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• La plupart des algorithmes d’apprentissage vus sont basés 
sur un modèle probabiliste

‣ un modèle probabiliste exprime comment on suppose que nos 
données ont été générées

• Comment simule-t-on ce processus de génération ?

‣ on utilise un algorithme d’échantillonnage tel que :

probabilité de générer une donnée  =  probabilité assignée par le modèle
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• Pourquoi échantillonner ?

‣ pour visualiser ce qui a été appris
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visualisation
On the Quantitative Analysis of Deep Belief Networks

Training samples MoB (100) Base-rate β = 0 β = 0.5 β = 0.95 β = 1.0
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The course of AIS run for model CD25(500)
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Figure 2. Top row: First two panels show random samples from the training set and a mixture of Bernoullis model with 100 components.
The last 4 panels display the course of 16 AIS runs for CD25(500) model by starting from a simple base-rate model and annealing to the
final complex model. Bottom row: Random samples generated from three RBM’s and corresponding three DBN’s models.

Table 1. Results of estimating partition functions of RBM’s along with the estimates of the average training and test log-probabilities.
For all models we used 14,500 intermediate distributions.

AIS True Estimates Time Avg. Test log-prob. Avg. Train log-prob.

Runs lnZ ln Ẑ ln (Ẑ ± σ̂) ln (Ẑ ± 3σ̂) (mins) true estimate true estimate
100 CD1(25) 255.41 256.52 255.00, 257.10 0.0000, 257.73 3.3 −151.57 −152.68 −152.35 −153.46

CD3(25) 307.47 307.63 307.44, 307.79 306.91, 308.05 3.3 −143.03 −143.20 −143.94 −144.11
CD1(20) 279.59 279.57 279.43, 279.68 279.12, 279.87 3.1 −164.52 −164.50 −164.89 −164.87

100 CD1(500) — 350.15 350.04, 350.25 349.77, 350.42 10.4 — −125.53 — −122.86
CD3(500) — 280.09 279.99, 280.17 279.76, 280.33 10.4 — −105.50 — −102.81
CD25(500) — 451.28 451.19, 451.37 450.97, 451.52 10.4 — −86.34 — −83.10

accurate estimate ofZ . Of course, we are relying on an em-
pirical estimate of AIS’s accuracy, which could potentially
be misleading. Nonetheless, Fig. 3 (bottom row) shows that
as we increase the number of annealing runs, the value of
the estimator does not oscillate drastically.

While performing these tests, we observed that contrastive
divergence learning with T=3 results in considerably better
generative model than CD learning with T=1: the differ-
ence of 20 nats is striking! Clearly, the widely used prac-
tice of CD learning with T=1 is a rather poor “substitute”
for maximum likelihood learning. Inspired by this result,
we trained a model by starting with T=1, and gradually
increasing T to 25 during the course of CD training, as
suggested by (Carreira-Perpinan & Hinton, 2005). We call
this model CD25(500). Training this model was computa-
tionally much more demanding. However, the estimate of
the average test log-probability for this model was about
−86, which is 39 and 19 nats better than the CD1(500) and
CD3(500) models respectively. Fig. 2 (bottom row) shows
samples generated from all three models by randomly ini-
tializing binary states of the visible units and running alter-
nating Gibbs for 100,000 steps. Certainly, samples gener-

ated by CD25(500) look much more like the real handwrit-
ten digits, than either CD1(500) or CD3(500).

We also obtained an estimate of the log ratio of two parti-
tion functions r̂AIS = lnZCD25(500)/ZCD3(500) = 169.96,
using 10,000 βk and 100 annealing runs. The estimates of
the individual log-partition functions were ln ẐCD25(500) =

451.28 and ln ẐCD3(500) = 280.09, in which case the log
ratio is 451.28−280.09=171.19. This is in agreement (to
within three standard deviations) with the direct estimate of
the ratio, r̂AIS =169.96.

For a simple comparison we also trained several mixture of
Bernoullis models (see Fig. 2, top left panel) with 10, 100,
and 500 components. The corresponding average test log-
probabilities were −168.95, −142.63, and −137.64. The
data generated from the mixture model looks better than
CD3(500), although our quantitive results reveal this is due
to over-fitting. The RBM’s make much better predictions.

5.2. Estimating lower bounds for DBN’s
We greedily trained three DBN models with two hidden
layers. The first model, called DBN-CD1, was greedily

Ensemble d’entraînement Mélange de produits 
de Bernoulli

Salakhutdinov et Murray, 2008
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‣ pour estimer une espérance

• Un tel calcul d’une espérance ainsi est appelé une 
estimation Monte Carlo
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estimation d’espérance, estimation Monte Carlo

524 11. SAMPLING METHODS

Figure 11.1 Schematic illustration of a function f(z)
whose expectation is to be evaluated with
respect to a distribution p(z).

p(z) f(z)

z

variables, we wish to evaluate the expectation

E[f ] =
∫

f(z)p(z) dz (11.1)

where the integral is replaced by summation in the case of discrete variables. This
is illustrated schematically for a single continuous variable in Figure 11.1. We shall
suppose that such expectations are too complex to be evaluated exactly using analyt-
ical techniques.

The general idea behind sampling methods is to obtain a set of samples z(l)

(where l = 1, . . . , L) drawn independently from the distribution p(z). This allows
the expectation (11.1) to be approximated by a finite sum

f̂ =
1
L

L∑

l=1

f(z(l)). (11.2)

As long as the samples z(l) are drawn from the distribution p(z), then E[f̂ ] = E[f ]
and so the estimator f̂ has the correct mean. The variance of the estimator is given
byExercise 11.1

var[f̂ ] =
1
L

E
[
(f − E[f ])2

]
(11.3)

is the variance of the function f(z) under the distribution p(z). It is worth emphasiz-
ing that the accuracy of the estimator therefore does not depend on the dimension-
ality of z, and that, in principle, high accuracy may be achievable with a relatively
small number of samples z(l). In practice, ten or twenty independent samples may
suffice to estimate an expectation to sufficient accuracy.

The problem, however, is that the samples {z(l)} might not be independent, and
so the effective sample size might be much smaller than the apparent sample size.
Also, referring back to Figure 11.1, we note that if f(z) is small in regions where
p(z) is large, and vice versa, then the expectation may be dominated by regions
of small probability, implying that relatively large sample sizes will be required to
achieve sufficient accuracy.

For many models, the joint distribution p(z) is conveniently specified in terms
of a graphical model. In the case of a directed graph with no observed variables, it is
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156 3. LINEAR MODELS FOR REGRESSION

posterior distribution would become a delta function centred on the true parameter
values, shown by the white cross.

Other forms of prior over the parameters can be considered. For instance, we
can generalize the Gaussian prior to give

p(w|α) =
[

q

2

(α

2

)1/q 1
Γ(1/q)

]M

exp

(
−α

2

M∑

j=1

|wj |q
)

(3.56)

in which q = 2 corresponds to the Gaussian distribution, and only in this case is the
prior conjugate to the likelihood function (3.10). Finding the maximum of the poste-
rior distribution over w corresponds to minimization of the regularized error function
(3.29). In the case of the Gaussian prior, the mode of the posterior distribution was
equal to the mean, although this will no longer hold if q ̸= 2.

3.3.2 Predictive distribution
In practice, we are not usually interested in the value of w itself but rather in

making predictions of t for new values of x. This requires that we evaluate the
predictive distribution defined by

p(t|t, α, β) =
∫

p(t|w, β)p(w|t, α, β) dw (3.57)

in which t is the vector of target values from the training set, and we have omitted the
corresponding input vectors from the right-hand side of the conditioning statements
to simplify the notation. The conditional distribution p(t|x,w, β) of the target vari-
able is given by (3.8), and the posterior weight distribution is given by (3.49). We
see that (3.57) involves the convolution of two Gaussian distributions, and so making
use of the result (2.115) from Section 8.1.4, we see that the predictive distribution
takes the formExercise 3.10

p(t|x, t, α, β) = N (t|mT
Nφ(x), σ2

N (x)) (3.58)

where the variance σ2
N (x) of the predictive distribution is given by

σ2
N (x) =

1
β

+ φ(x)TSNφ(x). (3.59)

The first term in (3.59) represents the noise on the data whereas the second term
reflects the uncertainty associated with the parameters w. Because the noise process
and the distribution of w are independent Gaussians, their variances are additive.
Note that, as additional data points are observed, the posterior distribution becomes
narrower. As a consequence it can be shown (Qazaz et al., 1997) that σ2

N+1(x) !
σ2

N (x). In the limit N → ∞, the second term in (3.59) goes to zero, and the varianceExercise 3.11
of the predictive distribution arises solely from the additive noise governed by the
parameter β.

As an illustration of the predictive distribution for Bayesian linear regression
models, let us return to the synthetic sinusoidal data set of Section 1.1. In Figure 3.8,
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evaluated directly using the original samples together with the weights, because

E[f(z)] =
∫

f(z)p(z) dz

=

∫
f(z)[p̃(z)/q(z)]q(z) dz
∫

[p̃(z)/q(z)]q(z) dz

≃
L∑

l=1

wlf(zl). (11.27)

11.1.6 Sampling and the EM algorithm
In addition to providing a mechanism for direct implementation of the Bayesian

framework, Monte Carlo methods can also play a role in the frequentist paradigm,
for example to find maximum likelihood solutions. In particular, sampling methods
can be used to approximate the E step of the EM algorithm for models in which the
E step cannot be performed analytically. Consider a model with hidden variables
Z, visible (observed) variables X, and parameters θ. The function that is optimized
with respect to θ in the M step is the expected complete-data log likelihood, given
by

Q(θ, θold) =
∫

p(Z|X, θold) ln p(Z,X|θ) dZ. (11.28)

We can use sampling methods to approximate this integral by a finite sum over sam-
ples {Z(l)}, which are drawn from the current estimate for the posterior distribution
p(Z|X, θold), so that

Q(θ, θold) ≃ 1
L

L∑

l=1

ln p(Z(l),X|θ). (11.29)

The Q function is then optimized in the usual way in the M step. This procedure is
called the Monte Carlo EM algorithm.

It is straightforward to extend this to the problem of finding the mode of the
posterior distribution over θ (the MAP estimate) when a prior distribution p(θ) has
been defined, simply by adding ln p(θ) to the function Q(θ, θold) before performing
the M step.

A particular instance of the Monte Carlo EM algorithm, called stochastic EM,
arises if we consider a finite mixture model, and draw just one sample at each E step.
Here the latent variable Z characterizes which of the K components of the mixture
is responsible for generating each data point. In the E step, a sample of Z is taken
from the posterior distribution p(Z|X, θold) where X is the data set. This effectively
makes a hard assignment of each data point to one of the components in the mixture.
In the M step, this sampled approximation to the posterior distribution is used to
update the model parameters in the usual way.
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ÉCHANTILLONNAGE DE BASE
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• Variable : Z ∈ I , fonction de densité p(z)
             et fonction de répartition 

• Algorithme

1. échantillonner un nombre x uniformément dans (0,1)

2. retourner P -1(x)
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P (z) =

Z z

min(I)
p(x)dx
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Figure 11.2 Geometrical interpretation of the trans-
formation method for generating nonuni-
formly distributed random numbers. h(y)
is the indefinite integral of the desired dis-
tribution p(y). If a uniformly distributed
random variable z is transformed using
y = h−1(z), then y will be distributed ac-
cording to p(y). p(y)

h(y)

y0

1

Another example of a distribution to which the transformation method can be
applied is given by the Cauchy distribution

p(y) =
1
π

1
1 + y2

. (11.8)

In this case, the inverse of the indefinite integral can be expressed in terms of the
‘tan’ function.Exercise 11.3

The generalization to multiple variables is straightforward and involves the Ja-
cobian of the change of variables, so that

p(y1, . . . , yM ) = p(z1, . . . , zM )
∣∣∣∣
∂(z1, . . . , zM )
∂(y1, . . . , yM )

∣∣∣∣ . (11.9)

As a final example of the transformation method we consider the Box-Muller
method for generating samples from a Gaussian distribution. First, suppose we gen-
erate pairs of uniformly distributed random numbers z1, z2 ∈ (−1, 1), which we can
do by transforming a variable distributed uniformly over (0, 1) using z → 2z − 1.
Next we discard each pair unless it satisfies z2

1 + z2
2 ! 1. This leads to a uniform

distribution of points inside the unit circle with p(z1, z2) = 1/π, as illustrated in
Figure 11.3. Then, for each pair z1, z2 we evaluate the quantities

Figure 11.3 The Box-Muller method for generating Gaussian dis-
tributed random numbers starts by generating samples
from a uniform distribution inside the unit circle.
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• Débutons par les méthodes de base pour l’échantillonnage

‣ d’une variable aléatoire gaussienne vectorielle

• Variable : Z gaussienne, fonction de densité

• Algorithme

1. générer vecteur gaussien x de moyenne 0 et covariance I

2. calculer L telle que 

3. retourner 

17

variable aléatoire gaussienne vectorielle

N (z|µµµ,⌃⌃⌃)

Lx+µµµ

⌃⌃⌃ = LLT
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‣  

‣  

18

variable aléatoire gaussienne vectorielle

N (z|µµµ,⌃⌃⌃)

E[Lx+µµµ] = LE[x] +µµµ = µµµ

cov[Lx+µµµ] = Lcov[x]L

T
= LL

T
= ⌃

⌃

⌃
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‣ d’une variable aléatoire gaussienne vectorielle

• Comment calculer L ?

‣ décomposition de Cholesky (L est alors triangulaire inférieure)

‣ à partir de la décomposition en valeurs/vecteurs propres de     :

19

variable aléatoire gaussienne vectorielle

L = U⇤⇤⇤
1
2UT

⌃⌃⌃
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Quoi faire lorsque ces méthodes 
ne sont pas applicables ?
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EXEMPLE

• Considérons le cas d’une loi 

où calculer     est trop lourd, mais pas  

• Cas spécifiques :

‣ loi a posteriori en apprentissage bayésien

‣ probabilités p(z|x) de modèles plus riche qu’un mélange

22

528 11. SAMPLING METHODS

y1 = z1

(
−2 ln z1

r2

)1/2

(11.10)

y2 = z2

(
−2 ln z2

r2

)1/2

(11.11)

where r2 = z2
1 + z2

2 . Then the joint distribution of y1 and y2 is given byExercise 11.4

p(y1, y2) = p(z1, z2)
∣∣∣∣
∂(z1, z2)
∂(y1, y2)

∣∣∣∣

=
[

1√
2π

exp(−y2
1/2)

] [
1√
2π

exp(−y2
2/2)

]
(11.12)

and so y1 and y2 are independent and each has a Gaussian distribution with zero
mean and unit variance.

If y has a Gaussian distribution with zero mean and unit variance, then σy + µ
will have a Gaussian distribution with mean µ and variance σ2. To generate vector-
valued variables having a multivariate Gaussian distribution with mean µ and co-
variance Σ, we can make use of the Cholesky decomposition, which takes the form
Σ = LLT (Press et al., 1992). Then, if z is a vector valued random variable whose
components are independent and Gaussian distributed with zero mean and unit vari-
ance, then y = µ + Lz will have mean µ and covariance Σ.Exercise 11.5

Obviously, the transformation technique depends for its success on the ability
to calculate and then invert the indefinite integral of the required distribution. Such
operations will only be feasible for a limited number of simple distributions, and so
we must turn to alternative approaches in search of a more general strategy. Here
we consider two techniques called rejection sampling and importance sampling. Al-
though mainly limited to univariate distributions and thus not directly applicable to
complex problems in many dimensions, they do form important components in more
general strategies.

11.1.2 Rejection sampling
The rejection sampling framework allows us to sample from relatively complex

distributions, subject to certain constraints. We begin by considering univariate dis-
tributions and discuss the extension to multiple dimensions subsequently.

Suppose we wish to sample from a distribution p(z) that is not one of the simple,
standard distributions considered so far, and that sampling directly from p(z) is dif-
ficult. Furthermore suppose, as is often the case, that we are easily able to evaluate
p(z) for any given value of z, up to some normalizing constant Z, so that

p(z) =
1
Zp

p̃(z) (11.13)

where p̃(z) can readily be evaluated, but Zp is unknown.
In order to apply rejection sampling, we need some simpler distribution q(z),

sometimes called a proposal distribution, from which we can readily draw samples.
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exemple de cas problématique

p(«modèle»|«données») ∝ p(«données»|«modèle») p(«modèle»)



Sujets: 

HUGO LAROCHELLE

MÉTHODE DE REJET

• Supposons qu’on ait une loi q(z) telle que                     
pour une certaine valuer de k
‣ q(z) est appelée loi instrumentale (proposal distribution)  

•Méthode de rejet
1. échantillonner z0 de q(z)

2. échantillonner u0 uniformément entre 0 et kq(z0)

3. si u0 <        , alors retourner z0

4. sinon, revenir à l’étape 1.
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Figure 11.4 In the rejection sampling method,
samples are drawn from a sim-
ple distribution q(z) and rejected
if they fall in the grey area be-
tween the unnormalized distribu-
tion ep(z) and the scaled distribu-
tion kq(z). The resulting samples
are distributed according to p(z),
which is the normalized version of
ep(z). z0 z

u0

kq(z0) kq(z)

p̃(z)

We next introduce a constant k whose value is chosen such that kq(z) ! p̃(z) for
all values of z. The function kq(z) is called the comparison function and is illus-
trated for a univariate distribution in Figure 11.4. Each step of the rejection sampler
involves generating two random numbers. First, we generate a number z0 from the
distribution q(z). Next, we generate a number u0 from the uniform distribution over
[0, kq(z0)]. This pair of random numbers has uniform distribution under the curve
of the function kq(z). Finally, if u0 > p̃(z0) then the sample is rejected, otherwise
u0 is retained. Thus the pair is rejected if it lies in the grey shaded region in Fig-
ure 11.4. The remaining pairs then have uniform distribution under the curve of p̃(z),
and hence the corresponding z values are distributed according to p(z), as desired.Exercise 11.6

The original values of z are generated from the distribution q(z), and these sam-
ples are then accepted with probability p̃(z)/kq(z), and so the probability that a
sample will be accepted is given by

p(accept) =
∫

{p̃(z)/kq(z)} q(z) dz

=
1
k

∫
p̃(z) dz. (11.14)

Thus the fraction of points that are rejected by this method depends on the ratio of
the area under the unnormalized distribution p̃(z) to the area under the curve kq(z).
We therefore see that the constant k should be as small as possible subject to the
limitation that kq(z) must be nowhere less than p̃(z).

As an illustration of the use of rejection sampling, consider the task of sampling
from the gamma distribution

Gam(z|a, b) =
baza−1 exp(−bz)

Γ(a)
(11.15)

which, for a > 1, has a bell-shaped form, as shown in Figure 11.5. A suitable
proposal distribution is therefore the Cauchy (11.8) because this too is bell-shaped
and because we can use the transformation method, discussed earlier, to sample from
it. We need to generalize the Cauchy slightly to ensure that it nowhere has a smaller
value than the gamma distribution. This can be achieved by transforming a uniform
random variable y using z = b tan y + c, which gives random numbers distributed
according to.Exercise 11.7
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Sujets: 

HUGO LAROCHELLE

MÉTHODE DE REJET

• La loi q(z) doit être non nulle pour chaque valeur de z 
telle que p(z) est non nulle

• Si q(z) ne donne pas une borne serrée, cette méthode 
peut être très inefficace

• Trouver q(z) qui satisfait la condition                     n’est 
pas toujours facile 

‣ il est parfois possible de construire q(z) de façon automatique 
(voir section 11.1.3)
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it. We need to generalize the Cauchy slightly to ensure that it nowhere has a smaller
value than the gamma distribution. This can be achieved by transforming a uniform
random variable y using z = b tan y + c, which gives random numbers distributed
according to.Exercise 11.7



Apprentissage automatique
Méthodes d’échantillonnage - échantillonnage préférentiel



Sujets: 

HUGO LAROCHELLE

ÉCHANTILLONNAGE DE BASE

• Débutons par les méthodes de base pour l’échantillonnage

‣ d’une variable aléatoire discrète scalaire 

‣ d’une variable aléatoire continue scalaire

‣ d’une variable aléatoire gaussienne vectorielle

• On va supposer qu’on a accès à un générateur pour une 
variable aléatoire uniformément distribuée entre 0 et 1
‣ les méthodes de base vont utiliser les nombres aléatoires qu’il 

génère
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méthodes de base
RAPPEL

Quoi faire lorsque ces méthodes 
ne sont pas applicables ?



Sujets: 

HUGO LAROCHELLE

MÉTHODE DE REJET

• Supposons qu’on ait une loi q(z) telle que                     
pour une certaine valuer de k
‣ q(z) est appelée loi instrumentale (proposal distribution)  

•Méthode de rejet
1. échantillonner z0 de q(z)

2. échantillonner u0 uniformément entre 0 et kq(z0)

3. si u0 <        , alors retourner z0

4. sinon, revenir à l’étape 1.
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Figure 11.4 In the rejection sampling method,
samples are drawn from a sim-
ple distribution q(z) and rejected
if they fall in the grey area be-
tween the unnormalized distribu-
tion ep(z) and the scaled distribu-
tion kq(z). The resulting samples
are distributed according to p(z),
which is the normalized version of
ep(z). z0 z
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kq(z0) kq(z)

p̃(z)

We next introduce a constant k whose value is chosen such that kq(z) ! p̃(z) for
all values of z. The function kq(z) is called the comparison function and is illus-
trated for a univariate distribution in Figure 11.4. Each step of the rejection sampler
involves generating two random numbers. First, we generate a number z0 from the
distribution q(z). Next, we generate a number u0 from the uniform distribution over
[0, kq(z0)]. This pair of random numbers has uniform distribution under the curve
of the function kq(z). Finally, if u0 > p̃(z0) then the sample is rejected, otherwise
u0 is retained. Thus the pair is rejected if it lies in the grey shaded region in Fig-
ure 11.4. The remaining pairs then have uniform distribution under the curve of p̃(z),
and hence the corresponding z values are distributed according to p(z), as desired.Exercise 11.6

The original values of z are generated from the distribution q(z), and these sam-
ples are then accepted with probability p̃(z)/kq(z), and so the probability that a
sample will be accepted is given by

p(accept) =
∫

{p̃(z)/kq(z)} q(z) dz

=
1
k

∫
p̃(z) dz. (11.14)

Thus the fraction of points that are rejected by this method depends on the ratio of
the area under the unnormalized distribution p̃(z) to the area under the curve kq(z).
We therefore see that the constant k should be as small as possible subject to the
limitation that kq(z) must be nowhere less than p̃(z).

As an illustration of the use of rejection sampling, consider the task of sampling
from the gamma distribution

Gam(z|a, b) =
baza−1 exp(−bz)

Γ(a)
(11.15)

which, for a > 1, has a bell-shaped form, as shown in Figure 11.5. A suitable
proposal distribution is therefore the Cauchy (11.8) because this too is bell-shaped
and because we can use the transformation method, discussed earlier, to sample from
it. We need to generalize the Cauchy slightly to ensure that it nowhere has a smaller
value than the gamma distribution. This can be achieved by transforming a uniform
random variable y using z = b tan y + c, which gives random numbers distributed
according to.Exercise 11.7
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RAPPEL



Sujets: 

HUGO LAROCHELLE
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Figure 11.1 Schematic illustration of a function f(z)
whose expectation is to be evaluated with
respect to a distribution p(z).

p(z) f(z)

z

variables, we wish to evaluate the expectation

E[f ] =
∫

f(z)p(z) dz (11.1)

where the integral is replaced by summation in the case of discrete variables. This
is illustrated schematically for a single continuous variable in Figure 11.1. We shall
suppose that such expectations are too complex to be evaluated exactly using analyt-
ical techniques.

The general idea behind sampling methods is to obtain a set of samples z(l)

(where l = 1, . . . , L) drawn independently from the distribution p(z). This allows
the expectation (11.1) to be approximated by a finite sum

f̂ =
1
L

L∑

l=1

f(z(l)). (11.2)

As long as the samples z(l) are drawn from the distribution p(z), then E[f̂ ] = E[f ]
and so the estimator f̂ has the correct mean. The variance of the estimator is given
byExercise 11.1

var[f̂ ] =
1
L

E
[
(f − E[f ])2

]
(11.3)

is the variance of the function f(z) under the distribution p(z). It is worth emphasiz-
ing that the accuracy of the estimator therefore does not depend on the dimension-
ality of z, and that, in principle, high accuracy may be achievable with a relatively
small number of samples z(l). In practice, ten or twenty independent samples may
suffice to estimate an expectation to sufficient accuracy.

The problem, however, is that the samples {z(l)} might not be independent, and
so the effective sample size might be much smaller than the apparent sample size.
Also, referring back to Figure 11.1, we note that if f(z) is small in regions where
p(z) is large, and vice versa, then the expectation may be dominated by regions
of small probability, implying that relatively large sample sizes will be required to
achieve sufficient accuracy.

For many models, the joint distribution p(z) is conveniently specified in terms
of a graphical model. In the case of a directed graph with no observed variables, it is
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samples {z(l)} drawn from q(z)

E[f ] =
∫

f(z)p(z) dz

=
∫

f(z)
p(z)
q(z)

q(z) dz

≃ 1
L

L∑

l=1

p(z(l))
q(z(l))

f(z(l)). (11.19)

The quantities rl = p(z(l))/q(z(l)) are known as importance weights, and they cor-
rect the bias introduced by sampling from the wrong distribution. Note that, unlike
rejection sampling, all of the samples generated are retained.

It will often be the case that the distribution p(z) can only be evaluated up to a
normalization constant, so that p(z) = p̃(z)/Zp where p̃(z) can be evaluated easily,
whereas Zp is unknown. Similarly, we may wish to use an importance sampling
distribution q(z) = q̃(z)/Zq, which has the same property. We then have

E[f ] =
∫

f(z)p(z) dz

=
Zq

Zp

∫
f(z)

p̃(z)
q̃(z)

q(z) dz

≃ Zq

Zp

1
L

L∑

l=1

r̃lf(z(l)). (11.20)

where r̃l = p̃(z(l))/q̃(z(l)). We can use the same sample set to evaluate the ratio
Zp/Zq with the result

Zp

Zq
=

1
Zq

∫
p̃(z) dz =

∫
p̃(z)
q̃(z)

q(z) dz

≃ 1
L

L∑

l=1

r̃l (11.21)

and hence

E[f ] ≃
L∑

l=1

wlf(z(l)) (11.22)

where we have defined

wl =
r̃l∑
m r̃m

=
p̃(z(l))/q(z(l))∑

m p̃(z(m))/q(z(m))
. (11.23)

As with rejection sampling, the success of the importance sampling approach
depends crucially on how well the sampling distribution q(z) matches the desired
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As with rejection sampling, the success of the importance sampling approach
depends crucially on how well the sampling distribution q(z) matches the desired
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As with rejection sampling, the success of the importance sampling approach
depends crucially on how well the sampling distribution q(z) matches the desired

ÉCHANTILLONNAGE PRÉFÉRENTIEL

• Supposons qu’on ait une loi q(z) (proposal distribution)  

•Échantillonnage préférentiel
1. échantillonner L fois de q(z), pour obtenir z(1), ... , z(L)

2. calculer les L poids w1, ..., wL 

3. retourner 
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• Comme pour la méthode de rejet, le succès de cette 
méthode dépend de la proximité entre q(z) et p(z) 

• Dans le cas où                       , on peut utiliser les poids 
suivants : 
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p(z) = 1
Zp

ep(z)
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As with rejection sampling, the success of the importance sampling approach
depends crucially on how well the sampling distribution q(z) matches the desired
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As with rejection sampling, the success of the importance sampling approach
depends crucially on how well the sampling distribution q(z) matches the desired
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MÉTHODE DE REJET

• Supposons qu’on ait une loi q(z) telle que                     
pour une certaine valuer de k
‣ q(z) est appelée loi instrumentale (proposal distribution)  

•Méthode de rejet
1. échantillonner z0 de q(z)

2. échantillonner u0 uniformément entre 0 et kq(z0)

3. si u0 <        , alors retourner z0

4. sinon, revenir à l’étape 1.
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Figure 11.4 In the rejection sampling method,
samples are drawn from a sim-
ple distribution q(z) and rejected
if they fall in the grey area be-
tween the unnormalized distribu-
tion ep(z) and the scaled distribu-
tion kq(z). The resulting samples
are distributed according to p(z),
which is the normalized version of
ep(z). z0 z

u0

kq(z0) kq(z)

p̃(z)

We next introduce a constant k whose value is chosen such that kq(z) ! p̃(z) for
all values of z. The function kq(z) is called the comparison function and is illus-
trated for a univariate distribution in Figure 11.4. Each step of the rejection sampler
involves generating two random numbers. First, we generate a number z0 from the
distribution q(z). Next, we generate a number u0 from the uniform distribution over
[0, kq(z0)]. This pair of random numbers has uniform distribution under the curve
of the function kq(z). Finally, if u0 > p̃(z0) then the sample is rejected, otherwise
u0 is retained. Thus the pair is rejected if it lies in the grey shaded region in Fig-
ure 11.4. The remaining pairs then have uniform distribution under the curve of p̃(z),
and hence the corresponding z values are distributed according to p(z), as desired.Exercise 11.6

The original values of z are generated from the distribution q(z), and these sam-
ples are then accepted with probability p̃(z)/kq(z), and so the probability that a
sample will be accepted is given by

p(accept) =
∫

{p̃(z)/kq(z)} q(z) dz

=
1
k

∫
p̃(z) dz. (11.14)

Thus the fraction of points that are rejected by this method depends on the ratio of
the area under the unnormalized distribution p̃(z) to the area under the curve kq(z).
We therefore see that the constant k should be as small as possible subject to the
limitation that kq(z) must be nowhere less than p̃(z).

As an illustration of the use of rejection sampling, consider the task of sampling
from the gamma distribution

Gam(z|a, b) =
baza−1 exp(−bz)

Γ(a)
(11.15)

which, for a > 1, has a bell-shaped form, as shown in Figure 11.5. A suitable
proposal distribution is therefore the Cauchy (11.8) because this too is bell-shaped
and because we can use the transformation method, discussed earlier, to sample from
it. We need to generalize the Cauchy slightly to ensure that it nowhere has a smaller
value than the gamma distribution. This can be achieved by transforming a uniform
random variable y using z = b tan y + c, which gives random numbers distributed
according to.Exercise 11.7
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ples are then accepted with probability p̃(z)/kq(z), and so the probability that a
sample will be accepted is given by

p(accept) =
∫

{p̃(z)/kq(z)} q(z) dz

=
1
k

∫
p̃(z) dz. (11.14)

Thus the fraction of points that are rejected by this method depends on the ratio of
the area under the unnormalized distribution p̃(z) to the area under the curve kq(z).
We therefore see that the constant k should be as small as possible subject to the
limitation that kq(z) must be nowhere less than p̃(z).

As an illustration of the use of rejection sampling, consider the task of sampling
from the gamma distribution

Gam(z|a, b) =
baza−1 exp(−bz)

Γ(a)
(11.15)

which, for a > 1, has a bell-shaped form, as shown in Figure 11.5. A suitable
proposal distribution is therefore the Cauchy (11.8) because this too is bell-shaped
and because we can use the transformation method, discussed earlier, to sample from
it. We need to generalize the Cauchy slightly to ensure that it nowhere has a smaller
value than the gamma distribution. This can be achieved by transforming a uniform
random variable y using z = b tan y + c, which gives random numbers distributed
according to.Exercise 11.7
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pour une certaine valuer de k
‣ q(z) est appelée loi instrumentale (proposal distribution)  

•Méthode de rejet
1. échantillonner z0 de q(z)

2. échantillonner u0 uniformément entre 0 et kq(z0)

3. si u0 <        , alors retourner z0

4. sinon, revenir à l’étape 1.
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MONTE CARLO PAR CHAÎNES DE MARKOV

• On aimerait que l’algorithme tire profit de ses 
«bons coups»

‣ lorsqu’il trouve un bon échantillon z0, on pourrait l’utiliser pour tirer 
notre prochain échantillon (p. ex. un échantillon «proche»)

• Spécifiquement, on pourrait tirer les z(1), ... , z(L) en chaîne

‣ la séquence z(1), ... , z(L) est donc définie par une chaîne de Markov

• C’est ce qu’on appelle une méthode Monte Carlo par 
Chaînes de Markov (MCMC)
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METROPOLIS-HASTINGS

• Supposons qu’on ait une loi q(z(l) |z(l-1))

•Metropolis-Hastings
1. échantillonner un proposition z* de q(z(l) |z(l-1))

2. avec probabilité d’acceptation 

assigner z(l)      z*, sinon z(l)      z(l-1)

3. retourner z(l)
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Se simplifie s’il y a symétrie :
q(z(l) |z(l-1)) = q(z(l-1) |z(l))
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METROPOLIS-HASTINGS

• Le choix de la loi de proposition q(z(l) |z(l-1)) est important

‣ une condition suffisante pour que l’échantillonnage soit valide est 
que la probabilité de proposer toute valeur légale de z soit non 
nulle sous q(z(l) |z(l-1)) 

• Un choix courant de q(z(l) |z(l-1)) est de prendre une 

gaussienne centrée en z(l-1)

‣ une petite covariance impliquera des déplacements lents

‣ une grande covariance impliquera des risques de ne pas accepter 
souvent
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• Exemple :
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Figure 11.9 A simple illustration using Metropo-
lis algorithm to sample from a
Gaussian distribution whose one
standard-deviation contour is shown
by the ellipse. The proposal distribu-
tion is an isotropic Gaussian distri-
bution whose standard deviation is
0.2. Steps that are accepted are
shown as green lines, and rejected
steps are shown in red. A total of
150 candidate samples are gener-
ated, of which 43 are rejected.
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walk. Consider a state space z consisting of the integers, with probabilities

p(z(τ+1) = z(τ)) = 0.5 (11.34)

p(z(τ+1) = z(τ) + 1) = 0.25 (11.35)

p(z(τ+1) = z(τ) − 1) = 0.25 (11.36)

where z(τ) denotes the state at step τ . If the initial state is z(1) = 0, then by sym-
metry the expected state at time τ will also be zero E[z(τ)] = 0, and similarly it is
easily seen that E[(z(τ))2] = τ/2. Thus after τ steps, the random walk has only trav-Exercise 11.10
elled a distance that on average is proportional to the square root of τ . This square
root dependence is typical of random walk behaviour and shows that random walks
are very inefficient in exploring the state space. As we shall see, a central goal in
designing Markov chain Monte Carlo methods is to avoid random walk behaviour.

11.2.1 Markov chains
Before discussing Markov chain Monte Carlo methods in more detail, it is use-

ful to study some general properties of Markov chains in more detail. In particular,
we ask under what circumstances will a Markov chain converge to the desired dis-
tribution. A first-order Markov chain is defined to be a series of random variables
z(1), . . . , z(M) such that the following conditional independence property holds for
m ∈ {1, . . . , M − 1}

p(z(m+1)|z(1), . . . , z(m)) = p(z(m+1)|z(m)). (11.37)

This of course can be represented as a directed graph in the form of a chain, an ex-
ample of which is shown in Figure 8.38. We can then specify the Markov chain by
giving the probability distribution for the initial variable p(z(0)) together with the

propositions acceptées

propositions rejetées
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‣ lorsqu’il trouve un bon échantillon z0, on pourrait l’utiliser pour tirer 
notre prochain échantillon (p. ex. un échantillon «proche»)
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‣ la séquence z(1), ... , z(L) est donc définie par une chaîne de Markov
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Chaînes de Markov (MCMC)
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• Équivaut au Metropolis-Hastings, mais dont la loi 
instrumentale est telle qu’on accepte toujours
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Figure 11.11 Illustration of Gibbs sampling by alter-
nate updates of two variables whose
distribution is a correlated Gaussian.
The step size is governed by the stan-
dard deviation of the conditional distri-
bution (green curve), and is O(l), lead-
ing to slow progress in the direction of
elongation of the joint distribution (red
ellipse). The number of steps needed
to obtain an independent sample from
the distribution is O((L/l)2).

z1

z2

L

l

the conditional distributions are Gaussian, which represents a more general class of
distributions than the multivariate Gaussian because, for example, the non-Gaussian
distribution p(z, y) ∝ exp(−z2y2) has Gaussian conditional distributions. At each
step of the Gibbs sampling algorithm, the conditional distribution for a particular
component zi has some mean µi and some variance σ2

i . In the over-relaxation frame-
work, the value of zi is replaced with

z′i = µi + α(zi − µi) + σi(1 − α2
i )

1/2ν (11.50)

where ν is a Gaussian random variable with zero mean and unit variance, and α
is a parameter such that −1 < α < 1. For α = 0, the method is equivalent to
standard Gibbs sampling, and for α < 0 the step is biased to the opposite side of the
mean. This step leaves the desired distribution invariant because if zi has mean µi

and variance σ2
i , then so too does z′i. The effect of over-relaxation is to encourage

directed motion through state space when the variables are highly correlated. The
framework of ordered over-relaxation (Neal, 1999) generalizes this approach to non-
Gaussian distributions.

The practical applicability of Gibbs sampling depends on the ease with which
samples can be drawn from the conditional distributions p(zk|z\k). In the case of
probability distributions specified using graphical models, the conditional distribu-
tions for individual nodes depend only on the variables in the corresponding Markov
blankets, as illustrated in Figure 11.12. For directed graphs, a wide choice of condi-
tional distributions for the individual nodes conditioned on their parents will lead to
conditional distributions for Gibbs sampling that are log concave. The adaptive re-
jection sampling methods discussed in Section 11.1.3 therefore provide a framework
for Monte Carlo sampling from directed graphs with broad applicability.

If the graph is constructed using distributions from the exponential family, and
if the parent-child relationships preserve conjugacy, then the full conditional distri-
butions arising in Gibbs sampling will have the same functional form as the orig-
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•Échantillonnage de Gibbs cyclique
1. assigner z(l)       z(l-1)

2. pour k de 1 à D

- remplacer zk(l) par un échantillon de 

3. retourner z(l)

• Permet de réduire la corrélation entre les z(l)

• L’ordre de remplacement des zk(l) n’est pas important
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version cyclique

p(z(l)k |z(l)1 , ... , z(l)k�1, z
(l)
k+1, ... , z

(l)
D )



Apprentissage automatique
Méthodes d’échantillonnage - résumé
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ÉCHANTILLONNAGE

• Pourquoi échantillonner d’un modèle ?

‣ pour estimer une espérance

• Un tel calcul d’une espérance ainsi est appelé une 
estimation Monte Carlo
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estimation d’espérance, estimation Monte Carlo

524 11. SAMPLING METHODS

Figure 11.1 Schematic illustration of a function f(z)
whose expectation is to be evaluated with
respect to a distribution p(z).

p(z) f(z)

z

variables, we wish to evaluate the expectation

E[f ] =
∫

f(z)p(z) dz (11.1)

where the integral is replaced by summation in the case of discrete variables. This
is illustrated schematically for a single continuous variable in Figure 11.1. We shall
suppose that such expectations are too complex to be evaluated exactly using analyt-
ical techniques.

The general idea behind sampling methods is to obtain a set of samples z(l)

(where l = 1, . . . , L) drawn independently from the distribution p(z). This allows
the expectation (11.1) to be approximated by a finite sum

f̂ =
1
L

L∑

l=1

f(z(l)). (11.2)

As long as the samples z(l) are drawn from the distribution p(z), then E[f̂ ] = E[f ]
and so the estimator f̂ has the correct mean. The variance of the estimator is given
byExercise 11.1

var[f̂ ] =
1
L

E
[
(f − E[f ])2

]
(11.3)

is the variance of the function f(z) under the distribution p(z). It is worth emphasiz-
ing that the accuracy of the estimator therefore does not depend on the dimension-
ality of z, and that, in principle, high accuracy may be achievable with a relatively
small number of samples z(l). In practice, ten or twenty independent samples may
suffice to estimate an expectation to sufficient accuracy.

The problem, however, is that the samples {z(l)} might not be independent, and
so the effective sample size might be much smaller than the apparent sample size.
Also, referring back to Figure 11.1, we note that if f(z) is small in regions where
p(z) is large, and vice versa, then the expectation may be dominated by regions
of small probability, implying that relatively large sample sizes will be required to
achieve sufficient accuracy.

For many models, the joint distribution p(z) is conveniently specified in terms
of a graphical model. In the case of a directed graph with no observed variables, it is
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≈

z(l) échantillonnés de p(z)

RAPPEL
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ÉCHANTILLONNAGE DE BASE

• Méthodes de base pour l’échantillonnage

‣ d’une variable aléatoire discrète scalaire 

‣ d’une variable aléatoire continue scalaire

‣ d’une variable aléatoire gaussienne vectorielle

• Dans ces cas, on est garanti d’obtenir des échantillons de 
qualité, en un temps bien déterminé
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méthodes de base
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MÉTHODE DE REJET

• Si les méthodes de base ne sont pas applicables à p(z) :

Méthode de rejet :
‣ doit fournir une loi instrumentale (proposal distribution) q(z)

‣ si la loi q(z) n’est pas proche de p(z), on peut attendre longtemps 
avant d’avoir un échantillon (particulièrement en haute dimension)
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méthode de rejet
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ÉCHANTILLONNAGE PRÉFÉRENTIEL

• Si les méthodes de base ne sont pas applicables à p(z) :

Échantillonnage préférentiel
‣ doit fournir une loi instrumentale (proposal distribution) q(z)

‣ meilleur que la méthode de rejet pour l’estimation Monte Carlo

‣ permet seulement d’approximer une somme (ne donne pas des 
échantillons de p(z))

‣ si la loi q(z) n’est pas proche de p(z), l’approximation peut être très 
mauvaise (particulièrement en haute dimension)
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échantillonnage préférentiel
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METROPOLIS-HASTINGS

• Si les méthodes de base ne sont pas applicables à p(z) :

Métropolis-Hastings
‣ méthode MCMC

‣ nécessite seulement une loi instrumentale 
conditionnelle q(z(l) |z(l-1))

‣ donne une séquence d’échantillons qui sont corrélés
(ne peut pas les traiter comme des échantillons indépendants)
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Metropolis-Hastings
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ÉCHANTILLONNAGE DE GIBBS

• Si les méthodes de base ne sont pas applicables à p(z) :

Échantillonnage de Gibbs
‣ méthode MCMC

‣ ne nécessite pas de loi instrumentale

‣ nécessite que les conditionnelles
soient calculables  

‣ donne une séquence d’échantillons qui sont corrélés
(ne peut pas les traiter comme des échantillons indépendants)
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Échantillonnage de Gibbs

p(z(l)k |z(l)1 , ... , z(l)k�1, z
(l)
k+1, ... , z

(l)
D )
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METROPOLIS-HASTINGS

• Toutes les méthodes MCMC génèrent des échantillons 
corrélés 

‣ pour réduire la corrélation, on collecte seulement tous les M 
échantillons (p. ex. M=100)

‣ on ignore également les premiers échantillons générés 
(période de burn-in)

• Pour en savoir plus sur les propriétés que doivent satisfaire 
les méthodes MCMC : voir section 11.2.1
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Metropolis-Hastings


