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Topics: word tagging
• In many NLP applications, it is useful to augment text data 

with syntactic and semantic information
‣ we would like to add syntactic/semantic labels to each word

• This problem can be tackled using a conditional random field 
with neural network unary potentials
‣ we will describe the model developed by Ronan Collobert and Jason Weston in:

 A Unified Architecture for Natural Language Processing: Deep Neural Networks 
with Multitask Learning
Collobert and Weston, 2008

(see Natural Language Processing (Almost) from Scratch for the journal version)
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Topics: sentence convolutional network
• How to model each label sequence
‣ could use a CRF with neural network unary 

potentials, based on a window (context) of words
- not appropriate for semantic role labeling, because 

relevant context might be very far away

‣ Collobert and Weston suggest a convolutional 
network over the whole sentence
- prediction at a given position can exploit information 

from any word in the sentence
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Figure 2: Sentence approach network.

In the following, we will describe each layer we use in our networks shown in Figure 1 and Figure 2.
We adopt few notations. Given a matrix A we denote [A]i, j the coefficient at row i and column j
in the matrix. We also denote ⟨A⟩dwini the vector obtained by concatenating the dwin column vectors
around the ith column vector of matrix A ∈ Rd1×d2 :

[

⟨A⟩dwini

]T
=
(

[A]1, i−dwin/2 . . . [A]d1, i−dwin/2 , . . . , [A]1, i+dwin/2 . . . [A]d1, i+dwin/2
)

.
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Topics: sentence convolutional network
• Each word can be represented by more 

than one feature
‣ feature of the word itself

‣ substring features 
- prefix: ‘‘ eating ’’       ‘‘ eat ’’

- suffix: ‘‘ eating ’’       ‘‘ ing ’’ 

‣ gazetteer features
- whether the word belong to a list of known locations, 

persons, etc.

• These features are treated like word 
features, with their own lookup tables
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Topics: sentence convolutional network
• Feature must encode for which word 

we are making a prediction
‣ done by adding the relative

position i-posw, where posw
is the position of the current 
word

‣ this feature also has its lookup
table

• For SRL, must know the roles for which 
verb we are predicting
‣ also add the relative position of that verb i-posv
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Topics: sentence convolutional network
• Lookup table: 
‣ for each word concatenate 

the representations of its 
features

• Convolution:
‣ at every position, compute

linear activations from a 
window of representations

‣ this is a convolution in 1D

•Max pooling:
‣ obtain a fixed hidden layer

with a max across positions
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Topics: sentence convolutional network
• Regular neural network:
‣ the pooled representation 

serves as the input of
a regular neural network

‣ they proposed using a 
‘‘hard’’ version of the
tanh activation function

• The outputs are used as the unary potential of a chain CRF 
over the labels
‣ no connections between the CRFs of the different task (one CRF per task)

‣ a separate neural network is used for each task
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