Neural networks

Deep learning - deep belief network

Topics: deep belief network

- The idea of pre-training came from work on deep belief networks (DBNs)
 - it is a generative model that mixes undirected and directed connections between variables
 - ▶ top 2 layers' distribution $p(\mathbf{h}^{(2)}, \mathbf{h}^{(3)})$ is an RBM
 - other layers form a Bayesian network:
 - the conditional distributions of a layers given the one above it are

$$p(h_j^{(1)} = 1 | \mathbf{h}^{(2)}) = \operatorname{sigm}(\mathbf{b}^{(1)} + \mathbf{W}^{(2)}^{\top} \mathbf{h}^{(2)})$$
$$p(x_i = 1 | \mathbf{h}^{(1)}) = \operatorname{sigm}(\mathbf{b}^{(0)} + \mathbf{W}^{(1)}^{\top} \mathbf{h}^{(1)})$$

- this is referred to as a **sigmoid belief network** (SBN)
- a DBN is not a feed-forward network

DBN's graphical model

Topics: deep belief network

- The idea of pre-training came from work on deep belief networks (DBNs)
 - it is a generative model that mixes undirected and directed connections between variables
 - ▶ top 2 layers' distribution $p(\mathbf{h}^{(2)}, \mathbf{h}^{(3)})$ is an RBM
 - other layers form a Bayesian network:
 - the conditional distributions of a layers given the one above it are

$$p(h_j^{(1)} = 1 | \mathbf{h}^{(2)}) = \operatorname{sigm}(\mathbf{b}^{(1)} + \mathbf{W}^{(2)}^{\top} \mathbf{h}^{(2)})$$
$$p(x_i = 1 | \mathbf{h}^{(1)}) = \operatorname{sigm}(\mathbf{b}^{(0)} + \mathbf{W}^{(1)}^{\top} \mathbf{h}^{(1)})$$

- this is referred to as a **sigmoid belief network** (SBN)
- a DBN is not a feed-forward network

DBN's graphical model

Topics: deep belief network

- The idea of pre-training came from work on deep belief networks (DBNs)
 - it is a generative model that mixes undirected and directed connections between variables
 - ▶ top 2 layers' distribution $p(\mathbf{h}^{(2)}, \mathbf{h}^{(3)})$ is an RBM
 - other layers form a Bayesian network:
 - the conditional distributions of a layers given the one above it are

$$p(h_j^{(1)} = 1 | \mathbf{h}^{(2)}) = \operatorname{sigm}(\mathbf{b}^{(1)} + \mathbf{W}^{(2)}^{\top} \mathbf{h}^{(2)})$$
$$p(x_i = 1 | \mathbf{h}^{(1)}) = \operatorname{sigm}(\mathbf{b}^{(0)} + \mathbf{W}^{(1)}^{\top} \mathbf{h}^{(1)})$$

- this is referred to as a **sigmoid belief network** (SBN)
- a DBN is not a feed-forward network

DBN's graphical model

Topics: deep belief network

The full distribution of a DBN is as follows

$$p(\mathbf{x}, \mathbf{h}^{(1)}, \mathbf{h}^{(2)}, \mathbf{h}^{(3)}) = p(\mathbf{h}^{(2)}, \mathbf{h}^{(3)}) p(\mathbf{h}^{(1)}|\mathbf{h}^{(2)}) p(\mathbf{x}|\mathbf{h}^{(1)})$$

- where:
 - $p(\mathbf{h}^{(2)}, \mathbf{h}^{(3)}) = \exp\left(\mathbf{h}^{(2)}^{\top} \mathbf{W}^{(3)} \mathbf{h}^{(3)} + \mathbf{b}^{(2)}^{\top} \mathbf{h}^{(2)} + \mathbf{b}^{(3)}^{\top} \mathbf{h}^{(3)}\right) / Z$
 - $p(\mathbf{h}^{(1)}|\mathbf{h}^{(2)}) = \prod_j p(h_j^{(1)}|\mathbf{h}^{(2)})$
 - $p(\mathbf{x}|\mathbf{h}^{(1)}) = \prod_{i} p(x_i|\mathbf{h}^{(1)})$
- To observe a DBN trained on MNIST in action:
 - http://www.cs.toronto.edu/~hinton/adi/index.htm
- · As in a deep feed-forward network, training a DBN is hard
 - initialization will play a crucial role on the results

Topics: deep belief network

- This is where the RBM stacking procedure comes from
 - idea: improve prior on last layer by adding another hidden layer

$$p(\mathbf{h}^{(1)}, \mathbf{h}^{(2)}) = p(\mathbf{h}^{(1)}|\mathbf{h}^{(2)}) \sum_{\mathbf{h}^{(3)}} p(\mathbf{h}^{(2)}, \mathbf{h}^{(3)})$$

how do we train these additional layers?

$$p(\mathbf{x}, \mathbf{h}^{(1)}) = p(\mathbf{x}|\mathbf{h}^{(1)}) \sum_{\mathbf{h}^{(2)}} p(\mathbf{h}^{(1)}, \mathbf{h}^{(2)})$$

Topics: deep belief network

- This is where the RBM stacking procedure comes from
 - idea: improve prior on last layer by adding another hidden layer

$$p(\mathbf{h}^{(1)}, \mathbf{h}^{(2)}) = p(\mathbf{h}^{(1)}|\mathbf{h}^{(2)}) \sum_{\mathbf{h}^{(3)}} p(\mathbf{h}^{(2)}, \mathbf{h}^{(3)})$$

how do we train these additional layers?

Topics: deep belief network

- This is where the RBM stacking procedure comes from

idea: improve prior on last layer by adding another hidden layer $p(\mathbf{h}^{(1)}, \mathbf{h}^{(2)}) = p(\mathbf{h}^{(1)}|\mathbf{h}^{(2)}) \sum_{\mathbf{h}^{(3)}} p(\mathbf{h}^{(2)}, \mathbf{h}^{(3)})$ how do we train these additional layers? $p(\mathbf{x}, \mathbf{h}^{(1)}) = p(\mathbf{x} | \mathbf{h}^{(1)}) \sum_{\mathbf{h}^{(2)}} p(\mathbf{h}^{(1)}, \mathbf{h}^{(2)})$ $\mathbf{h}^{(2)}$ $p(\mathbf{x}) = \sum_{\mathbf{h}^{(1)}} p(\mathbf{x}, \mathbf{h}^{(1)})$

