
Neural networks
Autoencoder - example
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Topics: autoencoder, encoder, decoder, tied weights
• Feed-forward neural network trained to reproduce its input at 
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Math for my slides “Autoencoders”.
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EXAMPLE OF DATA SET: MNIST
3

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN
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Figure 5: Samples from the MNIST digit recognition data set. Here, a black pixel corresponds to

an input value of 0 and a white pixel corresponds to 1 (the inputs are scaled between 0

and 1).

1. To what extent does initializing greedily the parameters of the different layers help?

2. How important is unsupervised learning for this procedure?

To address these two questions, we will compare the learning algorithms for deep networks of

Sections 4 and 5 with the following algorithms.

6.1.1 DEEP NETWORK WITHOUT PRE-TRAINING

To address the first question above, we compare the greedy layer-wise algorithm with a more stan-

dard way to train neural networks: using standard backpropagation and stochastic gradient descent,

and starting at a randomly initialized configuration of the parameters. In other words, this variant

simply puts away the pre-training phase of the other deep network learning algorithms.

6.1.2 DEEP NETWORK WITH SUPERVISED PRE-TRAINING

To address the second question, we run an experiment with the following algorithm. We greedily

pre-train the layers using a supervised criterion (instead of the unsupervised one), before performing

as before a final supervised fine-tuning phase. Specifically, when greedily pre-training the param-

eters Wi and bi, we also train another set of weights Vi and biases ci which connect hidden layer

ĥ
i(x) to a temporary output layer as follows:

oi(x) = f
(
c
i+Viĥi(x)

)
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FILTERS (AUTOENCODER)
(Larochelle et al., JMLR2009)
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Figure 6.6 – Display of the input weights of a random subset of the hidden units, learned

by an RBM when trained on samples from the MNIST dataset. The activation of units

of the first hidden layer is obtained by a dot product of such a weight “image” with the

input image. In these images, a black pixel corresponds to a weight smaller than −3 and
a white pixel to a weight larger than 3, with the different shades of gray corresponding

to different weight values uniformly between −3 and 3.
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Figure 6.7 – Input weights of a random subset of the hidden units, learned by an autoas-

sociator when trained on samples from the MNIST dataset. The display setting is the

same as for Figure 6.6.
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Figure 6.6 – Display of the input weights of a random subset of the hidden units, learned

by an RBM when trained on samples from the MNIST dataset. The activation of units

of the first hidden layer is obtained by a dot product of such a weight “image” with the

input image. In these images, a black pixel corresponds to a weight smaller than −3 and
a white pixel to a weight larger than 3, with the different shades of gray corresponding

to different weight values uniformly between −3 and 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.7 – Input weights of a random subset of the hidden units, learned by an autoas-

sociator when trained on samples from the MNIST dataset. The display setting is the

same as for Figure 6.6.


