Natural language processing - language modeling



Topics: language modeling

• A language model is a probabilistic model that assigns probabilities to any sequence of words

 $p(w_1, \ldots, w_T)$

- language modeling is the task of learning a language model that assigns high probabilities to well formed sentences
- plays a crucial role in speech recognition and machine translation systems

Topics: language modeling

• An assumption frequently made is the n^{th} order Markov assumption

$$p(w_1, \ ... \ , w_T) = \prod_{t=1}^T p(w_t \mid w_{t-(n-1)} \ , \ ... \ , w_{t-1})$$

- the t^{th} word was generated based only on the n-1 previous words
- we will refer to $w_{t-(n-1)}$, \ldots , w_{t-1} as the context

Topics: *n*-gram model

- An *n*-gram is a sequence of *n* words
 - ▶ unigrams (*n*=1): "is", "a", "sequence", etc.
 - ▶ bigrams (*n*=2): [''is'', ''a''], [''a'', ''sequence''], etc.
 - trigrams (n=3): [''is'', ''a'', ''sequence''], [''a'', ''sequence'', ''of''], etc.
- *n*-gram models estimate the conditional from *n*-grams counts

$$p(w_t \mid w_{t-(n-1)} \ , \ ... \ , w_{t-1}) = rac{\mathrm{count}(w_{t-(n-1)} \ , \ ... \ , w_{t-1}, w_{t-1})}{\mathrm{count}(w_{t-(n-1)} \ , \ ... \ , w_{t-1})}$$

the counts are obtained from a training corpus (a data set of word text)

 w_t .)

Topics: *n*-gram model

- Issue: data sparsity
 - we want n to be large, for the model to be realistic
 - however, for large values of n, it is likely that a given n-gram will not have been observed in the training corpora
 - smoothing the counts can help
 - combine count (w_1, w_2, w_3, w_4) , count (w_2, w_3, w_4) , count (w_3, w_4) , and count (w_4) to estimate $p(w_4 | w_1, w_2, w_3)$
 - this only partly solves the problem