Neural networks

Deep learning - dropout

DEEP LEARNING

Topics: why training is hard

 Depending on the problem, one or the other situation will tend to prevail

- If first hypothesis (underfitting): use better optimization
 - this is an active area of research

- If second hypothesis (overfitting): use better regularization
 - unsupervised learning
 - stochastic «dropout» training

Topics: dropout

- Idea: «cripple» neural network by removing hidden units stochastically
 - each hidden unit is set to 0 with probability 0.5
 - hidden units cannot co-adapt to other units
 - hidden units must be more generally useful

 Could use a different dropout probability, but 0.5 usually works well

Topics: dropout

- Idea: «cripple» neural network by removing hidden units stochastically
 - each hidden unit is set to 0 with probability 0.5
 - hidden units cannot co-adapt to other units
 - hidden units must be more generally useful

 Could use a different dropout probability, but 0.5 usually works well

Topics: dropout

- Idea: «cripple» neural network by removing hidden units stochastically
 - each hidden unit is set to 0 with probability 0.5
 - hidden units cannot co-adapt to other units
 - hidden units must be more generally useful

 Could use a different dropout probability, but 0.5 usually works well

Topics: dropout

- Use random binary masks $\mathbf{m}^{(k)}$
 - layer pre-activation for k>0 $(\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x})$ $\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$

 \blacktriangleright hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

• output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

Topics: dropout

- Use random binary masks $\mathbf{m}^{(k)}$
 - layer pre-activation for k>0 $(\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x})$ $\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$

 \blacktriangleright hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x})) \odot \mathbf{m}^{(k)}$$

• output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

Topics: dropout backpropagation

- This assumes a forward propagation has been made before
 - compute output gradient (before activation)

$$\nabla_{\mathbf{a}^{(L+1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff -(\mathbf{e}(y) - \mathbf{f}(\mathbf{x}))$$

- for k from L+1 to 1
 - compute gradients of hidden layer parameter

$$\nabla_{\mathbf{W}^{(k)}} - \log f(\mathbf{x})_y \iff (\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y) \quad \mathbf{h}^{(k-1)}(\mathbf{x})^{\top}$$
$$\nabla_{\mathbf{b}^{(k)}} - \log f(\mathbf{x})_y \iff \nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y$$

- compute gradient of hidden layer below

$$\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \mathbf{W}^{(k)} \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y \right)$$

- compute gradient of hidden layer below (before activation)

$$\nabla_{\mathbf{a}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \left(\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \odot [\dots, g'(a^{(k-1)}(\mathbf{x})_j), \dots]$$

includes the

mask $\mathbf{m}^{(k-1)}$

Topics: dropout backpropagation

- This assumes a forward propagation has been made before
 - compute output gradient (before activation)

$$\nabla_{\mathbf{a}^{(L+1)}(\mathbf{x})} - \log f(\mathbf{x})_y \leftarrow -(\mathbf{e}(y) - \mathbf{f}(\mathbf{x}))$$

• for k from L+1 to 1

- compute gradients of hidden layer parameter

$$\nabla_{\mathbf{W}^{(k)}} - \log f(\mathbf{x})_y \iff \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \quad \mathbf{h}^{(k-1)}(\mathbf{x})^{\top}$$

$$\nabla_{\mathbf{b}^{(k)}} - \log f(\mathbf{x})_y \iff \nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y$$

- compute gradient of hidden layer below

$$\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \mathbf{W}^{(k)} \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y \right)$$

- compute gradient of hidden layer below (before activation)

$$\nabla_{\mathbf{a}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \left(\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \odot \left[\dots, g'(a^{(k-1)}(\mathbf{x})_j), \dots\right] \odot \mathbf{m}^{(k-1)}$$

Topics: test time classification

- At test time, we replace the masks by their expectation
 - ▶ this is simply the constant vector 0.5 if dropout probability is 0.5
 - for single hidden layer, can show this is equivalent to taking the geometric average of all neural networks, with all possible binary masks
- · Can be combined with unsupervised pre-training

- Beats regular backpropagation on many datasets
 - Improving neural networks by preventing co-adaptation of feature detectors. Hinton, Srivastava, Krizhevsky, Sutskever and Salakhutdinov, 2012.