

TYPES D'APPRENTISSAGE

Sujets: apprentissage supervisé, classification, régression

- L'apprentissage supervisé est lorsqu'on a une cible à prédire
 - **classification :** la cible est un indice de classe $t \in \{1, ..., K\}$
 - exemple : reconnaissance de caractères -
 - \checkmark x : vecteur des intensités de tous les pixels de l'image
 - \checkmark t:identité du caractère
 - **régression :** la cible est un nombre réel $t \in \mathbb{R}$
 - exemple : prédiction de la valeur d'une action à la bourse
 - ✓ x : vecteur contenant l'information sur l'activité économique de la journée
 - \checkmark t:valeur d'une action à la bourse le lendemain

TYPES D'APPRENTISSAGE

Sujets: apprentissage supervisé, classification, régression

- L'apprentissage supervisé est lorsqu'on a une cible à prédire
 - **classification :** la cible est un indice de classe $t \in \{1, ..., K\}$
 - exemple : reconnaissance de caractères
 - \checkmark x : vecteur des intensités de tous les pixels de l'image
 - \checkmark *t*:identité du caractère
 - **régression :** la cible est un nombre réel $t \in \mathbb{R}$
 - exemple : prédiction de la valeur d'une action à la bourse -
 - ✓ x : vecteur contenant l'information sur l'activité économique de la journée
 - \checkmark t:valeur d'une action à la bourse le lendemain

Sujets: minimisation de perte (coût, erreur)

- Comme trouver w ? (problème d'apprentissage)
 - on cherche le w^* qui minimise la somme de notre perte / erreur / coût sur l'ensemble d'entraînement

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

- le « $\frac{1}{2}$ » n'est pas important (mais simplifiera certains calculs)
- Un algorithme d'apprentissage résoudrait ce problème
 - à partir des données, il va retourner w*

Sujets: minimisation de perte (coût, erreur)

• Comme trouver w ? (problème d'apprentissage)

 on cherche le w* qui minimise la somme de notre perte / erreur / coût sur l'ensemble d'entraînement

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

- le « $\frac{1}{2}$ » n'est pas important (mais simplifiera certains calculs)
- Un algorithme d'apprentissage résoudrait ce problème
 - à partir des données, il va retourner w*

Sujets: régularisation

- Comment utiliser un grand M avec peu de données
 - par exemple, si on connait le «vrai» M
- **Régularisation** : on réduit la capacité autrement
 - exemple : on pénalise la somme du carré des paramètres (i.e. la norme Euclidienne au carré)

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

• où $\|\mathbf{w}\|^2 \equiv \mathbf{w}^{\Gamma}\mathbf{w} = w_0^2 + w_1^2 + \ldots + w_M^2$

HUGO LAROCHELLE

contrôle la capacité

Sujets: loi a priori et loi a posteriori

- $p(\mathbf{w}|\alpha)$ exprime notre croyance a priori sur la valeur de w
 - c'est une loi a priori (prior)
- Lorsqu'on observe des données, on peut mettre à jour notre croyance

$$p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

c'est la loi a posteriori (posterior)

Sujets: loi a priori et loi a posteriori

• $p(\mathbf{w}|\alpha)$ exprime notre croyance a priori sur la valeur de w

c'est une loi a priori (prior)

• Lorsqu'on observe des données, on peut mettre à jour notre croyance

$$p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

c'est la loi a posteriori (posterior)

Sujets: loi a priori et loi a posteriori

• $p(\mathbf{w}|\alpha)$ exprime notre croyance a priori sur la valeur de w

c'est une loi a priori (prior)

• Lorsqu'on observe des données, on peut mettre à jour notre croyance

$$p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

c'est la loi a posteriori (posterior)

Sujets: maximum a posteriori

- On pourrait choisir le modèle w qui est le plus (log-)probable selon nos croyances a posteriori $p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta)$
 - on appelle ça la solution **maximum a posteriori**

$$\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

• Équivalent à la perte régularisée si $\lambda = \alpha/\beta$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$
HUGO LAROCHELLE

Sujets: maximum a posteriori

- On pourrait choisir le modèle w qui est le plus (log-)probable selon nos croyances a posteriori $p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta)$
 - on appelle ça la solution maximum a posteriori

$$\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

• Équivalent à la perte régularisée si $\lambda = \alpha/\beta$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$
HUGO LAROCHELLE

Sujets: apprentissage bayésien

- Pourquoi choisir un seul w ?
 - peut-être que d'autres valeurs de w ont aussi une probabilité a posteriori élevée
- Cette observation motive l'apprentissage bayésien
 - on va tenir compte de notre incertitude sur la bonne valeur de w
 - le résultat sera un **ensemble** de modèles, où chaque modèle aura un poids $p(\mathbf{w} | \ll \text{données})$

Sujets: apprentissage bayésien

- L'apprentissage bayésien ne sera pas interprétable comme la minimisation d'une somme de pertes (régularisée)
 - c'est une approche fondamentalement différente à la minimisation de perte
- L'apprentissage bayésien aura tendance à être moins affecté par le sur-apprentissage
 - c'est dû au fait qu'on ne se commet pas à une seule valeur du modèle (un seul w)
 - on tient compte de la variance par rapport à w

Sujets: apprentissage bayésien

- En résumé, l'apprentissage bayésien c'est
 - définir p(wmodèle)
 - définir p(«données»|«modèle»)
 - calculer et manipuler la loi a posteriori

 $p(\text{wodèle} | \text{wodèle}) \propto p(\text{wodèle} | \text{wodèle}) p(\text{wodèle})$

afin de faire des prédictions sur de nouvelles données

Apprentissage bayésien - régression linéaire bayésienne

Sujets: apprentissage bayésien

- En résumé, l'apprentissage bayésien c'est
 - définir p(wmodèle)
 - définir p(«données»|«modèle»)
 - calculer et manipuler la loi a posteriori

 $p(\text{wodèle} | \text{wodèle}) \propto p(\text{wodèle} | \text{wodèle}) p(\text{wodèle})$

afin de faire des prédictions sur de nouvelles données

Sujets: apprentissage bayésien

- En résumé, l'apprentissage bayésien c'est
 - **définir** p(«modèle»)
 - **définir** p(«données»|«modèle»)
 - calculer et manipuler la loi a posteriori

 $p(\text{wodèle} | \text{wdonnées}) \propto p(\text{wdonnées} | \text{wodèle}) p(\text{wodèle})$

afin de faire des prédictions sur de nouvelles données

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - définir p(«modèle»)

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$
$$= \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - définir p(wmodèle)

à quel point w s'éloigne de 0 $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$ (hyper-paramètre) $= \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - **définir** *p*(«données»|«modèle»)

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - **définir** *p*(«données»|«modèle»)

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$

à quel point t_n s'éloigne de $\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)$ (hyper-paramètre)

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - **définir** *p*(«données»|«modèle»)

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$

ou de façon équivalente :

$$t = \Phi w + \epsilon$$

où ϵ est gaussien, de moyenne 0 et matrice de covariance $\beta^{-1}\mathbf{I}$ HUGO LAROCHELLE

à quel point t_n s'éloigne de $\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)$ (hyper-paramètre)

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - ▶ calculer la loi a posteriori p(«modèle» | «données»)

On remarque que $p(\mathbf{w}, \ll \operatorname{donn\acute{e}s})$ est gaussien, puisque

$$egin{pmatrix} \mathbf{w} \ \mathbf{t} \end{pmatrix} = egin{pmatrix} \mathbf{w} \ \mathbf{\Phi}\mathbf{w} + m{\epsilon} \end{pmatrix} = egin{pmatrix} \mathbf{I} & \mathbf{0} \ \mathbf{\Phi} & \mathbf{I} \end{pmatrix} egin{pmatrix} \mathbf{w} \ \mathbf{\epsilon} \end{pmatrix}$$

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - calculer la loi a posteriori p(«modèle»|«données»)

On remarque que $p(\mathbf{w}, \ll \operatorname{donn\acute{e}s})$ est gaussien, puisque

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - calculer la loi a posteriori p(«modèle» | «données»)

On remarque que $p(\mathbf{w}, \ll \operatorname{donn\acute{e}s})$ est gaussien, puisque

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - ▶ calculer la loi a posteriori p(«modèle» | «données»)

On remarque que $p(\mathbf{w}, \ll \operatorname{donn\acute{e}s})$ est gaussien avec paramètre $\boldsymbol{\mu}$

$$oldsymbol{\mu} \ oldsymbol{\mu} \ = egin{pmatrix} \mathbb{E}[\mathbf{w}] \ \mathbb{E}[\mathbf{\Phi}\mathbf{w}+oldsymbol{\epsilon}] \end{pmatrix} = egin{pmatrix} \mathbf{0} \ \mathbf{0} \ \mathbf{0} \end{pmatrix}$$

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - calculer la loi a posteriori p(wodèle | wdonnées)

On remarque que $p(\mathbf{w}, \ll \operatorname{donn\acute{e}es})$ est gaussien avec paramètre Σ

$$oldsymbol{\Sigma} \;= \left(egin{array}{ccc} \cos[\mathbf{w}] & \cos[\mathbf{w}, \mathbf{\Phi}\mathbf{w} + oldsymbol{\epsilon}] \ \cos[\mathbf{\Phi}\mathbf{w} + oldsymbol{\epsilon}, \mathbf{w}] & \cos[\mathbf{\Phi}\mathbf{w} + oldsymbol{\epsilon}] \end{array}
ight)$$

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - ▶ calculer la loi a posteriori p(«modèle» | «données»)

On remarque que $p(\mathbf{w}, \ll \operatorname{donn\acute{e}es})$ est gaussien avec paramètre Σ

$$\boldsymbol{\Sigma} = \begin{pmatrix} \alpha^{-1}\mathbf{I} & \operatorname{cov}[\mathbf{w}, \mathbf{\Phi}\mathbf{w} + \boldsymbol{\epsilon}] \\ \cos[\mathbf{\Phi}\mathbf{w} + \boldsymbol{\epsilon}, \mathbf{w}] & \operatorname{cov}[\mathbf{\Phi}\mathbf{w} + \boldsymbol{\epsilon}] \end{pmatrix}$$

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - ▶ calculer la loi a posteriori p(«modèle» | «données»)

On remarque que $p(\mathbf{w}, \ll \operatorname{donn\acute{e}es})$ est gaussien avec paramètre Σ

$$\boldsymbol{\Sigma} = \begin{pmatrix} \alpha^{-1}\mathbf{I} & \alpha^{-1}\boldsymbol{\Phi}^{\mathrm{T}} \\ \cos[\boldsymbol{\Phi}\mathbf{w} + \boldsymbol{\epsilon}, \mathbf{w}] & \cos[\boldsymbol{\Phi}\mathbf{w} + \boldsymbol{\epsilon}] \end{pmatrix}$$

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - calculer la loi a posteriori p(«modèle» | «données»)

On remarque que $p(\mathbf{w}, \ll \operatorname{donn\acute{e}es})$ est gaussien avec paramètre Σ

$$\boldsymbol{\Sigma} = \begin{pmatrix} \alpha^{-1} \mathbf{I} & \alpha^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \\ \alpha^{-1} \boldsymbol{\Phi} & \operatorname{cov}[\boldsymbol{\Phi} \mathbf{w} + \boldsymbol{\epsilon}] \end{pmatrix}$$

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - calculer la loi a posteriori p(«modèle»|«données»)

On remarque que $p(\mathbf{w}, \ll \operatorname{donn\acute{e}es})$ est gaussien avec paramètre Σ

$$\boldsymbol{\Sigma} = \begin{pmatrix} \alpha^{-1}\mathbf{I} & \alpha^{-1}\boldsymbol{\Phi}^{\mathrm{T}} \\ \alpha^{-1}\boldsymbol{\Phi} & \alpha^{-1}\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}} + \beta^{-1}\mathbf{I} \end{pmatrix}$$

Sujets: loi conditionnelle d'une gaussienne

• Soit $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)^{\mathrm{T}}$ une variable aléatoire gaussienne, de moyenne et matrice de covariance

$$oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_a \ oldsymbol{\mu}_b \end{pmatrix} \qquad oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{aa} & oldsymbol{\Sigma}_{ab} \ oldsymbol{\Sigma}_{ba} & oldsymbol{\Sigma}_{bb} \end{pmatrix}$$

3ILIT

• La loi conditionnelle $p(\mathbf{x}_a | \mathbf{x}_b)$ est aussi gaussienne :

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
- calculer la loi a posteriori p(wodèle | wdonnées)

 $p(\mathbf{w}, \ll \operatorname{donn\acute{e}es})$ est gaussien avec paramètres

$$\boldsymbol{\mu} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix} \qquad \boldsymbol{\Sigma} = \begin{pmatrix} \alpha^{-1}\mathbf{I} & \alpha^{-1}\boldsymbol{\Phi}^{\mathrm{T}} \\ \alpha^{-1}\boldsymbol{\Phi} & \alpha^{-1}\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}} + \beta^{-1}\mathbf{I} \end{pmatrix}$$

 $egin{array}{rcl} oldsymbol{\mu}_{a|b} &=& oldsymbol{\mu}_{a} + oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_{b} - oldsymbol{\mu}_{b}) \ oldsymbol{\Sigma}_{a|b} &=& oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} oldsymbol{\Sigma}_{ba} \end{array}$

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est

HUGO LAROCHELLE

calculer la loi a posteriori p(wodèle | wdonnées)

 $p(\mathbf{w}, \ll \operatorname{donn\acute{e}es})$ est gaussien avec paramètres

$$\boldsymbol{\mu} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix} \qquad \boldsymbol{\Sigma} = \begin{pmatrix} \alpha^{-1}\mathbf{I} & \alpha^{-1}\boldsymbol{\Phi}^{\mathrm{T}} \\ \alpha^{-1}\boldsymbol{\Phi} & \alpha^{-1}\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}} + \beta^{-1}\mathbf{I} \end{pmatrix}$$

donc $p(\mathbf{w}|$ «données») est gaussien avec paramètres

$$\boldsymbol{\mu}_{\mathbf{w}|\mathbf{t}} = \alpha^{-1} \boldsymbol{\Phi}^{\mathrm{T}} (\alpha^{-1} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} + \beta^{-1} \mathbf{I})^{-1} \mathbf{t}$$
$$\boldsymbol{\Sigma}_{\mathbf{w}|\mathbf{t}} = \alpha^{-1} \mathbf{I} - \alpha^{-2} \boldsymbol{\Phi}^{\mathrm{T}} (\alpha^{-1} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} + \beta^{-1} \mathbf{I})^{-1} \boldsymbol{\Phi}$$

 $egin{array}{rcl} oldsymbol{\mu}_{a|b} &=& oldsymbol{\mu}_{a} + oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_{b} - oldsymbol{\mu}_{b}) \ oldsymbol{\Sigma}_{a|b} &=& oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} oldsymbol{\Sigma}_{ba} \end{array}$

Apprentissage automatique Apprentissage bayésien - exemple : régression linéaire bayésienne

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - calculer la loi a posteriori p(wodèle | wdonnées)

 $p(\mathbf{w}, \ll \operatorname{donn\acute{e}es})$ est gaussien avec paramètres

$$\boldsymbol{\mu} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix} \qquad \boldsymbol{\Sigma} = \begin{pmatrix} \alpha^{-1}\mathbf{I} & \alpha^{-1}\boldsymbol{\Phi} \\ \alpha^{-1}\boldsymbol{\Phi} & \alpha^{-1}\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}} + \beta^{\mathrm{T}} \end{pmatrix}$$

donc $p(\mathbf{w}| \ll \text{données})$ est gaussien avec paramètres

Sujets: régression linéaire bayésienne

• Exemple (D=1)

Échantillons de

Sujets: régression linéaire bayésienne

• Exemple (D=1)

HUGO LAROCHELLE

Sujets: régression linéaire bayésienne

• Exemple (D=1)

HUGO LAROCHELLE

Sujets: régression linéaire bayésienne

• Exemple (D=1)

Échantillons de

HUGO LAROCHELLE

APPRENTISSAGE BAYÉSIEN

Sujets: apprentissage bayésien

- En résumé, l'apprentissage bayésien c'est
 - définir p(wmodèle)
 - définir p(«données»|«modèle»)
 - calculer et manipuler la loi a posteriori

 $p(\text{wodèle} | \text{wodèle}) \propto p(\text{wodèle} | \text{wodèle}) p(\text{wodèle})$

afin de faire des prédictions sur de nouvelles données

APPRENTISSAGE BAYÉSIEN

Sujets: apprentissage bayésien

- En résumé, l'apprentissage bayésien c'est
 - définir p(wmodèle)
 - définir p(«données» | «modèle»)
 - calculer et manipuler la loi a posteriori

 $p(\text{wodèle} | \text{wodèle}) \propto p(\text{wodèle} | \text{wodèle}) p(\text{wodèle})$

afin de faire des prédictions sur de nouvelles données

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - ▶ calculer la loi a posteriori p(«modèle» | «données»)

 $p(\mathbf{w}, \ll \operatorname{donn\acute{e}es})$ est gaussien avec paramètres

$$\boldsymbol{\mu} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix} \qquad \boldsymbol{\Sigma} = \begin{pmatrix} \alpha^{-1}\mathbf{I} & \alpha^{-1}\boldsymbol{\Phi} \\ \alpha^{-1}\boldsymbol{\Phi} & \alpha^{-1}\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}} + \beta^{\mathrm{T}} \end{pmatrix}$$

donc $p(\mathbf{w}| \ll \text{données})$ est gaussien avec paramètres

Sujets: prédiction bayésienne

• Notre modèle suppose que les données ont été générées par le réseau bayésien suivant :

Sujets: prédiction bayésienne

• Notre modèle suppose que les données ont été générées par le réseau bayésien suivant :

Sujets: prédiction bayésienne

Sujets: prédiction bayésienne

Sujets: prédiction bayésienne

Sujets: prédiction bayésienne

Sujets: prédiction bayésienne

• Faire une prédiction d'une nouvelle cible t consiste à faire l'inférence pour cette cible, étant données $\mathbf{t} = (t_1, \dots, t_N)^T$

HUGO LAROCHELLE

- à prédire
- connus
- inconnu

Sujets: prédiction bayésienne

• Faire une prédiction d'une nouvelle cible t consiste à faire l'inférence pour cette cible, étant données $\mathbf{t} = (t_1, \dots, t_N)^T$

HUGO LAROCHELLE

- à prédire
- connus
- inconnu

Sujets: loi prédictive a posteriori

• On doit calculer la **loi prédictive a posteriori** :

$$p(t|\mathbf{t}, \alpha, \beta) = \int p(t|\mathbf{w}, \beta) p(\mathbf{w}|\mathbf{t}, \alpha, \beta) \, \mathrm{d}\mathbf{w}$$

• On voit que c'est équivalent à un ensemble (infini) où chaque modèle $p(t|\mathbf{w},\beta)$ est pondéré par $p(\mathbf{w}|\mathbf{t},\alpha,\beta)$

Sujets: loi prédictive a posteriori

• On doit calculer la loi prédictive a posteriori :

$$p(t|\mathbf{t}, \alpha, \beta) = \int p(t|\mathbf{w}, \beta) p(\mathbf{w}|\mathbf{t}, \alpha, \beta) \, \mathrm{d}\mathbf{w}$$

- Régression linéaire : $t = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + \epsilon$
 - donc t est gaussien, avec paramètres

$$\mu_{t|t} = \mathbb{E}[\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}) + \epsilon|\mathbf{t}] = \boldsymbol{\mu}_{\mathbf{w}|t}^{\mathrm{T}}\phi(\mathbf{x})$$

$$\sigma_{t|t}^{2} = \operatorname{var}(\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}) + \epsilon|\mathbf{t}) = \phi(\mathbf{x})^{\mathrm{T}}\boldsymbol{\Sigma}_{\mathbf{w}|t}\phi(\mathbf{x}) + \frac{1}{\beta}$$

Hugo Larochelle

Sujets: loi prédictive a posteriori

- En plus d'une prédiction $\mu_{t|{\rm t}}$, on a notre incertitude sur notre prédiction $\sigma_{t|{\rm t}}^2$

Sujets: loi prédictive a posteriori

• En plus d'une prédiction $\mu_{t|t}$, on a notre incertitude sur notice prédiction $\sigma_{t|t}^2$

Sujets: loi

• En plus d' notre pré

HUGO LAROCHELLE

A POSTERIORI

Apprentissage bayésien - régression à noyau bayésienne

Sujets: régression linéaire bayésienne

- En résumé, l'apprentissage bayésien c'est
 - ▶ calculer la loi a posteriori p(«modèle» | «données»)

 $p(\mathbf{w}, \ll \operatorname{donn\acute{e}es})$ est gaussien avec paramètres

$$\boldsymbol{\mu} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix} \qquad \boldsymbol{\Sigma} = \begin{pmatrix} \alpha^{-1}\mathbf{I} & \alpha^{-1}\boldsymbol{\Phi} \\ \alpha^{-1}\boldsymbol{\Phi} & \alpha^{-1}\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}} + \beta^{\mathrm{T}} \end{pmatrix}$$

donc $p(\mathbf{w}| \ll \text{données})$ est gaussien avec paramètres

Sujets: loi prédictive a posteriori

• On doit calculer la loi prédictive a posteriori :

$$p(t|\mathbf{t}, \alpha, \beta) = \int p(t|\mathbf{w}, \beta) p(\mathbf{w}|\mathbf{t}, \alpha, \beta) \, \mathrm{d}\mathbf{w}$$

- Régression linéaire : $t = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + \epsilon$
 - donc t est gaussien, avec paramètres

$$\mu_{t|t} = \mathbb{E}[\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}) + \epsilon|\mathbf{t}] = \boldsymbol{\mu}_{\mathbf{w}|t}^{\mathrm{T}}\phi(\mathbf{x})$$

$$\sigma_{t|t}^{2} = \operatorname{var}(\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}) + \epsilon|\mathbf{t}) = \phi(\mathbf{x})^{\mathrm{T}}\boldsymbol{\Sigma}_{\mathbf{w}|t}\phi(\mathbf{x}) + \frac{1}{\beta}$$

HUGO LAROCHELLE

Sujets: régression bayésienne à noyau

• On pourrait utiliser le truc du noyau pour obtenir une **version** à noyau de la régression linéaire bayésienne

$$\mu_{t|t} = \phi(\mathbf{x})^{\mathrm{T}} \boldsymbol{\mu}_{\mathbf{w}|t}$$

$$\sigma_{t|t}^2 = \phi(\mathbf{x})^{\mathrm{T}} \mathbf{\Sigma}_{\mathbf{w}|t} \phi(\mathbf{x}) + \frac{1}{\beta}$$

HUGO LAROCHELLE

Sujets: régression bayésienne à noyau

• On pourrait utiliser le truc du noyau pour obtenir une **version** à noyau de la régression linéaire bayésienne

$$\boldsymbol{\mu}_{\mathbf{w}|t} = \alpha^{-1} \boldsymbol{\Phi}^{\mathrm{T}} (\alpha)$$
 $\boldsymbol{\Sigma}_{\mathbf{w}|t} = \alpha^{-1} \mathbf{I} - \alpha$

 $\mu_{t|t} = \phi(\mathbf{x})^{\mathrm{T}} \boldsymbol{\mu}_{\mathbf{w}|t}$

$$\sigma_{t|t}^2 = \phi(\mathbf{x})^{\mathrm{T}} \mathbf{\Sigma}_{\mathbf{w}|t} \phi(\mathbf{x}) + \frac{1}{\beta}$$

$\alpha^{-1} \mathbf{\Phi} \mathbf{\Phi}^{\mathrm{T}} + \beta^{-1} \mathbf{I})^{-1} \mathbf{t}$ $\alpha^{-2} \mathbf{\Phi}^{\mathrm{T}} (\alpha^{-1} \mathbf{\Phi} \mathbf{\Phi}^{\mathrm{T}} + \beta^{-1} \mathbf{I})^{-1} \mathbf{\Phi}$

Sujets: régression bayésienne à noyau

• On pourrait utiliser le truc du noyau pour obtenir une **version** à noyau de la régression linéaire bayésienne

$$\boldsymbol{\mu}_{\mathbf{w}|t} = \alpha^{-1} \boldsymbol{\Phi}^{\mathrm{T}} (\alpha)$$
$$\boldsymbol{\Sigma}_{\mathbf{w}|t} = \alpha^{-1} \mathbf{I} - \alpha$$

$$\mu_{t|t} = \phi(\mathbf{x})^{\mathrm{T}} \boldsymbol{\mu}_{\mathbf{w}|t} = \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \frac{1}{\beta} \mathbf{I})^{-1} \mathbf{t}$$

$$\sigma_{t|t}^2 = \phi(\mathbf{x})^{\mathrm{T}} \mathbf{\Sigma}_{\mathbf{w}|t} \phi(\mathbf{x}) + \frac{1}{\beta}$$

 $\alpha^{-1} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} + \beta^{-1} \mathbf{I})^{-1} \mathbf{t}$ $\alpha^{-2} \mathbf{\Phi}^{\mathrm{T}} (\alpha^{-1} \mathbf{\Phi} \mathbf{\Phi}^{\mathrm{T}} + \beta^{-1} \mathbf{I})^{-1} \mathbf{\Phi}$

 $k(\mathbf{x}_n, \mathbf{x}_m) = \frac{1}{\alpha} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_m)$

Sujets: régression bayésienne à noyau

• On pourrait utiliser le truc du noyau pour obtenir une **version** à noyau de la régression linéaire bayésienne

$$\boldsymbol{\mu}_{\mathbf{w}|t} = \alpha^{-1} \boldsymbol{\Phi}^{\mathrm{T}} (\alpha)$$
$$\boldsymbol{\Sigma}_{\mathbf{w}|t} = \alpha^{-1} \mathbf{I} - \alpha$$

$$\mu_{t|t} = \phi(\mathbf{x})^{\mathrm{T}} \boldsymbol{\mu}_{\mathbf{w}|t} = \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \frac{1}{\beta} \mathbf{I})^{-1} \mathbf{t}$$

$$\sigma_{t|t}^{2} = \phi(\mathbf{x})^{\mathrm{T}} \mathbf{\Sigma}_{\mathbf{w}|t} \phi(\mathbf{x}) + \frac{1}{\beta}$$
$$= k(\mathbf{x}, \mathbf{x}) + \frac{1}{\beta} - \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \frac{1}{\beta} \mathbf{I})^{-1} \mathbf{K} (\mathbf{X} + \frac{1}{\beta} \mathbf{I})^{$$

HUGO LAROCHELLE

 $\alpha^{-1} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} + \beta^{-1} \mathbf{I})^{-1} \mathbf{t}$ $\alpha^{-2} \mathbf{\Phi}^{\mathrm{T}} (\alpha^{-1} \mathbf{\Phi} \mathbf{\Phi}^{\mathrm{T}} + \beta^{-1} \mathbf{I})^{-1} \mathbf{\Phi}$

 $k(\mathbf{x}_n, \mathbf{x}_m) = \frac{1}{\alpha} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_m)$

Régression Bayésienne à Noyau

Sujets: équivalence avec la régression normale

- La prédiction est la même que pour la régression à noyau non-bayésienne
 - dans ce cas-ci, l'apprentissage bayésien n'apporte pas d'avantages en terme de généralisation
 - par contre, il donne une estimation de la certitude sur la prédiction faite par le modèle (sa variance)

Régression Bayésienne à Noyau

Sujets: régression bayésienne à noyau

• On pourrait utiliser le truc du noyau pour obtenir une **version** à noyau de la régression linéaire bayésienne

$$\mu_{t|t} = \phi(\mathbf{x})^{\mathrm{T}} \boldsymbol{\mu}_{\mathbf{w}|t} = \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \frac{1}{\beta} \mathbf{I})^{-1} \mathbf{t}$$

$$\sigma_{t|t}^{2} = \phi(\mathbf{x})^{\mathrm{T}} \mathbf{\Sigma}_{\mathbf{w}|t} \phi(\mathbf{x}) + \frac{1}{\beta}$$
$$= k(\mathbf{x}, \mathbf{x}) + \frac{1}{\beta} - \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \frac{1}{\beta} \mathbf{I})^{-1} \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \frac{1}{\beta} \mathbf{I})^{-1} \mathbf{k}(\mathbf{x})^{\mathrm{T}} \mathbf{K} + \frac{1}{\beta} \mathbf{I})^{-1} \mathbf{k} \mathbf{K} + \frac{1}{\beta} \mathbf{I})^{-1} \mathbf{K} \mathbf{K} + \frac{1}{\beta} \mathbf{I} \mathbf{K}$$

HUGO LAROCHELLE

PROCESSUS GAUSSIEN

Sujets: processus gaussien

• On va dériver le même algorithme autrement, sans supposer $t = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + \epsilon$

- On va plutôt poser $t = y(\mathbf{x}) + \epsilon$ et traiter $y(\mathbf{x})$ comme une variable aléatoire
 - notre a priori sur la fonction $y(\mathbf{x})$ est qu'elle a été générée par un processus gaussien
 - en d'autres mots, on va utiliser un processus gaussien pour notre p(«modèle»)

PROCESSUS GAUSSIEN

Sujets: processus gaussien

• Si $y(\mathbf{x})$ est généré d'un processus gaussien, alors la loi de probabilité de tout vecteur $\mathbf{y} = (y(\mathbf{x}_1), \dots, y(\mathbf{x}_N))^{\mathrm{T}}$ est

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K})$$

peu importe la valeur des \mathbf{x}_n et leur nombre N

- Un processus gaussien est défini par le noyau $k(\mathbf{x}_n, \mathbf{x}_m)$
 - on l'appelle fonction de covariance : $cov[y(\mathbf{x}_n), y(\mathbf{x}_m)] = k(\mathbf{x}_n, \mathbf{x}_m)$

 $K_{nm} = k(\mathbf{x}_n, \mathbf{x}_m)$

O LA

PROCESSUS GAUSSIEN

Sujets: processus gaussien

• On suppose que $t = y(\mathbf{x}) + \epsilon$ où ϵ suit une loi $\mathcal{N}(\epsilon|0, \beta^{-1})$

• Alors \mathbf{t}_{N+1} suit une loi gaussienne

$$p(\mathbf{t}_{N+1}) = \mathcal{N}(\mathbf{t}_{N+1}|\mathbf{0}, \mathbf{C}_{N+1})$$

où $\mathbf{C}_{N+1} = \mathbf{K}_{N+1} + \beta^{-1}\mathbf{I}$

Sujets: processus gaussien

• On suppose que $t = y(\mathbf{x}) + \epsilon$ où ϵ suit une loi $\mathcal{N}(\epsilon|0, \beta^{-1}) | p(\text{«données»}| \text{«modèle»})$

• Alors \mathbf{t}_{N+1} suit une loi gaussienne

$$p(\mathbf{t}_{N+1}) = \mathcal{N}(\mathbf{t}_{N+1}|\mathbf{0}, \mathbf{C}_{N+1})$$

où $\mathbf{C}_{N+1} = \mathbf{K}_{N+1} + \beta^{-1}\mathbf{I}$

Sujets: processus gaussien

• Soit la loi gaussienne

$$p(\mathbf{t}_{N+1}) = \mathcal{N}(\mathbf{t}_{N+1}|\mathbf{0}, \mathbf{C}_{N+1})$$

• On a donc que la loi conditionnelle de t étant données $\mathbf{t} = (t_1, \dots, t_N)$ est une gaussienne de paramètres

$$\mu_{t|t} = \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \frac{1}{\beta} \mathbf{I})^{-1} \mathbf{t}$$
$$\sigma_{t|t}^{2} = k(\mathbf{x}, \mathbf{x}) + \frac{1}{\beta} - \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \frac{1}{\beta} \mathbf{I})^{-1} \mathbf{k}(\mathbf{x})$$

HUGO LAROCHELLE

Sujets: processus gaussien

• Soit la loi gaussienne

$$p(\mathbf{t}_{N+1}) = \mathcal{N}(\mathbf{t}_{N+1}|\mathbf{0}, \mathbf{C}_{N+1})$$

• On a donc que la loi conditionnelle de t étant données $\mathbf{t} = (t_1, \dots, t_N)$ est une gaussienne de paramètres

$$\mu_{t|t} = \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \frac{1}{\beta} \mathbf{I})^{-1} \mathbf{t}$$
$$\sigma_{t|t}^{2} = k(\mathbf{x}, \mathbf{x}) + \frac{1}{\beta} - \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \frac{1}{\beta} \mathbf{I})^{-1} \mathbf{k}(\mathbf{x})$$

HUGO LAROCHELLE

 $\overbrace{\mathbf{k}(\mathbf{x})^{\mathrm{T}}}^{\mathbf{K} + \frac{1}{\beta} \mathbf{I}} \frac{\mathbf{k}(\mathbf{x})}{\mathbf{k}(\mathbf{x}, \mathbf{x}) + \frac{1}{\beta}}$

Sujets: processus gaussien

Soit la loi gaussienne

$$p(\mathbf{t}_{N+1}) = \mathcal{N}(\mathbf{t}_{N+1}|\mathbf{0}, \mathbf{C}_{N+1})$$

• On a donc que la loi conditionnelle de t étant données $\mathbf{t} = (t_1, \dots, t_N)$ est une gaussienne de paramètres

$$\mu_{t|t} = \mathbf{k}(\mathbf{x})^{\mathrm{T}}(\mathbf{K} + \frac{1}{\beta}\mathbf{I})^{-1}\mathbf{t}$$

$$\sigma_{t|t}^2 = k(\mathbf{x}, \mathbf{x}) + \frac{1}{\beta} - \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \frac{1}{\beta} \mathbf{I})^{-1} \mathbf{k}(\mathbf{x})$$

$$egin{array}{l} oldsymbol{\mu}_{a|b} \ oldsymbol{\Sigma}_{a|b} \end{array}$$

HUGO LAROCHELLE

 $\overbrace{\mathbf{k}(\mathbf{x})^{\mathrm{T}}}^{\mathbf{K} + \frac{1}{\beta} \mathbf{I}} \begin{array}{c} \mathbf{k}(\mathbf{x}) \\ \mathbf{k}(\mathbf{x})^{\mathrm{T}} & k(\mathbf{x}, \mathbf{x}) + \frac{1}{\beta} \end{array} \right)$

 $egin{array}{rcl} &=& oldsymbol{\mu}_a + oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_b - oldsymbol{\mu}_b) \ &=& oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} oldsymbol{\Sigma}_{ba} \end{array}$

RÉGRESSION LINÉAIRE BAYÉSIENNE

Sujets: résumé de la régression linéaire bayésienne

• Modèle : $y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})$

$$\frac{p(\text{«données»}|\text{«modèle»})}{p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})} \qquad p(\mathbf{w}|\alpha) = p(\mathbf{w}|\alpha)$$

• Entraînement : inférence de $p(\mathbf{w} | \ll \text{données})$

$$\boldsymbol{\mu}_{\mathbf{w}|\mathbf{t}} = \alpha^{-1} \boldsymbol{\Phi}^{\mathrm{T}} (\alpha^{-1} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} + \beta^{-1} \mathbf{I})^{-1} \mathbf{t}$$
$$\boldsymbol{\Sigma}_{\mathbf{w}|\mathbf{t}} = \alpha^{-1} \mathbf{I} - \alpha^{-2} \boldsymbol{\Phi}^{\mathrm{T}} (\alpha^{-1} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} + \beta^{-1} \mathbf{I})^{-1} \boldsymbol{\Phi}$$

- Hyper-paramètres : α, β
- Prédiction : $\phi(\mathbf{x})^{\mathrm{T}} \boldsymbol{\mu}_{\mathbf{w}|\mathsf{t}}$ (variance : $\phi(\mathbf{x})^{\mathrm{T}} \Sigma_{\mathbf{w}|\mathsf{t}} \phi(\mathbf{x}) + \frac{1}{\beta}$)

HUGO LAROCHELLE

p(«modèle»)= $\mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$

Sujets: résumé de la régression avec processus gaussien

• Modèle : $t = y(\mathbf{x}) + \epsilon$

$$\begin{array}{l} p(\text{*données*}|\text{*modèle*}) \\ p(t|\mathbf{x},\beta) = \mathcal{N}(t|y(\mathbf{x}),\beta^{-1}) \end{array} \qquad \qquad p(\mathbf{y}) = p(\mathbf{y}$$

- Entraînement : calcul de K
- Hyper-paramètres : β et ceux dans le noyau $k(\mathbf{x}_n, \mathbf{x}_m)$
- Prédiction : $\mathbf{k}(\mathbf{x})^{\mathrm{T}}(\mathbf{K} + \frac{1}{\beta}\mathbf{I})^{-1}\mathbf{t}$

(variance: $k(\mathbf{x}, \mathbf{x}) + \frac{1}{\beta} - \mathbf{k}(\mathbf{x})^{\mathrm{T}}(\mathbf{K} + \frac{1}{\beta}\mathbf{I})^{-1}\mathbf{k}(\mathbf{x})$)

HUGO LAROCHELLE

p(«modèle») $= \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K})$

CHOIX DE LOI A PRIORI

Sujets: choix de loi a priori

- Si on ne connaît rien du problème à résoudre, il est préférable de choisir une loi a priori à haute entropie (flat prior)
 - on peut aussi le traiter comme un hyper-paramètre et faire de la sélection de modèle

- Sinon, il sera avantageux d'incorporer dans la loi a priori, toute information sur la solution
 - par contre, si l'information incorporée n'est pas juste, on risque d'en payer le prix avec une réduction de la performance

Sujets: extension de l'apprentissage bayésien

- L'apprentissage bayésien est un principe applicable à tout modèle probabiliste
 - voir section 4.5 : régression logistique bayésienne
- On peut faire de la classification avec les processus gaussiens
 - voir section 6.4.5
- On peut optimiser les hyper-paramètres sans ensemble de validation
 - voir section 6.4.3