Neural networks

Natural language processing - convolutional network

WORDTAGGING

Topics: word tagging

- In many NLP applications, it is useful to augment text data with syntactic and semantic information
 - we would like to add syntactic/semantic labels to each word
- This problem can be tackled using a conditional random field with neural network unary potentials
 - we will describe the model developed by Ronan Collobert and Jason Weston in:

A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning Collobert and Weston, 2008

(see Natural Language Processing (Almost) from Scratch for the journal version)

- How to model each label sequence
 - could use a CRF with neural network unary potentials, based on a window (context) of words
 - not appropriate for semantic role labeling, because relevant context might be very far away
 - Collobert and Weston suggest a convolutional network over the whole sentence
 - prediction at a given position can exploit information from any word in the sentence

Input Sentence					
Text		The	cat	sat	or
Feature 1 :	Pada	w_1^1	w_2^1		
Feature K	ling	w_1^K	w_2^K		
Lookup Table					
$LT_{W^1} \longrightarrow$					
: $LT_{W^K} \longrightarrow$					
Convolution		Ĵ	×		×
				M^1 >	< · -
			····		~
	1				
			·		
Max Over Time			,		
$\max(\cdot)$ \longrightarrow				-	
			~	n	iu
Linear		••••••			
$M^2 \times \dot{\odot} \longrightarrow$		(2
HardTanh				107	ıu
$ \longrightarrow $					
Linear					
$M^3 \times \circ \checkmark$					
			<	$n_{hu}^{3} =$	#ta

- Each word can be represented by more than one feature
 - feature of the word itself
 - substring features
 - prefix: " eating " → " eat "
 - suffix:" eating " → " ing "
 - gazetteer features
 - whether the word belong to a list of known locations, persons, etc.
- These features are treated like word features, with their own lookup tables

Input Sentence							
Text		The	cat	sat	on	the	ma
Feature 1	$P \epsilon$	w_1^1	w_2^1	• • •			w_I^1
•	uddu						
Feature K	ing	w_1^K	w_2^K	• • •			w_I^I

at Padding

- Feature must encode for which word we are making a prediction
 - done by adding the relative position *i*-pos_w, where pos_w
 is the position of the current word
 - this feature also has its lookup table
- For SRL, must know the roles for which verb we are predicting
 - also add the relative position of that verb i- pos_v

Input Sentence							
Text		The	cat	sat	on	the	ma
Feature 1	$P \epsilon$	w_1^1	w_2^1	• • •			w^1_I
:	uddi						
Feature K	ng	w_1^K	w_2^K	• • •			w_I^I

at Padding

Topics: sentence convolutional network

- Lookup table:
 - for each word concatenate the representations of its features
- Convolution:
 - at every position, compute linear activations from a window of representations
 - this is a convolution in ID
- Max pooling:
 - obtain a fixed hidden layer with a max across positions

6

- Regular neural network:
 - the pooled representation serves as the input of a regular neural network
 - they proposed using a "hard" version of the tanh activation function

- The outputs are used as the unary potential of a chain CRF over the labels
 - no connections between the CRFs of the different task (one CRF per task)
 - a separate neural network is used for each task