Neural networks

Deep learning - unsupervised pre-training

Topics: why training is hard

 Depending on the problem, one or the other situation will tend to prevail

- If first hypothesis (underfitting): use better optimization
 - this is an active area of research

- If second hypothesis (overfitting): use better regularization
 - unsupervised learning
 - stochastic «dropout» training

Topics: unsupervised pre-training

- · Solution: initialize hidden layers using unsupervised learning
 - force network to represent latent structure of input distribution

character image

random image

encourage hidden layers to encode that structure

Topics: unsupervised pre-training

- · Solution: initialize hidden layers using unsupervised learning
 - force network to represent latent structure of input distribution

encourage hidden layers to encode that structure

Topics: unsupervised pre-training

- · Solution: initialize hidden layers using unsupervised learning
 - this is a harder task than supervised learning (classification)

hence we expect less overfitting

Topics: unsupervised pre-training

- · We will use a greedy, layer-wise procedure
 - train one layer at a time, from first to last, with unsupervised criterion
 - fix the parameters of previous hidden layers

Topics: unsupervised pre-training

- · We call this procedure unsupervised pre-training
 - first layer: find hidden unit features that are more common in training inputs than in random inputs
 - second layer: find combinations of hidden unit features that are more common than random hidden unit features
 - third layer: find combinations of combinations of ...
 - etc.
- Pre-training initializes the parameters in a region such that the near local optima overfit less the data

FINE-TUNING

Topics: fine-tuning

- Once all layers are pre-trained
 - add output layer
 - train the whole network using supervised learning
- Supervised learning is performed as in a regular feed-forward network
 - forward propagation, backpropagation and update
- We call this last phase fine-tuning
 - ▶ all parameters are "tuned" for the supervised task at hand
 - representation is adjusted to be more discriminative

Topics: pseudocode

- for l=1 to L
 - build unsupervised training set (with $\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x}$):

$$\mathcal{D} = \left\{ \mathbf{h}^{(l-1)}(\mathbf{x}^{(t)}) \right\}_{t=1}^{T}$$

- ightharpoonup train "greedy module" (RBM, autoencoder) on ${\cal D}$
- use hidden layer weights and biases of greedy module to initialize the deep network parameters $\mathbf{W}^{(l)}$, $\mathbf{b}^{(l)}$
- Initialize $\mathbf{W}^{(L+1)}$, $\mathbf{b}^{(L+1)}$ randomly (as usual)
- Train the whole neural network using (supervised) stochastic gradient descent (with backprop)

Topics: pseudocode

- for l=1 to L
 - build unsupervised training set (with $\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x}$):

$$\mathcal{D} = \left\{ \mathbf{h}^{(l-1)}(\mathbf{x}^{(t)}) \right\}_{t=1}^{T}$$

- ightharpoonup train "greedy module" (RBM, autoencoder) on ${\cal D}$
- lack use hidden layer weights and biases of greedy module to initialize the deep network parameters $\mathbf{W}^{(l)}$, $\mathbf{b}^{(l)}$
- Initialize $\mathbf{W}^{(L+1)}$, $\mathbf{b}^{(L+1)}$ randomly (as usual)
- Train the whole neural network using (supervised) stochastic gradient descent (with backprop)

pre-training

Topics: pseudocode

- for l=1 to L
 - build unsupervised training set (with $\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x}$):

$$\mathcal{D} = \left\{ \mathbf{h}^{(l-1)}(\mathbf{x}^{(t)}) \right\}_{t=1}^{T}$$

- ightharpoonup train "greedy module" (RBM, autoencoder) on ${\cal D}$
- lack use hidden layer weights and biases of greedy module to initialize the deep network parameters $\mathbf{W}^{(l)}$, $\mathbf{b}^{(l)}$
- Initialize $\mathbf{W}^{(L+1)}$, $\mathbf{b}^{(L+1)}$ randomly (as usual)
- Train the whole neural network using (supervised) stochastic gradient descent (with backprop)

pre-training

finetuning

WHAT KIND OF UNSUPERVISED LEARNING?

Topics: stacked RBMs, stacked autoencoders

- Stacked restricted Boltzmann machines:
 - ▶ Hinton, Teh and Osindero suggested this procedure with RBMs
 - A fast learning algorithm for deep belief nets. Hinton, Teh, Osindero., 2006.
 - To recognize shapes, first learn to generate images. Hinton, 2006.
- Stacked autoencoders:
 - Bengio, Lamblin, Popovici and Larochelle studied and generalized the procedure to autoencoders
 - Greedy Layer-Wise Training of Deep Networks. Bengio, Lamblin, Popovici and Larochelle, 2007.
 - Ranzato, Poultney, Chopra and LeCun also generalized it to sparse autoencoders
 - Efficient Learning of Sparse Representations with an Energy-Based Model. Ranzato, Poultney, Chopra and LeCun, 2007.

WHAT KIND OF UNSUPERVISED LEARNING?

Topics: stacked RBMs, stacked autoencoders

- Stacked denoising autoencoders:
 - proposed by Vincent, Larochelle, Bengio and Manzagol
 - Extracting and Composing Robust Features with Denoising Autoencoders, Vincent, Larochelle, Bengio and Manzagol, 2008.

And more:

- stacked semi-supervised embeddings
 - Deep Learning via Semi-Supervised Embedding. Weston, Ratle and Collobert, 2008.
- stacked kernel PCA
 - Kernel Methods for Deep Learning. Cho and Saul, 2009.
- stacked independent subspace analysis
 - Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis.

 Le, Zou, Yeung and Ng, 2011.