
Neural networks
Natural language processing - tree inference

RECURSIVE NEURAL NETWORK
2

Topics: recursive neural network (RNN)
• Idea: recursively merge pairs of word/phrase representations

• We need 2 things
‣ a model that merges pairs of representations

‣ a model that determines the tree structure

Parsing Natural Scenes and Natural Language
with Recursive Neural Networks

Richard Socher richard@socher.org
Cliff Chiung-Yu Lin chiungyu@stanford.edu
Andrew Y. Ng ang@cs.stanford.edu
Christopher D. Manning manning@stanford.edu

Computer Science Department, Stanford University, Stanford, CA 94305, USA

Abstract
Recursive structure is commonly found in the
inputs of different modalities such as natural
scene images or natural language sentences.
Discovering this recursive structure helps us
to not only identify the units that an image or
sentence contains but also how they interact
to form a whole. We introduce a max-margin
structure prediction architecture based on re-
cursive neural networks that can successfully
recover such structure both in complex scene
images as well as sentences. The same algo-
rithm can be used both to provide a competi-
tive syntactic parser for natural language sen-
tences from the Penn Treebank and to out-
perform alternative approaches for semantic
scene segmentation, annotation and classifi-
cation. For segmentation and annotation our
algorithm obtains a new level of state-of-the-
art performance on the Stanford background
dataset (78.1%). The features from the im-
age parse tree outperform Gist descriptors for
scene classification by 4%.

1. Introduction

Recursive structure is commonly found in different
modalities, as shown in Fig. 1. The syntactic rules
of natural language are known to be recursive, with
noun phrases containing relative clauses that them-
selves contain noun phrases, e.g., . . . the church which
has nice windows Similarly, one finds nested hier-
archical structuring in scene images that capture both
part-of and proximity relationships. For instance, cars
are often on top of street regions. A large car region

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

Figure 1. Illustration of our recursive neural network ar-
chitecture which parses images and natural language sen-
tences. Segment features and word indices (orange) are
first mapped into semantic feature space (blue) and then
recursively merged by the same neural network until they
represent the entire image or sentence. Both mappings and
mergings are learned.

can be recursively split into smaller car regions depict-
ing parts such as tires and windows and these parts can
occur in other contexts such as beneath airplanes or in
houses. We show that recovering this structure helps
in understanding and classifying scene images. In this
paper, we introduce recursive neural networks (RNNs)
for predicting recursive structure in multiple modali-
ties. We primarily focus on scene understanding, a
central task in computer vision often subdivided into
segmentation, annotation and classification of scene
images. We show that our algorithm is a general tool

Socher, Lin, Ng and Manning, 2011

word representations{

RECURSIVE NEURAL NETWORK
3

Topics: recursive neural network (RNN)
• Given two input representations c1 and c2, the recursive

network computes the merged representation p as follows:

• The network also computes a score s
‣ it estimates the quality of the merge

‣ it will be used to decide which pairs of representations to merge first

Socher, Lin,
Ng and Manning, 2011

Parsing Natural Scenes and Natural Language with Recursive Neural Networks

s = W scorep (9)

p = f(W [c1; c2] + b)

Figure 3. One recursive neural network which is replicated
for each pair of possible input vectors. This network is
different to the original RNN formulation in that it predicts
a score for being a correct merging decision.

neural network. The network computes the potential
parent representation for these possible child nodes:

p(i,j) = f(W [ci; cj] + b). (7)

With this representation we can compute a local
score using a simple inner product with a row vector
W score ∈ R1×n:

s(i,j) = W scorep(i,j). (8)

The network performing these functions is illustrated
in Fig. 3. Training will aim to increase scores of
good segment pairs (with the same label) and decrease
scores of pairs with different labels, unless no more
good pairs are left.

After computing the scores for all pairs of neighboring
segments, the algorithm selects the pair which received
the highest score. Let the score sij be the highest
score; we then (i) Remove [ai, aj] from C, as well as
all other pairs with either ai or aj in them. (ii) Update
the adjacency matrix with a new row and column that
reflects that the new segment has the neighbors of both
child segments. (iii) Add potential new child pairs to
C:

C = C − {[ai, aj]}− {[aj , ai]} (10)

C = C ∪ {[p(i,j), ak] : ak has boundary with i or j}

In the case of the image in Fig. 2, if we merge [a4, a5],
then C = {[a1, a2], [a1, a3], [a2, a1], [a2, p(4,5)], [a3, a1],
[a3, p(4,5)], [p(4,5), a2], [p(4,5), a3]}.

The new potential parents and corresponding scores of
new child pairs are computed with the same neural net-
work of Eq. 7. For instance, we compute, p(2,(4,5)) =
f(W [a2, p(4,5)]+b), p(3,(4,5)) = f(W [a3, p(4,5)]+b), etc.

The process repeats (treating the new pi,j just like any
other segment) until all pairs are merged and only one
parent activation is left in the set C. This activation
then represents the entire image. Hence, the same
network (with parameters W, b,W score) is recursively
applied until all vector pairs are collapsed. The tree
is then recovered by unfolding the collapsed decisions
down to the original segments which are the leaf nodes

of the tree. The final score that we need for structure
prediction is simply the sum of all the local decisions:

s(RNN(θ, xi, ŷ)) =
∑

d∈N(ŷ)
sd. (11)

To finish the example, assume the next highest score
was s((4,5),3), so we merge the (4, 5) super segment
with segment 3, so C = {[a1, a2], [a1, p((4,5),3)], [a2, a1],
[a2, p((4,5),3)], [p((4,5),3), a1], [p((4,5),3), a2]}. If we then
merge segments (1, 2), we get C = {[p(1,2), p((4,5),3)],
[p((4,5),3), p(1,2)]}, leaving us with only the last choice
of merging the differently labeled super segments. This
results in the bottom tree in Fig. 2.

4.3. Category Classifiers in the Tree

One of the main advantages of our approach is that
each node of the tree built by the RNN has associated
with it a distributed feature representation (the par-
ent vector p). We can leverage this representation by
adding to each RNN parent node (after removing the
scoring layer) a simple softmax layer to predict class
labels, such as visual or syntactic categories:

labelp = softmax(W labelp). (12)

When minimizing the cross-entropy error of this soft-
max layer, the error will backpropagate and influence
both the RNN parameters and the word representa-
tions.

4.4. Improvements for Language Parsing

Since in a sentence each word only has 2 neighbors,
less-greedy search algorithms such as a bottom-up
beam search can be used. In our case, beam search
fills in elements of the chart in a similar fashion as the
CKY algorithm. However, unlike standard CNF gram-
mars, in our grammar each constituent is represented
by a continuous feature vector and not just a discrete
category. Hence we cannot prune based on category
equality. We could keep the k-best subtrees in each
cell but initial tests showed no improvement over just
keeping the single best constituent in each cell.

Since there is only a single correct tree the second max-
imization in the objective of Eq. 5 can be dropped. For
further details see (Socher et al., 2010).

5. Learning
Our objective J of Eq. 5 is not differentiable due to
the hinge loss. Therefore, we will generalize gradi-
ent descent via the subgradient method (Ratliff et al.,
2007) which computes a gradient-like direction called
the subgradient. Let θ = (W sem,W,W score,W label)
be the set of our model parameters,1 then the gradi-

1In the case of natural language parsing, W semis re-
placed by the look-up table L.

RECURSIVE NEURAL NETWORK
4

Topics: recursive neural network (RNN)
• The score of the full tree is the sum of all merging scores

‘‘ The ’’ ‘‘ cat ’’ ‘‘ is ’’ ‘‘ here ’’ ‘‘ The ’’ ‘‘ cat ’’ ‘‘ here ’’‘‘ is ’’

s(1,2)

s((1,2),(3,4))

s(3,4)

Parse tree Recursive network

W

W

W

Wscore

Wscore

Wscore

Score: s(1,2) + s(3,4) + s((1,2),(3,4))

RECURSIVE NEURAL NETWORK
5

Topics: recursive neural network (RNN)
• The score of the full tree is the sum of all merging scores

‘‘ The ’’ ‘‘ cat ’’ ‘‘ is ’’ ‘‘ here ’’ ‘‘ The ’’ ‘‘ cat ’’ ‘‘ here ’’‘‘ is ’’

s(1,2)

s((1,2),3)

s(((1,2)3),4)
Parse tree Recursive network

W

W

W

Wscore

Wscore

Wscore

Score: s(1,2) + s((1,2),3) + s(((1,2),3),4)

RECURSIVE NEURAL NETWORK
6

Topics: recursive neural network (RNN)
• Approximate best tree by locally maximizing each subtree

‘‘ The ’’ ‘‘ cat ’’ ‘‘ is ’’ ‘‘ here ’’

A[1,2] A[2,3] A[3,4]

A[1,3] A[2,4]

A[1,4]

RECURSIVE NEURAL NETWORK
6

Topics: recursive neural network (RNN)
• Approximate best tree by locally maximizing each subtree

‘‘ The ’’ ‘‘ cat ’’ ‘‘ is ’’ ‘‘ here ’’

s(1,2) s(2,3) s(3,4)

A[1,2] A[2,3] A[3,4]

A[1,3] A[2,4]

A[1,4]

RECURSIVE NEURAL NETWORK
6

Topics: recursive neural network (RNN)
• Approximate best tree by locally maximizing each subtree

‘‘ The ’’ ‘‘ cat ’’ ‘‘ is ’’ ‘‘ here ’’

s(1,2) s(2,3) s(3,4)

s((1,2),3) + A[1,2]
s(1,(2,3)) + A[2,3]

A[1,2] A[2,3] A[3,4]

A[1,3] A[2,4]

A[1,4]

RECURSIVE NEURAL NETWORK
6

Topics: recursive neural network (RNN)
• Approximate best tree by locally maximizing each subtree

‘‘ The ’’ ‘‘ cat ’’ ‘‘ is ’’ ‘‘ here ’’

s(1,2) s(2,3) s(3,4)

s((1,2),3) + A[1,2]
s(1,(2,3)) + A[2,3]

A[1,2] A[2,3] A[3,4]

A[1,3] A[2,4]

A[1,4]
<

RECURSIVE NEURAL NETWORK
6

Topics: recursive neural network (RNN)
• Approximate best tree by locally maximizing each subtree

‘‘ The ’’ ‘‘ cat ’’ ‘‘ is ’’ ‘‘ here ’’

s(1,2) s(2,3) s(3,4)

s((1,2),3) + A[1,2]
s(1,(2,3)) + A[2,3]

A[1,2] A[2,3] A[3,4]

A[1,3] A[2,4]

A[1,4]

s((2,3),4) + A[2,3]
s(2,(3,4)) + A[3,4]

<

RECURSIVE NEURAL NETWORK
6

Topics: recursive neural network (RNN)
• Approximate best tree by locally maximizing each subtree

‘‘ The ’’ ‘‘ cat ’’ ‘‘ is ’’ ‘‘ here ’’

s(1,2) s(2,3) s(3,4)

s((1,2),3) + A[1,2]
s(1,(2,3)) + A[2,3]

A[1,2] A[2,3] A[3,4]

A[1,3] A[2,4]

A[1,4]

s((2,3),4) + A[2,3]
s(2,(3,4)) + A[3,4]

< >

RECURSIVE NEURAL NETWORK
6

Topics: recursive neural network (RNN)
• Approximate best tree by locally maximizing each subtree

‘‘ The ’’ ‘‘ cat ’’ ‘‘ is ’’ ‘‘ here ’’

s(1,2)

s((1,2),(3,4))+A[1,2]+ A[3,4]

s(((1,2),3),4) + A[1,3]

s(2,3) s(3,4)

s((1,2),3) + A[1,2]
s(1,(2,3)) + A[2,3]

A[1,2] A[2,3] A[3,4]

A[1,3] A[2,4]

A[1,4]

s(1,(2,(3,4))) + A[2,4]

s((2,3),4) + A[2,3]
s(2,(3,4)) + A[3,4]

< >

RECURSIVE NEURAL NETWORK
6

Topics: recursive neural network (RNN)
• Approximate best tree by locally maximizing each subtree

‘‘ The ’’ ‘‘ cat ’’ ‘‘ is ’’ ‘‘ here ’’

s(1,2)

s((1,2),(3,4))+A[1,2]+ A[3,4]

s(((1,2),3),4) + A[1,3]

s(2,3) s(3,4)

s((1,2),3) + A[1,2]
s(1,(2,3)) + A[2,3]

A[1,2] A[2,3] A[3,4]

A[1,3] A[2,4]

A[1,4]

s(1,(2,(3,4))) + A[2,4]

s((2,3),4) + A[2,3]
s(2,(3,4)) + A[3,4]

< >

<
>

RECURSIVE NEURAL NETWORK
6

Topics: recursive neural network (RNN)
• Approximate best tree by locally maximizing each subtree

‘‘ The ’’ ‘‘ cat ’’ ‘‘ is ’’ ‘‘ here ’’

s(1,2)

‘‘ The ’’ ‘‘ cat ’’ ‘‘ is ’’ ‘‘ here ’’

s((1,2),(3,4))+A[1,2]+ A[3,4]

s(((1,2),3),4) + A[1,3]

s(2,3) s(3,4)

s((1,2),3) + A[1,2]
s(1,(2,3)) + A[2,3]

A[1,2] A[2,3] A[3,4]

A[1,3] A[2,4]

A[1,4]

s(1,(2,(3,4))) + A[2,4]

s((2,3),4) + A[2,3]
s(2,(3,4)) + A[3,4]

< >

<
>

