Natural language processing - multitask learning

Topics: sentence convolutional network

- How to model each label sequence
 - could use a CRF with neural network unary potentials, based on a window (context) of words
 - not appropriate for semantic role labeling, because relevant context might be very far away
 - Collobert and Weston suggest a convolutional network over the whole sentence
 - prediction at a given position can exploit information from any word in the sentence

Input Sentence					
Text		The	cat	sat	or
Feature 1 :	Pada	w_1^1	w_2^1		
Feature K	ling	w_1^K	w_2^K		
Lookup Table					
$LT_{W^1} \longrightarrow$					
: $LT_{W^K} \longrightarrow$					
Convolution		Ĵ	×		×
				M^1 >	< · -
			····		~
	1				
Max Over Time			,		
$\max(\cdot)$ \longrightarrow				-	
			~	n	iu
Linear		••••••			
$M^2 \times \dot{\odot} \longrightarrow$		(2
HardTanh				107	ıu
$ \longrightarrow $					
Linear					
$M^3 \times \circ \checkmark$					
			<	$n_{hu}^{3} =$	#ta

Topics: multitask learning

- Could share vector representations of the features across tasks Lookup Table
 - simply use the same lookup tables across tasks
 - the other parameters of the neural networks are not tied

• This is referred to as multitask learning

• the idea is to transfer knowledge learned within the word representations across the different task

Topics: language model

- We can design other tasks without any labeled data
 - identify whether the middle word of a window of text is an "impostor"

"cat sat on the mat" vs "cat sat think the mat"

- can generate impostor examples from unlabeled text (Wikipedia)
 - pick a window of words from unlabeled corpus
 - replace middle word with a different, randomly chosen word
- train a neural network (with word representations) to assign a higher score to the original window - original window

$$\max\left\{0, 1 - f_{\theta}(x) + f_{\theta}(x^{(w)})\right\} \qquad \text{impostor window} \\ \text{with word } w$$

similar to language modeling, except we predict the word in the middle

Topics: experimental comparison

• From Natural Language Processing (Almost) from Scratch by Collobert et al.

Approach	POS	CHUNK	NER	SRL
	(PWA)	(F1)	(F1)	(F1)
Benchmark Systems	97.24	94.29	89.31	77.92
NN+SLL	96.37	90.33	81.47	70.99

Topics: experimental comparison

• From Natural Language Processing (Almost) from Scratch by Collobert et al.

Approach	POS	CHUNK	NER	SRL
	(PWA)	(F1)	(F1)	(F1)
Benchmark Systems	97.24	94.29	89.31	77.92
NN+SLL	96.37	90.33	81.47	70.99
NN+SLL+LM2	97.12	93.37	88.78	74.15
NN+SLL+LM2+MTL	97.22	93.75	88.27	74.29

Topics: experimental comparison

• From Natural Language Processing (Almost) from Scratch by Collobert et al.

Approach	POS	CHUNK	NER	SRL
	(PWA)	(F1)	(F1)	(F1)
Benchmark Systems	97.24	94.29	89.31	77.92
NN+SLL	96.37	90.33	81.47	70.99
NN+SLL+LM2	97.12	93.37	88.78	74.15
NN+SLL+LM2+MTL	97.22	93.75	88.27	74.29
NN+SLL+LM2+Suffix2	97.29	_	_	
NN+SLL+LM2+Gazetteer	_	_	89.59	_
NN+SLL+LM2+POS	_	94.32	88.67	_
NN+SLL+LM2+CHUNK	—	—	—	74.72

Topics: experimental comparison

• Nearest neighbors in word representation space:

]	FRANCE	JESUS	XBOX	REDDISH	SCRATCHED	MEGABITS
	454	1973	6909	11724	29869	87025
Ā	AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
В	BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
G	ERMANY	CHRIST	MSX	PINKISH	PUNCHED	BIT/S
	ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
	GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
S	SWEDEN	INDRA	PSNUMBER	GREYISH	SCRAPED	KBIT/S
ľ	NORWAY	VISHNU	HD	GRAYISH	SCREWED	MEGAHERTZ
]	EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
Н	UNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	GBIT/S
SWI	TZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

• For a 2D visualization: http://www.cs.toronto.edu/~hinton/turian.png

