
Neural networks
Deep learning - example



DEEP LEARNING
2

Topics: pseudocode
• for l=1 to L
‣ build unsupervised training set (with                     ): 

 

‣ train ‘‘greedy module’’ (RBM, autoencoder) on 

‣ use hidden layer weights and biases of greedy module
 to initialize the deep network parameters        ,

• Initialize          ,           randomly (as usual)
• Train the whole neural network using (supervised) 

stochastic gradient descent (with backprop)

•
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• for l=1 to L
‣ build unsupervised training set (with                     ): 

 

‣ train ‘‘greedy module’’ (RBM, autoencoder) on 

‣ use hidden layer weights and biases of greedy module
 to initialize the deep network parameters        ,

• Initialize          ,           randomly (as usual)
• Train the whole neural network using (supervised) 

stochastic gradient descent (with backprop)
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Topics: pseudocode
• for l=1 to L
‣ build unsupervised training set (with                     ): 

 

‣ train ‘‘greedy module’’ (RBM, autoencoder) on 

‣ use hidden layer weights and biases of greedy module
 to initialize the deep network parameters        ,

• Initialize          ,           randomly (as usual)
• Train the whole neural network using (supervised) 

stochastic gradient descent (with backprop)
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Topics: datasets
•Datasets generated with varying number of factors of variations

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

(a) Reconst. x (b) Reconst. h1 (c) Predict y

Figure 3. Iterative training construction of the Stacked Au-
toassociators model.

of probabilities:

p(x) = sigm(c + W sigm(b + W �x)).

The training criterion for the layer is the average of
negative log-likelihoods for predicting x from p(x). For
example, if x is interpreted either as a sequence of
bits or a sequence of bit probabilities, we minimize
the reconstruction cross-entropy:

R = �
�

i

xi log pi(x) + (1� xi) log(1� pi(x)).

See Bengio et al. (2007) for more details. Once an au-
toassociator is trained, its internal “bottleneck” rep-
resentation (here, sigm(b + W �x)) can be used as the
input for training a second autoassociator etc. Fig-
ure 3 illustrates this iterative training procedure. The
stacked autoassociators can then be fine-tuned with re-
spect to a supervised training criterion (adding a pre-
dictive output layer on top), using back-propagation
to compute gradient on parameters of all layers.

3. Benchmark Tasks

In order to study the capacity of these algorithms to
scale to learning problems with many factors of vari-
ation, we have generated datasets where we can iden-
tify some of these factors of variation explicitly. We
focused on vision problems, mostly because they are
easier to generate and analyze. In all cases, the classi-
fication problem has a balanced class distribution.

3.1. Variations on Digit Recognition

Models with deep architectures have been shown to
perform competitively on the MNIST digit recogni-
tion dataset (Hinton et al., 2006; Bengio et al., 2007;
Salakhutdinov & Hinton, 2007). In this series of ex-
periments, we construct new datasets by adding addi-
tional factors of variation to the MNIST images. The
generative process used to generate the datasets is as
follows:

Figure 4. From top to bottom, samples from mnist-rot,
mnist-back-rand, mnist-back-image, mnist-rot-back-image.

1. Pick sample (x, y) ⇥ X from the digit recognition
dataset;

2. Create a perturbed version ⇥x of x according to
some factors of variation;

3. Add (⇥x, y) to a new dataset ⇥X ;

4. Go back to 1 until enough samples are generated.

Introducing multiple factors of variation leads to the
following benchmarks:

mnist-rot: the digits were rotated by an angle gener-
ated uniformly between 0 and 2� radians. Thus
the factors of variation are the rotation angle and
those already contained in MNIST, such as hand
writing style;

mnist-back-rand: a random background was inserted
in the digit image. Each pixel value of the back-
ground was generated uniformly between 0 and
255;

mnist-back-image: a random patch from a black and
white image was used as the background for the
digit image. The patches were extracted ran-
domly from a set of 20 images downloaded from
the internet. Patches which had low pixel vari-
ance (i.e. contained little texture) were ignored;

mnist-rot-back-image: the perturbations used in
mnist-rot and mnist-back-image were combined.

These 4 databases have 10000, 2000 and 50000 samples
in their training, validation and test sets respectively.
Figure 4 shows samples from these datasets.
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Figure 5. From top to bottom, samples from rectangles and
rectangles-image.

3.2. Discrimination between Tall and Wide
Rectangles

In this task, a learning algorithm needs to recognize
whether a rectangle contained in an image has a larger
width or length. The rectangle can be situated any-
where in the 28 � 28 pixel image. We generated two
datasets for this problem:

rectangles: the pixels corresponding to the border of
the rectangle has a value of 255, 0 otherwise. The
height and width of the rectangles were sampled
uniformly, but when their di�erence was smaller
than 3 pixels the samples were rejected. The top
left corner of the rectangles was also sampled uni-
formly, constrained so that the whole rectangle
would fit in the image;

rectangles-image: the border and inside of the rectan-
gles corresponds to an image patch and a back-
ground patch is also sampled. The image patches
are extracted from one of the 20 images used for
mnist-back-image. Sampling of the rectangles is
essentially the same as for rectangles, but the area
covered by the rectangles was constrained to be
between 25% and 75% of the total image, the
length and width of the rectangles were forced to
be of at least 10 and their di�erence was forced to
be of at least 5 pixels.

We generated training sets of size 1000 and 10000 and
validation sets of size 200 and 2000 for rectangles and
rectangles-image respectively. The test sets were of
size 50000 in both cases. Samples for these two tasks
are displayed in figure 5.

3.3. Recognition of Convex Sets

The task of discriminating between tall and wide rect-
angles was designed to exhibit the learning algorithms’
ability to process certain image shapes and learn their
properties. Following the same principle, we designed
another learning problem which consists in indicating
if a set of pixels forms a convex set.

Figure 6. Samples from convex, where the first, fourth, fifth
and last samples correspond to convex white pixel sets.

Like the MNIST dataset, the convex and non-convex
datasets both consist of images of 28� 28 pixels. The
convex sets consist of a single convex region with pixels
of value 255 (white). Candidate convex images were
constructed by taking the intersection of a random
number of half-planes whose location and orientation
were chosen uniformly at random.

Candidate non-convex images were constructed by
taking the union of a random number of convex sets
generated as above. The candidate non-convex im-
ages were then tested by checking a convexity con-
dition for every pair of pixels in the non-convex set.
Those sets that failed the convexity test were added to
the dataset. The parameters for generating the convex
and non-convex sets were balanced to ensure that the
mean number of pixels in the set is the same.

The generated training, validation and test sets are of
size 6000, 2000 and 50000 respectively. Samples for
this tasks are displayed in figure 6.

4. Experiments

We performed experiments on the proposed bench-
marks in order to compare the performance of mod-
els with deep architectures with other popular generic
classification algorithms.

In addition to the Deep Belief Network (denoted
DBN-3) and Stacked Autoassociators (denoted SAA-
3) models, we conducted experiments with a sin-
gle hidden-layer DBN (DBN-1), a single hidden-layer
neural network (NNet), SVM models with Gaussian
(SVMrbf ) and polynomial (SVMpoly) kernels.

In all cases, model selection was performed using a val-
idation set. For NNet, the best combination of number
of hidden units (varying from 25 to 700), learning rate
(from 0.0001 to 0.1) and decrease constant (from 0 to
10�6) of stochastic gradient descent and weight decay
penalization (from 0 to 10�5) was selected using a grid
search.

For DBN-3 and SAA-3, both because of the large
number of hyper-parameters and because these mod-
els can necessitate more than a day to train, we
could not perform a full grid search in the space
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Network MNIST-small MNIST-rotation

Type Depth classif. test error classif. test error

Neural network 1 4.14% ± 0.17 15.22 % ± 0.31
(random initialization, 2 4.03% ± 0.17 10.63% ± 0.27
+ fine-tuning) 3 4.24% ± 0.18 11.98 % ± 0.28

4 4.47 % ± 0.18 11.73 % ± 0.29

SAA network 1 3.87 % ± 0.17 11.43% ± 0.28
(autoassociator learning 2 3.38% ± 0.16 9.88 % ± 0.26
+ fine-tuning) 3 3.37% ± 0.16 9.22% ± 0.25

4 3.39% ± 0.16 9.20% ± 0.25

SRBM network 1 3.17 % ± 0.15 10.47 % ± 0.27
(CD-1 learning 2 2.74% ± 0.14 9.54 % ± 0.26
+ fine-tuning) 3 2.71% ± 0.14 8.80% ± 0.25

4 2.72% ± 0.14 8.83% ± 0.24

Tableau 6.3 – Classification performance on MNIST-small and MNIST-rotation of dif-

ferent networks for different strategies to initialize parameters, and different depths

(number of layers).

achieved was 10.47%, with 4000 hidden units (around 3.2 × 106 free parameters). With

a 3-layers deep SRBM network, we reached 9.38% classification error with 1000 units

in each layer (around 2.8 × 106 parameters) : better generalization was achieved with

deeper nets having less parameters.

Type of Network Architecture

The model selection procedure of Section 6.6.2 works well, but is rather expensive.

Every time one wants to train a 4 hidden layer network, networks with 1, 2 and 3 hidden

Network MNIST-rotation

Type Depth Layers width classif. test error

SRBM network 1 1k 12.44 % ± 0.29
(CD-1 learning 2 1k, 1k 9.98 % ± 0.26
+ fine-tuning) 3 1k, 1k, 1k 9.38% ± 0.25

Tableau 6.4 – Classification performance on MNIST-rotation of different networks for

different strategies to initialize parameters, and different depths (number of layers). All

hidden layers have 1000 units.

Deep net

Deep net +
autoencoder

Deep net +
RBM
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Figure 9: Effect of layer size on the changes brought by unsupervised pre-training, for networks
with 1, 2 or 3 hidden layers. Experiments on MNIST. Error bars have a height of two
standard deviations (over initialization seed). Pre-training hurts for smaller layer sizes
and shallower networks, but it helps for all depths for larger networks.

the small size of the hidden layers. As the model size decreases from 800 hidden units, the general-
ization error increases, and it increases more with unsupervised pre-training presumably because of
the extra regularization effect: small networks have a limited capacity already so further restricting
it (or introducing an additional bias) can harm generalization. Such a result seems incompatible
with a pure optimization effect. We also obtain the result that DBNs and SDAEs seem to have
qualitatively similar effects as pre-training strategies.

The effect can be explained in terms of the role of unsupervised pre-training as promoting input
transformations (in the hidden layers) that are useful at capturing the main variations in the input
distribution P(X). It may be that only a small subset of these variations are relevant for predicting
the class label Y . When the hidden layers are small it is less likely that the transformations for
predicting Y are included in the lot learned by unsupervised pre-training.

7.4 Experiment 4: Challenging the Optimization Hypothesis

Experiments 1–3 results are consistent with the regularization hypothesis and Experiments 2–3
would appear to directly support the regularization hypothesis over the alternative—that unsuper-
vised pre-training aids in optimizing the deep model objective function.

In the literature there is some support for the optimization hypothesis. Bengio et al. (2007)
constrained the top layer of a deep network to have 20 units and measured the training error of
networks with and without pre-training. The idea was to prevent the networks from overfitting the
training error simply with the top hidden layer, thus to make it clearer whether some optimization
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Why Does Unsupervised Pre-training Help Deep Learning? 
Erhan, Bengio, Courville, Manzagol, Vincent and Bengio, 2011



DEEP LEARNING
5

Topics: impact of initialization
ERHAN, BENGIO, COURVILLE, MANZAGOL, VINCENT AND BENGIO

Figure 9: Effect of layer size on the changes brought by unsupervised pre-training, for networks
with 1, 2 or 3 hidden layers. Experiments on MNIST. Error bars have a height of two
standard deviations (over initialization seed). Pre-training hurts for smaller layer sizes
and shallower networks, but it helps for all depths for larger networks.

the small size of the hidden layers. As the model size decreases from 800 hidden units, the general-
ization error increases, and it increases more with unsupervised pre-training presumably because of
the extra regularization effect: small networks have a limited capacity already so further restricting
it (or introducing an additional bias) can harm generalization. Such a result seems incompatible
with a pure optimization effect. We also obtain the result that DBNs and SDAEs seem to have
qualitatively similar effects as pre-training strategies.

The effect can be explained in terms of the role of unsupervised pre-training as promoting input
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training error simply with the top hidden layer, thus to make it clearer whether some optimization

646

Acts as a regularizer :
- overfits less with large capacity
- underfits with small capacity

Why Does Unsupervised Pre-training Help Deep Learning? 
Erhan, Bengio, Courville, Manzagol, Vincent and Bengio, 2011



DEEP LEARNING
6

Topics: choice of hidden layer size
99

900 1500 3k 6k

Total number of hidden units

2.5%

3%

3.5%

4%

C
la

s
s
 E

rr
o
r

SRBM

decreasing width

constant width
increasing width

(a) SRBM network.

900 1500 3k 6k

Total number of hidden units

2.5%

3%

3.5%

4%

C
la

s
s
 E

rr
o
r

SAA

decreasing width

constant width
increasing width

(b) SAA network.

Figure 6.9 – Classification performance on MNIST-small of 3-layer deep networks for

three kinds of architectures, as a function of the total number of hidden units. The three

architectures have increasing / constant / decreasing layer sizes from the bottom to the

top layers. Error-bars represent 95% confidence intervals.
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Figure 6.10 – Classification performance on MNIST-rotation of 3-layer deep networks

for three kinds of architectures. Same conventions as in Figure 6.9.
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Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (�)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.
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Extracting and Composing Robust Features with Denoising Autoencoders,  
Vincent, Larochelle, Bengio and Manzagol, 2008.


