# Neural networks

Deep learning - difficulty of training

### NEURAL NETWORK

#### Topics: multilayer neural network

- Could have L hidden layers:
  - layer input activation for k>0  $(\mathbf{h}^{(0)}(\mathbf{x})=\mathbf{x})$

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

 $\blacktriangleright$  hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

• output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$



#### Topics: why training is hard

 First hypothesis: optimization is harder (underfitting)

- vanishing gradient problem
- saturated units block gradient propagation

 This is a well known problem in recurrent neural networks



#### Topics: why training is hard

- Second hypothesis: overfitting
  - we are exploring a space of complex functions
  - deep nets usually have lots of parameters
- · Might be in a high variance / low bias situation



#### Topics: why training is hard

- Second hypothesis: overfitting
  - we are exploring a space of complex functions
  - deep nets usually have lots of parameters
- · Might be in a high variance / low bias situation







#### Topics: why training is hard

 Depending on the problem, one or the other situation will tend to dominate

- If first hypothesis (underfitting): use better optimization
  - this is an active area of research

- If second hypothesis (overfitting): use better regularization
  - unsupervised learning
  - stochastic «dropout» training