Neural networks

Feedforward neural network - activation function

ARTIFICIAL NEURON

Topics: connection weights, bias, activation function

• Neuron pre-activation (or input activation):

$$a(\mathbf{x}) = b + \sum_{i} w_i x_i = b + \mathbf{w}^{\top} \mathbf{x}$$

· Neuron (output) activation

$$h(\mathbf{x}) = g(a(\mathbf{x})) = g(b + \sum_{i} w_i x_i)$$

- W are the connection weights
- b is the neuron bias
- $g(\cdot)$ is called the activation function

Topics: linear activation function

- Performs no input squashing
- Not very interesting...

$$g(a) = a$$

Topics: sigmoid activation function

- Squashes the neuron's pre-activation between 0 and 1
- Always positive
- Bounded
- Strictly increasing

$$g(a) = \operatorname{sigm}(a) = \frac{1}{1 + \exp(-a)}$$

Topics: hyperbolic tangent ("tanh") activation function

- Squashes the neuron's pre-activation between
 I and I
- Can be positive or negative
- Bounded
- Strictly increasing

$$g(a) = \tanh(a) = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)} = \frac{\exp(2a) - 1}{\exp(2a) + 1}$$

Topics: rectified linear activation function

- Bounded below by 0

 (always non-negative)
- Not upper bounded
- Strictly increasing
- Tends to give neurons with sparse activities

$$g(a) = reclin(a) = max(0, a)$$