Neural networks Deep learning - example

Topics: pseudocode

- for l=1 to L
 - build unsupervised training set (with $\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x}$):

$$\mathcal{D} = \left\{ \mathbf{h}^{(l-1)}(\mathbf{x}^{(t)}) \right\}_{t=1}^{T}$$

- ${\scriptstyle \bullet}\,$ train ''greedy module'' (RBM, autoencoder) on ${\cal D}\,$
- use hidden layer weights and biases of greedy module to initialize the deep network parameters $\mathbf{W}^{(l)}$, $\mathbf{b}^{(l)}$
- Initialize $\mathbf{W}^{(L+1)}$, $\mathbf{b}^{(L+1)}$ randomly (as usual)
- Train the whole neural network using (supervised) stochastic gradient descent (with backprop)

Topics: pseudocode

- for l=1 to L
 - build unsupervised training set (with $\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x}$):

$$\mathcal{D} = \left\{ \mathbf{h}^{(l-1)}(\mathbf{x}^{(t)}) \right\}_{t=1}^{T}$$

- ${\scriptstyle \bullet}\,$ train ''greedy module'' (RBM, autoencoder) on ${\cal D}\,$
- use hidden layer weights and biases of greedy module to initialize the deep network parameters $\mathbf{W}^{(l)}$, $\mathbf{b}^{(l)}$
- Initialize $\mathbf{W}^{(L+1)}$, $\mathbf{b}^{(L+1)}$ randomly (as usual)
- Train the whole neural network using (supervised) stochastic gradient descent (with backprop)

pre-training

Topics: pseudocode

- for l=1 to L
 - build unsupervised training set (with $\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x}$):

$$\mathcal{D} = \left\{ \mathbf{h}^{(l-1)}(\mathbf{x}^{(t)}) \right\}_{t=1}^{T}$$

- ${\scriptstyle \bullet}\,$ train ''greedy module'' (RBM, autoencoder) on ${\cal D}\,$
- use hidden layer weights and biases of greedy module to initialize the deep network parameters $\mathbf{W}^{(l)}$, $\mathbf{b}^{(l)}$
- Initialize $\mathbf{W}^{(L+1)}$, $\mathbf{b}^{(L+1)}$ randomly (as usual)
- Train the whole neural network using (supervised) stochastic gradient descent (with backprop)

pre-training

Topics: datasets

• Datasets generated with varying number of factors of variations Variations on MNIST Tall or wide?

Convex shape or not?

of Deep Architectures on Problems with Many Factors of Variation Larochelle, Erhan, Courville, Bergstra and Bengio, 2007

Topics: impact of initialization

Network		MNIST-small	MNIST-rotati
Туре	Depth	classif. test error	classif. test er
Deep net	1	4.14 % ± 0.17	$15.22 \% \pm 0.3$
	2	4.03 % ± 0.17	10.63 $\% \pm 0.2$
	3	4.24 % ± 0.18	$11.98 \% \pm 0.2$
	4	$4.47~\% \pm 0.18$	$11.73 \% \pm 0.2$
Deep net + autoencoder	1	$3.87 \% \pm 0.17$	$11.43\% \pm 0.2$
	2	3.38 % ± 0.16	9.88 $\% \pm 0.2$
	3	3.37 % ± 0.16	9.22 % ± 0.2
	4	3.39 % ± 0.16	9.20 % ± 0.2
Deep net + RBM	1	$3.17~\% \pm 0.15$	$10.47 \% \pm 0.2$
	2	2.74 % ± 0.14	9.54 $\% \pm 0.2$
	3	2.71 % ± 0.14	8.80 % ± 0.2
	4	2.72 $\% \pm 0.14$	8.83 % ± 0.2

Topics: impact of initialization

Why Does Unsupervised Pre-training Help Deep Learning? Erhan, Bengio, Courville, Manzagol, Vincent and Bengio, 2011

Topics: impact of initialization

Why Does Unsupervised Pre-training Help Deep Learning? Erhan, Bengio, Courville, Manzagol, Vincent and Bengio, 2011

Topics: performance on different datasets

		Stacked Autoencoders	Stacked RBMS	Stacked Denoising Autoenc
Dataset	\mathbf{SVM}_{rbf}	SAA-3	DBN-3	SdA-3
basic	$3.03{\pm}0.15$	3.46 ± 0.16	3.11 ± 0.15	2.80±0.14 (1
rot	11.11 ± 0.28	$10.30{\pm}0.27$	$10.30{\pm}0.27$	10.29±0.27 (1
bg-rand	14.58 ± 0.31	11.28 ± 0.28	$6.73{\pm}0.22$	10.38 ± 0.27 (4
bg-img	22.61 ± 0.37	23.00 ± 0.37	$16.31{\pm}0.32$	16.68±0.33 (2
rot-bg-img	55.18 ± 0.44	51.93 ± 0.44	47.39 ± 0.44	44.49±0.44 (2)
rect	$2.15{\pm}0.13$	$2.41{\pm}0.13$	$2.60{\pm}0.14$	1.99±0.12 (1
rect-img	24.04 ± 0.37	24.05 ± 0.37	$22.50{\pm}0.37$	21.59±0.36 (2
convex	19.13 ± 0.34	$18.41{\pm}0.34$	$18.63{\pm}0.34$	19.06\pm0.34 (1)

Extracting and Composing Robust Features with Denoising Autoencoders, Vincent, Larochelle, Bengio and Manzagol, 2008.

