Natural language processing - one-hot encoding

NATURAL LANGUAGE PROCESSING

Topics: one-hot encoding

- From its word ID, we get a basic representation of a word through the one-hot encoding of the ID
 - the one-hot vector of an ID is a vector filled with 0s, except for a 1 at the position associated with the ID
 - ex.: for vocabulary size D=10, the one-hot vector of word ID w=4 is

e(w) = [0 0 0 1 0 0 0 0 0]

• a one-hot encoding makes no assumption about word similarity

-
$$||\mathbf{e}(w) - \mathbf{e}(w')||^2 = 0$$
 if $w = w'$

- $||e(w) e(w')||^2 = 2$ if $w \neq w'$
- all words are equally different from each other
- this is a natural representation to start with, though a poor one

NATURAL LANGUAGE PROCESSING

Topics: one-hot encoding

- The major problem with the one-hot representation is that it is very high-dimensional
 - the dimensionality of e(w) is the size of the vocabulary
 - a typical vocabulary size is $\approx 100\ 000$
 - a window of 10 words would correspond to an input vector of at least 1 000 000 units!
- This has 2 consequences:
 - vulnerability to overfitting
 - millions of inputs means millions of parameters to train in a regular neural network
 - computationally expensive
 - not all computations can be sparsified (ex.: reconstruction in autoencoder)