’ ker-
nel (left) and an exponential kernel
(right).
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6.4.2 Gaussian processes for regression
In order to apply Gaussian process models to the problem of regression, we need

to take account of the noise on the observed target values, which are given by

tn = yn + ϵn (6.57)

where yn = y(xn), and ϵn is a random noise variable whose value is chosen inde-
pendently for each observation n. Here we shall consider noise processes that have
a Gaussian distribution, so that

p(tn|yn) = N (tn|yn, β−1) (6.58)

where β is a hyperparameter representing the precision of the noise. Because the
noise is independent for each data point, the joint distribution of the target values
t = (t1, . . . , tN )T conditioned on the values of y = (y1, . . . , yN )T is given by an
isotropic Gaussian of the form

p(t|y) = N (t|y, β−1IN ) (6.59)

where IN denotes the N ×N unit matrix. From the definition of a Gaussian process,
the marginal distribution p(y) is given by a Gaussian whose mean is zero and whose
covariance is defined by a Gram matrix K so that

p(y) = N (y|0,K). (6.60)

The kernel function that determines K is typically chosen to express the property
that, for points xn and xm that are similar, the corresponding values y(xn) and
y(xm) will be more strongly correlated than for dissimilar points. Here the notion
of similarity will depend on the application.

In order to find the marginal distribution p(t), conditioned on the input values
x1, . . . ,xN , we need to integrate over y. This can be done by making use of the
results from Section 2.3.3 for the linear-Gaussian model. Using (2.115), we see that
the marginal distribution of t is given by

p(t) =
∫

p(t|y)p(y) dy = N (t|0,C) (6.61)

p(t|x,�) = N (t|y(x),��1)

�

k(x)T(K+ 1
� I)

�1t

k(x,x) + 1
� � k(x)T(K+ 1

� I)
�1

k(x)
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CHOIX DE LOI A PRIORI

• Si on ne connaît rien du problème à résoudre, il est 
préférable de choisir une loi a priori à haute entropie 
(flat prior)

‣ on peut aussi le traiter comme un hyper-paramètre et faire de la 
sélection de modèle

• Sinon, il sera avantageux d’incorporer dans la loi a priori, 
toute information sur la solution

‣ par contre, si l’information incorporée n’est pas juste, on risque d’en 
payer le prix avec une réduction de la performance
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choix de loi a priori
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EXTENSIONS

• L’apprentissage bayésien est un principe applicable à tout 
modèle probabiliste

‣ voir section 4.5 : régression logistique bayésienne

• On peut faire de la classification avec les processus gaussiens

‣ voir section 6.4.5

• On peut optimiser les hyper-paramètres sans ensemble de 
validation

‣ voir section 6.4.3
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extension de l’apprentissage bayésien


