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Topics: recursive neural network (RNN)
• Idea: recursively merge pairs of word/phrase representations

•We need 2 things
‣ a model that merges pairs of representations

‣ a model that determines the tree structure
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Abstract
Recursive structure is commonly found in the
inputs of different modalities such as natural
scene images or natural language sentences.
Discovering this recursive structure helps us
to not only identify the units that an image or
sentence contains but also how they interact
to form a whole. We introduce a max-margin
structure prediction architecture based on re-
cursive neural networks that can successfully
recover such structure both in complex scene
images as well as sentences. The same algo-
rithm can be used both to provide a competi-
tive syntactic parser for natural language sen-
tences from the Penn Treebank and to out-
perform alternative approaches for semantic
scene segmentation, annotation and classifi-
cation. For segmentation and annotation our
algorithm obtains a new level of state-of-the-
art performance on the Stanford background
dataset (78.1%). The features from the im-
age parse tree outperform Gist descriptors for
scene classification by 4%.

1. Introduction

Recursive structure is commonly found in different
modalities, as shown in Fig. 1. The syntactic rules
of natural language are known to be recursive, with
noun phrases containing relative clauses that them-
selves contain noun phrases, e.g., . . . the church which
has nice windows . . . . Similarly, one finds nested hier-
archical structuring in scene images that capture both
part-of and proximity relationships. For instance, cars
are often on top of street regions. A large car region
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Figure 1. Illustration of our recursive neural network ar-
chitecture which parses images and natural language sen-
tences. Segment features and word indices (orange) are
first mapped into semantic feature space (blue) and then
recursively merged by the same neural network until they
represent the entire image or sentence. Both mappings and
mergings are learned.

can be recursively split into smaller car regions depict-
ing parts such as tires and windows and these parts can
occur in other contexts such as beneath airplanes or in
houses. We show that recovering this structure helps
in understanding and classifying scene images. In this
paper, we introduce recursive neural networks (RNNs)
for predicting recursive structure in multiple modali-
ties. We primarily focus on scene understanding, a
central task in computer vision often subdivided into
segmentation, annotation and classification of scene
images. We show that our algorithm is a general tool

Socher, Lin, Ng and Manning, 2011

word representations{



RECURSIVE NEURAL NETWORK
3

Topics: training algorithm
• Let y be the true parse tree and ŷ be the predicted parse tree
‣ we would like the score s(y) of y to be higher than the score s(ŷ) of ŷ 

(unless ŷ is actually y)

• To update the recursive network
‣ infer the predicted parse tree ŷ

‣ increase the score s(y) and decrease the score s(ŷ) by doing an update in the 
direction of the gradient

- these gradient can be computed by backpropagating through the recursive network 
structured according to the parse trees y and ŷ
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Abstract

Math for my slides “Natural language processing”.
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Topics: training algorithm
• The nodes of a parse tree are also labeled

- noun phrase (NP), verb phrase (VP), etc.

- can add softmax layer that predict the label from each node representation

- this is an additional gradient to backpropagate, for the true parse tree y
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Topics: training algorithm
•Other details
‣ word representations are pre-trained using Collobert and Weston’s approach and 

fine-tuned while training the recursive network

‣ training is actually based on a margin criteria: s(y) > s(y*) + ∆(y,y*)

- score of the true parse tree y trained to be larger than score of any other tree y* plus its 
number of incorrect spans ∆(y,y*) 

- a simple modification to the beam search finding the best tree (see Socher et al. for details)
y y*

number of incorrect 
span ∆(y,y*) = 1

‘‘ The ’’ ‘‘ cat ’’ ‘‘ is ’’ ‘‘ here ’’‘‘ The ’’ ‘‘ cat ’’ ‘‘ is ’’ ‘‘ here ’’
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Topics: experimental comparison
• Parsing F1 performance
‣ recursive neural network: 90.29% 

‣ Berkeley parser : 91.63%

•Nearest neighbor phrases based on RNN representation

Parsing Natural Scenes and Natural Language with Recursive Neural Networks

Figure 5. Nearest neighbor image region trees (of the first
region in each row): The learned feature representations of
higher level nodes capture interesting visual and semantic
properties of the merged segments below them.

sentations of the RNN. With an accuracy of 88.1%, we
outperform the state-of-the art features for scene cate-
gorization, Gist descriptors (Aude & Torralba, 2001),
which obtain only 84.0%. We also compute a baseline
using our RNN. In the baseline we use as features only
the very top node of the scene parse tree. We note that
while this captures enough information to perform well
above a random baseline (71.0% vs. 33.3%), it does
lose some information that is captured by averaging
all tree nodes.

6.3. Nearest Neighbor Scene Subtrees

In order to show that the learned feature representa-
tions capture important appearance and label infor-
mation even for higher nodes in the tree, we visualize
nearest neighbor super segments. We parse all test
images with the trained RNN. We then find subtrees
whose nodes have all been assigned the same class la-
bel by our algorithm and save the top nodes’ vector
representation of that subtree. This also includes ini-
tial superpixels. Using this representation, we com-
pute nearest neighbors across all images and all such
subtrees (ignoring their labels). Fig. 5 shows the re-
sults. The first image is a random subtree’s top node
and the remaining regions are the closest subtrees in
the dataset in terms of Euclidean distance between the
vector representations.

Center Phrase and Nearest Neighbors

All the figures are adjusted for seasonal variations
1. All the numbers are adjusted for seasonal fluctuations
2. All the figures are adjusted to remove usual seasonal
patterns
3. All Nasdaq industry indexes finished lower , with fi-
nancial issues hit the hardest

Knight-Ridder would n’t comment on the offer
1. Harsco declined to say what country placed the order
2. Coastal would n’t disclose the terms
3. Censorship is n’t a Marxist invention

Sales grew almost 7% to $UNK m. from $UNK m.
1. Sales rose more than 7% to $94.9 m. from $88.3 m.
2. Sales surged 40% to UNK b. yen from UNK b.
3. Revenues declined 1% to $4.17 b. from$ 4.19 b.

Fujisawa gained 50 to UNK
1. Mead gained 1 to 37 UNK
2. Ogden gained 1 UNK to 32
3. Kellogg surged 4 UNK to 7

The dollar dropped
1. The dollar retreated
2. The dollar gained
3. Bond prices rallied

Figure 6. Nearest neighbors phrase trees. The learned fea-
ture representations of higher level nodes capture interest-
ing syntactic and semantic similarities between the phrases.
(b.=billion, m.=million)

6.4. Supervised Parsing

In all experiments our word and phrase representations
are 100-dimensional. We train all models on the Wall
Street Journal section of the Penn Treebank using the
standard training (2–21), development (22) and test
(23) splits.

The final unlabeled bracketing F-measure (see
(Manning & Schütze, 1999) for details) of our lan-
guage parser is 90.29%, compared to 91.63% for the
widely used Berkeley parser (Petrov et al., 2006) (de-
velopment F1 is virtually identical with 92.06% for the
RNN and 92.08% for the Berkeley parser). Unlike
most previous systems, our parser does not provide
a parent with information about the syntactic cate-
gories of its children. This shows that our learned,
continuous representations capture enough syntactic
information to make good parsing decisions.

While our parser does not yet perform as well as the
current version of the Berkeley parser, it performs re-
spectably (1.3% difference in unlabeled F1). On a
2.6GHz laptop our Matlab implementation needs 72
seconds to parse 421 sentences of length less than 15.

6.5. Nearest Neighbor Phrases

In the same way we collected nearest neighbors for
nodes in the scene tree, we can compute nearest neigh-
bor embeddings of multi-word phrases. We embed
complete sentences from the WSJ dataset into the

Socher, Lin, Ng and Manning, 2011


