Neural networks

Deep learning - variational bound

Topics: deep belief network

- This is where the RBM stacking procedure comes from
 - idea: improve prior on last layer by adding another hidden layer

Topics: concavity

We will use the fact that the logarithm function is concave:

$$\log(\sum_i \omega_i \ a_i) \ge \sum_i \omega_i \log(a_i)$$
 (where $\sum_i \omega_i = 1$ and $\omega_i \ge 0$)

Topics: variational bound

• For any model $p(\mathbf{x}, \mathbf{h}^{(1)})$ with latent variables $\mathbf{h}^{(1)}$ we can write:

$$\log p(\mathbf{x}) = \log \left(\sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \frac{p(\mathbf{x}, \mathbf{h}^{(1)})}{q(\mathbf{h}^{(1)}|\mathbf{x})} \right)$$

$$\geq \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log \left(\frac{p(\mathbf{x}, \mathbf{h}^{(1)})}{q(\mathbf{h}^{(1)}|\mathbf{x})} \right)$$

$$= \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{h}^{(1)})$$

$$- \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log q(\mathbf{h}^{(1)}|\mathbf{x})$$

• $q(\mathbf{h}^{(1)}|\mathbf{x})$ is any approximation of $p(\mathbf{h}^{(1)}|\mathbf{x})$

Topics: variational bound

• For any model $p(\mathbf{x}, \mathbf{h}^{(1)})$ with latent variables $\mathbf{h}^{(1)}$ we can write:

$$\log p(\mathbf{x}) = \log \left(\sum_{\mathbf{h}^{(1)}} \widehat{q(\mathbf{h}^{(1)}|\mathbf{x})} \frac{p(\mathbf{x}, \mathbf{h}^{(1)})}{q(\mathbf{h}^{(1)}|\mathbf{x})} \right)$$

$$\geq \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log \left(\frac{p(\mathbf{x}, \mathbf{h}^{(1)})}{q(\mathbf{h}^{(1)}|\mathbf{x})} \right)$$

$$= \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{h}^{(1)})$$

$$- \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log q(\mathbf{h}^{(1)}|\mathbf{x})$$

• $q(\mathbf{h}^{(1)}|\mathbf{x})$ is any approximation of $p(\mathbf{h}^{(1)}|\mathbf{x})$

Topics: variational bound

• For any model $p(\mathbf{x}, \mathbf{h}^{(1)})$ with latent variables $\mathbf{h}^{(1)}$ we can write:

$$\log p(\mathbf{x}) = \log \left(\sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \frac{p(\mathbf{x}, \mathbf{h}^{(1)})}{q(\mathbf{h}^{(1)}|\mathbf{x})} \right)$$

$$\geq \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log \left(\frac{p(\mathbf{x}, \mathbf{h}^{(1)})}{q(\mathbf{h}^{(1)}|\mathbf{x})} \right)$$

$$= \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{h}^{(1)})$$

$$- \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log q(\mathbf{h}^{(1)}|\mathbf{x})$$

• $q(\mathbf{h}^{(1)}|\mathbf{x})$ is any approximation of $p(\mathbf{h}^{(1)}|\mathbf{x})$

Topics: variational bound

This is called a variational bound

$$\log p(\mathbf{x}) \geq \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{h}^{(1)})$$
$$-\sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log q(\mathbf{h}^{(1)}|\mathbf{x})$$

- if $q(\mathbf{h}^{(1)}|\mathbf{x})$ is equal to the true conditional $p(\mathbf{h}^{(1)}|\mathbf{x})$, then we have an equality
- the more $q(\mathbf{h}^{(1)}|\mathbf{x})$ is different from $p(\mathbf{h}^{(1)}|\mathbf{x})$ the less tight the bound is
- in fact, the difference between the left and right terms is the KL divergence between $q(\mathbf{h}^{(1)}|\mathbf{x})$ and $p(\mathbf{h}^{(1)}|\mathbf{x})$:

$$KL(q||p) = \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log \left(\frac{q(\mathbf{h}^{(1)}|\mathbf{x})}{p(\mathbf{h}^{(1)}|\mathbf{x})} \right)$$