Neural networks

Training neural networks - optimization

OPTIMIZATION

Topics: local optimum, global optimum, plateau

- Notes on the optimization problem
 - there isn't a single global optimum (non-convex optimization)
 - we can permute the hidden units (with their connections) and get the same function
 - we say that the hidden unit parameters are not identifiable
- Optimization can get stuck in <u>local minimum</u> or <u>plateaus</u>

OPTIMIZATION

Topics: local optimum, global optimum, plateau

Neural network training demo

(by Andrej Karpathy)

http://cs.stanford.edu/~karpathy/svmjs/demo/demonn.html

Topics: convergence conditions, decrease constant

- · Stochastic gradient descent will converge if
 - $\sum_{t=1}^{\infty} \alpha_t = \infty$
 - $\sum_{t=1}^{\infty} \alpha_t^2 < \infty$

where $lpha_t$ is the learning rate of the $t^{
m th}$ update

- Decreasing strategies: (δ is the decrease constant)
- · Better to use a fixed learning rate for the first few updates

Topics: mini-batch, momentum

- Can update based on a mini-batch of example (instead of I example):
 - the gradient is the average regularized loss for that mini-batch
 - risk gradient
 - can leverage matrix/matrix operations, which are more efficient

· Can use an exponential average of previous gradients:

$$\overline{\nabla}_{\boldsymbol{\theta}}^{(t)} = \nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) + \beta \overline{\nabla}_{\boldsymbol{\theta}}^{(t-1)}$$

can get through plateaus more quickly, by "gaining momentum"

Topics: Newton's method

• If we locally approximate the loss through Taylor expansion:

$$l(\mathbf{f}(\mathbf{x}; \boldsymbol{\theta}), y) \approx l(\mathbf{f}(\mathbf{x}; \boldsymbol{\theta}^{(t)}), y) + \nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}; \boldsymbol{\theta}^{(t)}), y)^{\top} (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})$$

$$+0.5(\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^{\top} \left(\nabla_{\boldsymbol{\theta}}^{2} l(\mathbf{f}(\mathbf{x}; \boldsymbol{\theta}^{(t)}), y) \right) (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})$$

$$l(\mathbf{f}(\mathbf{x}; \boldsymbol{\theta}), y)$$

$$= \lim_{\mathbf{d} \in \mathcal{A}} \lim_{\mathbf{d}$$

We could minimize that approximation, by solving:

$$0 = \nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}; \boldsymbol{\theta}^{(t)}), y) + (\nabla_{\boldsymbol{\theta}}^2 l(\mathbf{f}(\mathbf{x}; \boldsymbol{\theta}^{(t)}), y)) (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})$$

Topics: Newton's method

We can show that the minimum is:

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \left(\nabla_{\boldsymbol{\theta}}^2 l(\mathbf{f}(\mathbf{x}; \boldsymbol{\theta}^{(t)}), y)\right)^{-1} \left(\nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}; \boldsymbol{\theta}^{(t)}), y)\right)$$

- Only practical if:
 - few parameters (so we can invert Hessian)
 - locally convex (so the Hessian is invertible)
- See recommended readings for more on optimization of neural networks