Neural networks Autoencoder - denoising autoencoder

OVERCOMPLETE HIDDEN LAYER

Topics: overcomplete representation

- Hidden layer is overcomplete if greater than the input layer
 - no compression in hidden layer
 - each hidden unit could copy a different input component
- No guarantee that the hidden units will extract meaningful structure

Topics: denoising autoencoder

- Idea: representation should be robust to introduction of noise:
 - random assignment of subset of inputs to 0, with probability ν
 - Gaussian additive noise
- Reconstruction $\widehat{\mathbf{x}}$ computed from the corrupted input $\widetilde{\mathbf{x}}$
- Loss function compares $\widehat{\mathbf{x}}$ reconstruction with the noiseless input **X**

3

Topics: denoising autoencoder

- Idea: representation should be robust to introduction of noise:
 - \bullet random assignment of subset of inputs to 0, with probability ν
 - Gaussian additive noise
- Reconstruction \widehat{x} computed from the corrupted input \widetilde{x}
- Loss function compares x reconstruction with the noiseless input x

Topics: denoising autoencoder

- Idea: representation should be robust to introduction of noise:
 - \bullet random assignment of subset of inputs to 0, with probability ν
 - Gaussian additive noise
- Reconstruction \widehat{x} computed from the corrupted input \widetilde{x}
- Loss function compares x reconstruction with the noiseless input x

$$\widehat{\mathbf{x}} = \operatorname{sigm}(\mathbf{c} + \mathbf{W}^* \mathbf{h}(\widehat{\mathbf{x}})) \cdots p(\widehat{\mathbf{x}} | \mathbf{x}) \cdots p(\widehat{\mathbf{x}} | \mathbf{x$$

FILTERS (DENOISING AUTOENCODER) (Vincent, Larochelle, Bengio and Manzagol, ICML 2008)

• No corrupted inputs (cross-entropy loss)

A.	and a second		1					•
	1	•	•	0	an		1	•
e	. •	•				•	13	
•			1		-	5	•	
-	,			10	C			
	3		•	•				
1	-	•		2	E.			
0.1	-	1	0		S.	9	1E	
3		•	-	•	•		-0	(inclusion)
	•				1.0	12		1

FILTERS (DENOISING AUTOENCODER) (Vincent, Larochelle, Bengio and Manzagol, ICML 2008)

• 25% corrupted inputs

6

FILTERS (DENOISING AUTOENCODER) (Vincent, Larochelle, Bengio and Manzagol, ICML 2008)

50% corrupted inputs

SQUARED ERROR LOSS

• Training on natural image patches, with squared-difference loss PCA is not the best solution

Filters

Data

SQUARED ERROR LOSS

 Training on natural image patches, with squared-difference loss Not equivalent to weight decay

Data

Filters