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Abstract

Math for my slides “Restricted Boltzmann Machines”.
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EXAMPLE OF DATA SET: MNIST
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Figure 5: Samples from the MNIST digit recognition data set. Here, a black pixel corresponds to

an input value of 0 and a white pixel corresponds to 1 (the inputs are scaled between 0

and 1).

1. To what extent does initializing greedily the parameters of the different layers help?

2. How important is unsupervised learning for this procedure?

To address these two questions, we will compare the learning algorithms for deep networks of

Sections 4 and 5 with the following algorithms.

6.1.1 DEEP NETWORK WITHOUT PRE-TRAINING

To address the first question above, we compare the greedy layer-wise algorithm with a more stan-

dard way to train neural networks: using standard backpropagation and stochastic gradient descent,

and starting at a randomly initialized configuration of the parameters. In other words, this variant

simply puts away the pre-training phase of the other deep network learning algorithms.

6.1.2 DEEP NETWORK WITH SUPERVISED PRE-TRAINING

To address the second question, we run an experiment with the following algorithm. We greedily

pre-train the layers using a supervised criterion (instead of the unsupervised one), before performing

as before a final supervised fine-tuning phase. Specifically, when greedily pre-training the param-

eters Wi and bi, we also train another set of weights Vi and biases ci which connect hidden layer

ĥ
i(x) to a temporary output layer as follows:

oi(x) = f
(
c
i+Viĥi(x)

)

12



FILTERS
(LAROCHELLE ET AL., JMLR2009)
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Figure 6: Display of the input weights of a random subset of the hidden units, learned by an RBM

when trained on samples from the MNIST data set. The activation of units of the first

hidden layer is obtained by a dot product of such a weight “image” with the input image.

In these images, a black pixel corresponds to a weight smaller than −3 and a white pixel
to a weight larger than 3, with the different shades of gray corresponding to different

weight values uniformly between −3 and 3.
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Figure 7: Input weights of a random subset of the hidden units, learned by an autoassociator when

trained on samples from the MNIST data set. The display setting is the same as for

Figure 6.
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DEBUGGING
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Topics: stochastic reconstruction, filters
• Unfortunately, we can’t debug with a comparison with finite 

difference
•We instead rely on approximate ‘‘tricks’’
‣ we plot the average stochastic reconstruction                  and see if it tends to 

decrease:

‣ for inputs that correspond to image, we visualize the connection coming into each 
hidden unit as if it was an image
- gives an idea of the type of visual feature each hidden unit detects

‣ we can also try to approximate the partition function Z and see whether the 
(approximated) NLL decreases
- On the Quantitative Analysis of Deep Belief Networks. 

Ruslan Salakhutdinov and Iain Murray, 2008
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