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Topics: sentence convolutional network
• How to model each label sequence
‣ could use a CRF with neural network unary 

potentials, based on a window (context) of words
- not appropriate for semantic role labeling, because 

relevant context might be very far away

‣ Collobert and Weston suggest a convolutional 
network over the whole sentence
- prediction at a given position can exploit information 

from any word in the sentence
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Figure 2: Sentence approach network.

In the following, we will describe each layer we use in our networks shown in Figure 1 and Figure 2.
We adopt few notations. Given a matrix A we denote [A]i, j the coefficient at row i and column j
in the matrix. We also denote ⟨A⟩dwini the vector obtained by concatenating the dwin column vectors
around the ith column vector of matrix A ∈ Rd1×d2 :

[

⟨A⟩dwini

]T
=
(

[A]1, i−dwin/2 . . . [A]d1, i−dwin/2 , . . . , [A]1, i+dwin/2 . . . [A]d1, i+dwin/2
)

.
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Topics: multitask learning
• Could share vector representations of the features across 

tasks
‣ simply use the same lookup

tables across tasks

‣ the other parameters of the
neural networks are not
tied

• This is referred to as
multitask learning
‣ the idea is to transfer knowledge learned within the word representations across 

the different task
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Figure 5: Example of multitasking with NN. Task 1 and Task 2 are two tasks trained with the
window approach architecture presented in Figure 1. Lookup tables as well as the first
hidden layer are shared. The last layer is task specific. The principle is the same with
more than two tasks.

that examples can come from quite different data sets. The generalization performance for each
task was measured using the traditional testing data specified in Table 1. Fortunately, none of the
training and test sets overlap across tasks.

It is worth mentioning that MTL can produce a single unified network that performs well for
all these tasks using the sentence approach. However this unified network only leads to marginal
improvements over using a separate network for each task: the most important MTL task appears to
be the unsupervised learning of the word embeddings. As explained before, simple computational
considerations led us to train the POS, Chunking, and NER tasks using the window approach. The
baseline results in Table 9 also show that using the sentence approach for the POS, Chunking, and
NER tasks yields no performance improvement (or degradation) over the window approach. The
next section shows we can leverage known correlations between tasks in more direct manner.

6. The Temptation

Results so far have been obtained by staying (almost17) true to our from scratch philosophy. We
have so far avoided specializing our architecture for any task, disregarding a lot of useful a priori

17. We did some basic preprocessing of the raw input words as described in Section 3.5, hence the “almost” in the title of
this article. A completely from scratch approach would presumably not know anything about words at all and would
work from letters only (or, taken to a further extreme, from speech or optical character recognition, as humans do).
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Topics: language model
•We can design other tasks without any labeled data
‣ identify whether the middle word of a window of text is an ‘‘impostor’’

‣ can generate impostor examples from unlabeled text (Wikipedia)
- pick a window of words from unlabeled corpus

- replace middle word with a different, randomly chosen word

‣ train a neural network (with word representations) to assign a higher score to the 
original window

‣ similar to language modeling, except we predict the word in the middle

‘‘cat sat on the mat’‘    vs    ‘‘cat sat think the mat’’

COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

can be extremely demanding, and sophisticated approximations are required. More importantly for
us, neither work leads to significant word embeddings being reported.

Shannon (1951) has estimated the entropy of the English language between 0.6 and 1.3 bits per
character by asking human subjects to guess upcoming characters. Cover and King (1978) give
a lower bound of 1.25 bits per character using a subtle gambling approach. Meanwhile, using a
simple word trigram model, Brown et al. (1992b) reach 1.75 bits per character. Teahan and Cleary
(1996) obtain entropies as low as 1.46 bits per character using variable length character n-grams.
The human subjects rely of course on all their knowledge of the language and of the world. Can we
learn the grammatical structure of the English language and the nature of the world by leveraging
the 0.2 bits per character that separate human subjects from simple n-grammodels? Since such tasks
certainly require high capacity models, obtaining sufficiently small confidence intervals on the test
set entropy may require prohibitively large training sets.16 The entropy criterion lacks dynamical
range because its numerical value is largely determined by the most frequent phrases. In order to
learn syntax, rare but legal phrases are no less significant than common phrases.

It is therefore desirable to define alternative training criteria. We propose here to use a pairwise
ranking approach (Cohen et al., 1998). We seek a network that computes a higher score when
given a legal phrase than when given an incorrect phrase. Because the ranking literature often deals
with information retrieval applications, many authors define complex ranking criteria that give more
weight to the ordering of the best ranking instances (see Burges et al., 2007; Clémençon and Vayatis,
2007). However, in our case, we do not want to emphasize the most common phrase over the rare
but legal phrases. Therefore we use a simple pairwise criterion.

We consider a window approach network, as described in Section 3.3.1 and Figure 1, with
parameters θ which outputs a score fθ(x) given a window of text x = [w]dwin1 . We minimize the
ranking criterion with respect to θ:

θ !→ ∑
x∈X

∑
w∈D

max
{

0 , 1− fθ(x)+ fθ(x
(w))

}

, (17)

where X is the set of all possible text windows with dwin words coming from our training corpus, D
is the dictionary of words, and x(w) denotes the text window obtained by replacing the central word
of text window [w]dwin1 by the word w.

Okanohara and Tsujii (2007) use a related approach to avoiding the entropy criteria using a
binary classification approach (correct/incorrect phrase). Their work focuses on using a kernel
classifier, and not on learning word embeddings as we do here. Smith and Eisner (2005) also
propose a contrastive criterion which estimates the likelihood of the data conditioned to a “negative”
neighborhood. They consider various data neighborhoods, including sentences of length dwin drawn
from Ddwin . Their goal was however to perform well on some tagging task on fully unsupervised
data, rather than obtaining generic word embeddings useful for other tasks.

4.3 Training Language Models

The language model network was trained by stochastic gradient minimization of the ranking crite-
rion (17), sampling a sentence-word pair (s, w) at each iteration.

16. However, Klein and Manning (2002) describe a rare example of realistic unsupervised grammar induction using a
cross-entropy approach on binary-branching parsing trees, that is, by forcing the system to generate a hierarchical
representation.

2480

original window

impostor window 
with word w



SENTENCE NEURAL NETWORK
5

Topics: experimental comparison
• From Natural Language Processing (Almost) from Scratch 

by Collobert et al.
NATURAL LANGUAGE PROCESSING (ALMOST) FROM SCRATCH

Approach POS CHUNK NER SRL
(PWA) (F1) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92
Window Approach

NN+SLL+LM2 97.20 93.63 88.67 –
NN+SLL+LM2+MTL 97.22 94.10 88.62 –

Sentence Approach
NN+SLL+LM2 97.12 93.37 88.78 74.15
NN+SLL+LM2+MTL 97.22 93.75 88.27 74.29

Table 9: Effect of multi-tasking on our neural architectures. We trained POS, CHUNK NER in a
MTL way, both for the window and sentence network approaches. SRL was only included
in the sentence approach joint training. As a baseline, we show previous results of our
window approach system, as well as additional results for our sentence approach system,
when trained separately on each task. Benchmark system performance is also given for
comparison.

Approach POS CHUNK NER SRL
(PWA) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92
NN+SLL+LM2 97.20 93.63 88.67 74.15
NN+SLL+LM2+Suffix2 97.29 – – –
NN+SLL+LM2+Gazetteer – – 89.59 –
NN+SLL+LM2+POS – 94.32 88.67 –
NN+SLL+LM2+CHUNK – – – 74.72

Table 10: Comparison in generalization performance of benchmark NLP systems with our neural
networks (NNs) using increasing task-specific engineering. We report results obtained
with a network trained without the extra task-specific features (Section 5) and with the
extra task-specific features described in Section 6. The POS network was trained with
two character word suffixes; the NER network was trained using the small CoNLL 2003
gazetteer; the CHUNK and NER networks were trained with additional POS features;
and finally, the SRL network was trained with additional CHUNK features.

NLP knowledge. We have shown that, thanks to large unlabeled data sets, our generic neural net-
works can still achieve close to state-of-the-art performance by discovering useful features. This
section explores what happens when we increase the level of task-specific engineering in our sys-
tems by incorporating some common techniques from the NLP literature. We often obtain further
improvements. These figures are useful to quantify how far we went by leveraging large data sets
instead of relying on a priori knowledge.
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NATURAL LANGUAGE PROCESSING (ALMOST) FROM SCRATCH

Approach POS CHUNK NER SRL
(PWA) (F1) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92
NN+WLL 96.31 89.13 79.53 55.40
NN+SLL 96.37 90.33 81.47 70.99
NN+WLL+LM1 97.05 91.91 85.68 58.18
NN+SLL+LM1 97.10 93.65 87.58 73.84
NN+WLL+LM2 97.14 92.04 86.96 58.34
NN+SLL+LM2 97.20 93.63 88.67 74.15

Table 8: Comparison in generalization performance of benchmark NLP systems with our (NN) ap-
proach on POS, chunking, NER and SRL tasks. We report results with both the word-level
log-likelihood (WLL) and the sentence-level log-likelihood (SLL). We report with (LMn)
performance of the networks trained from the language model embeddings (Table 7). Gen-
eralization performance is reported in per-word accuracy (PWA) for POS and F1 score for
other tasks.

language models from the relatively fast training of the supervised networks. Once the language
models are trained, we can perform multiple experiments on the supervised networks in a rela-
tively short time. Note that our procedure is clearly linked to the (semi-supervised) deep learning
procedures of Hinton et al. (2006), Bengio et al. (2007) and Weston et al. (2008).

Table 8 clearly shows that this simple initialization significantly boosts the generalization per-
formance of the supervised networks for each task. It is worth mentioning the larger language
model led to even better performance. This suggests that we could still take advantage of even
bigger unlabeled data sets.

4.6 Ranking and Language

There is a large agreement in the NLP community that syntax is a necessary prerequisite for se-
mantic role labeling (Gildea and Palmer, 2002). This is why state-of-the-art semantic role labeling
systems thoroughly exploit multiple parse trees. The parsers themselves (Charniak, 2000; Collins,
1999) contain considerable prior information about syntax (one can think of this as a kind of in-
formed pre-processing).

Our system does not use such parse trees because we attempt to learn this information from the
unlabeled data set. It is therefore legitimate to question whether our ranking criterion (17) has the
conceptual capability to capture such a rich hierarchical information. At first glance, the ranking
task appears unrelated to the induction of probabilistic grammars that underly standard parsing
algorithms. The lack of hierarchical representation seems a fatal flaw (Chomsky, 1956).

However, ranking is closely related to an alternative description of the language structure: op-
erator grammars (Harris, 1968). Instead of directly studying the structure of a sentence, Harris
defines an algebraic structure on the space of all sentences. Starting from a couple of elementary
sentence forms, sentences are described by the successive application of sentence transformation
operators. The sentence structure is revealed as a side effect of the successive transformations.
Sentence transformations can also have a semantic interpretation.
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NLP knowledge. We have shown that, thanks to large unlabeled data sets, our generic neural net-
works can still achieve close to state-of-the-art performance by discovering useful features. This
section explores what happens when we increase the level of task-specific engineering in our sys-
tems by incorporating some common techniques from the NLP literature. We often obtain further
improvements. These figures are useful to quantify how far we went by leveraging large data sets
instead of relying on a priori knowledge.
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formance of the supervised networks for each task. It is worth mentioning the larger language
model led to even better performance. This suggests that we could still take advantage of even
bigger unlabeled data sets.

4.6 Ranking and Language

There is a large agreement in the NLP community that syntax is a necessary prerequisite for se-
mantic role labeling (Gildea and Palmer, 2002). This is why state-of-the-art semantic role labeling
systems thoroughly exploit multiple parse trees. The parsers themselves (Charniak, 2000; Collins,
1999) contain considerable prior information about syntax (one can think of this as a kind of in-
formed pre-processing).

Our system does not use such parse trees because we attempt to learn this information from the
unlabeled data set. It is therefore legitimate to question whether our ranking criterion (17) has the
conceptual capability to capture such a rich hierarchical information. At first glance, the ranking
task appears unrelated to the induction of probabilistic grammars that underly standard parsing
algorithms. The lack of hierarchical representation seems a fatal flaw (Chomsky, 1956).

However, ranking is closely related to an alternative description of the language structure: op-
erator grammars (Harris, 1968). Instead of directly studying the structure of a sentence, Harris
defines an algebraic structure on the space of all sentences. Starting from a couple of elementary
sentence forms, sentences are described by the successive application of sentence transformation
operators. The sentence structure is revealed as a side effect of the successive transformations.
Sentence transformations can also have a semantic interpretation.
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•Nearest neighbors in word representation space:

• For a 2D visualization: http://www.cs.toronto.edu/~hinton/turian.png

COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025

AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S

SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1
trained with a dictionary of size 100,000. For each column the queried word is followed
by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using
the Euclidean metric, which was chosen arbitrarily).

and semantic properties of the neighbors are clearly related to those of the query word. These
results are far more satisfactory than those reported in Table 7 for embeddings obtained using purely
supervised training of the benchmark NLP tasks.

4.5 Semi-supervised Benchmark Results

Semi-supervised learning has been the object of much attention during the last few years (see
Chapelle et al., 2006). Previous semi-supervised approaches for NLP can be roughly categorized as
follows:

• Ad-hoc approaches such as Rosenfeld and Feldman (2007) for relation extraction.

• Self-training approaches, such as Ueffing et al. (2007) for machine translation, and McClosky
et al. (2006) for parsing. These methods augment the labeled training set with examples from
the unlabeled data set using the labels predicted by the model itself. Transductive approaches,
such as Joachims (1999) for text classification can be viewed as a refined form of self-training.

• Parameter sharing approaches such as Ando and Zhang (2005); Suzuki and Isozaki (2008).
Ando and Zhang propose a multi-task approach where they jointly train models sharing cer-
tain parameters. They train POS and NER models together with a language model (trained on
15 million words) consisting of predicting words given the surrounding tokens. Suzuki and
Isozaki embed a generative model (Hidden Markov Model) inside a CRF for POS, Chunking
and NER. The generative model is trained on one billion words. These approaches should
be seen as a linear counterpart of our work. Using multilayer models vastly expands the
parameter sharing opportunities (see Section 5).

Our approach simply consists of initializing the word lookup tables of the supervised networks
with the embeddings computed by the language models. Supervised training is then performed as
in Section 3.5. In particular the supervised training stage is free to modify the lookup tables. This
sequential approach is computationally convenient because it separates the lengthy training of the
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