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Topics: unsupervised learning
• Unsupervised learning: only use the inputs       for learning
‣ automatically extract meaningful features for your data

‣ leverage the availability of unlabeled data

‣ add a data-dependent regularizer to trainings

• We will see 3 neural networks for unsupervised learning
‣ restricted Boltzmann machines

‣ autoencoders

‣ sparse coding model
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Abstract

Math for my slides “Restricted Boltzmann Machines”.
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Topics: sparse coding
• For each       find a latent representation       such that:
‣ it is sparse: the vector        has many zeros
‣ we can reconstruct the original input        as well as possible

• More formally:

‣ we also constrain the columns of        to be of norm 1
- otherwise,      could grow big while        becomes small to satisfy the prior

‣ sometimes the columns are constrained to be no greater than 1
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Math for my slides “Sparse coding”.
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Topics: sparse coding
• For each       find a latent representation       such that:
‣ it is sparse: the vector        has many zeros
‣ we can reconstruct the original input        as well as possible

• More formally:

‣ we also constrain the columns of        to be of norm 1
- otherwise,      could grow big while        becomes small to satisfy the prior

‣ sometimes the columns are constrained to be no greater than 1
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• For each       find a latent representation       such that:
‣ it is sparse: the vector        has many zeros
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• More formally:
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• For each       find a latent representation       such that:
‣ it is sparse: the vector        has many zeros
‣ we can reconstruct the original input        as well as possible

• More formally:

‣ we also constrain the columns of        to be of norm 1
- otherwise,      could grow big while        becomes small to satisfy the prior

‣ sometimes the columns are constrained to be no greater than 1

Sparse coding

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 1, 2012

Abstract

Math for my slides “Sparse coding”.

• x

(t)
h

(t)
D

argmin
D

1

T

TX

t=1

argmin
h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

•
h(x(t)) = argmin

h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

1

Sparse coding

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 1, 2012

Abstract

Math for my slides “Sparse coding”.

• x

(t)
h

(t)
D

argmin
D

1

T

TX

t=1

argmin
h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

•
h(x(t)) = argmin

h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

1

Sparse coding

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 1, 2012

Abstract

Math for my slides “Sparse coding”.

• x

(t)
h

(t)
D

argmin
D

1

T

TX

t=1

argmin
h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

•
h(x(t)) = argmin

h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

1

Sparse coding

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 1, 2012

Abstract

Math for my slides “Sparse coding”.

• x

(t)
h

(t)
D

argmin
D

1

T

TX

t=1

argmin
h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

•
h(x(t)) = argmin

h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

1

�
reconstruction error

�

sparsity penalty

Sparse coding

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 1, 2012

Abstract

Math for my slides “Sparse coding”.

• x

(t)
h

(t)
D

b
x

(t)

argmin
D

1

T

TX

t=1

argmin
h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

•
h(x(t)) = argmin

h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

1

�

reconstruction

Sparse coding

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 1, 2012

Abstract

Math for my slides “Sparse coding”.

• x

(t)
h

(t)
D

b
x

(t)

min

D

1

T

TX

t=1

min

h

(t)

1

2

||x(t) �D h

(t)||22 + �||h(t)||1

•
h(x

(t)
) = argmin

h

(t)

1

2

||x(t) �D h

(t)||22 + �||h(t)||1

•
b
x

(t)
= D h(x

(t)
) =

X

k s.t.
h(x(t))k 6=0

D·,k h(x(t)
)k

•
l(x(t)

) =

1

2

||x(t) �D h

(t)||22 + �||h(t)||1

@

@h(t)
k

l(x(t)
) = (D·,k)

>
(D h

(t) � x

(t)
) + � sign(h(t)

k )

r
h

(t) l(x(t)
) = D

>
(D h

(t) � x

(t)
) + � sign(h

(t)
)

• h

(t)

• h(t)
k = 0

• h(t)
k

• h(t)
k (= h(t)

k � ↵ DD>
(D h

(t) � x

(t)
)

• sign(h(t)
) 6= sign(h(t)

k � ↵ � sign(h(t)
k ))

• h(t)
k (= 0

• h(t)
k (= h(t)

k � ↵ � sign(h(t)
k )

•
h

(t) (= h

(t) � ↵ D

>
(D h

(t) � x

(t)
)

1

Sparse coding

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 1, 2012

Abstract

Math for my slides “Sparse coding”.

• x

(t)
h

(t)
D

argmin
D

1

T

TX

t=1

argmin
h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

•
h(x(t)) = argmin

h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

1

Sparse coding

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 1, 2012

Abstract

Math for my slides “Sparse coding”.

• x

(t)
h

(t)
D

argmin
D

1

T

TX

t=1

argmin
h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

•
h(x(t)) = argmin

h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

1

Sparse coding

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 1, 2012

Abstract

Math for my slides “Sparse coding”.

• x

(t)
h

(t)
D

argmin
D

1

T

TX

t=1

argmin
h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

•
h(x(t)) = argmin

h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

1



SPARSE CODING
3

Topics: sparse coding
• For each       find a latent representation       such that:
‣ it is sparse: the vector        has many zeros
‣ we can reconstruct the original input        as well as possible

• More formally:

‣ we also constrain the columns of        to be of norm 1
- otherwise,      could grow big while        becomes small to satisfy the prior

‣ sometimes the columns are constrained to be no greater than 1
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Topics: sparse coding
• For each       find a latent representation       such that:
‣ it is sparse: the vector        has many zeros
‣ we can reconstruct the original input        as well as possible

• More formally:

‣      is equivalent to the autoencoder output weight matrix
‣ however,             is now a complicated function of      

- encoder is the minimization
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Topics: dictionary
• Can also write

‣ we also refer to     as the dictionary
- in certain applications, we know what dictionary matrix to use

- often however, we have to learn it

+ 1 + 1=  1 + 1 + 1 + 1 + 1 + 0.8 + 0.8

Figure 4: Top: A randomly selected subset of encoder filters learned by our energy-based model
when trained on the MNIST handwritten digit dataset. Bottom: An example of reconstruction of a
digit randomly extracted from the test data set. The reconstruction is made by adding “parts”: it is
the additive linear combination of few basis functions of the decoder with positive coefficients.

ingly, the encoder and decoder filter values are nearly identical up to a scale factor. After training,
inference is extremely fast, requiring only a simple matrix-vector multiplication.

4.2 Feature Extraction from Handwritten Numerals

The energy-based model was trained on 60,000 handwritten digits from the MNIST data set [13],
which contains quasi-binary images of size 28x28 (784 pixels). The model is the same as in the
previous experiment. The number of components in the code vector was 196. While 196 is less than
the 784 inputs, the representation is still overcomplete, because the effective dimension of the digit
dataset is considerably less than 784. Pre-processing consisted of dividing each pixel value by 255.
Parameters η and β in the temporal softmax were 0.01 and 1, respectively. The other parameters
of the system have been set to values similar to those of the previous experiment on natural image
patches. Each one of the filters, shown in the top part of fig. 4, contains an elementary “part” of a
digit. Straight stroke detectors are present, as in the previous experiment, but curly strokes can also
be found. Reconstruction of most single digits can be achieved by a linear additive combination of
a small number of filters since the output of the Sparsifying Logistic is sparse and positive. The
bottom part of fig. 4 illustrates this reconstruction by “parts”.

4.3 Learning Local Features for the MNIST dataset

Deep convolutional networks trained with backpropagation hold the current record for accuracy
on the MNIST dataset [14, 15]. While back-propagation produces good low-level features, it is
well known that deep networks are particularly challenging for gradient-descent learning. Hinton
et al. [16] have recently shown that initializing the weights of a deep network using unsupervised
learning before performing supervised learning with back-propagation can significantly improve the
performance of a deep network. This section describes a similar experiment in which we used the
proposed method to initialize the first layer of a large convolutional network. We used an architecture
essentially identical to LeNet-5 as described in [15]. However, because our model produces sparse
features, our network had a considerably larger number of feature maps: 50 for layer 1 and 2, 50
for layer 3 and 4, 200 for layer 5, and 10 for the output layer. The numbers for LeNet-5 were 6, 16,
100, and 10 respectively. We refer to our larger network as the 50-50-200-10 network. We trained
this networks on 55,000 samples from MNIST, keeping the remaining 5,000 training samples as a
validation set. When the error on the validation set reached its minimum, an additional five sweeps
were performed on the training set augmented with the validation set (unless this increased the
training loss). Then the learning was stopped, and the final error rate on the test set was measured.
When the weights are initialized randomly, the 50-50-200-10 achieves a test error rate of 0.7%, to
be compared with the 0.95% obtained by [15] with the 6-16-100-10 network.
In the next experiment, the proposed sparse feature learning method was trained on 5x5 image
patches extracted from the MNIST training set. The model had a 50-dimensional code. The encoder
filters were used to initialize the first layer of the 50-50-200-10 net. The network was then trained in
the usual way, except that the first layer was kept fixed for the first 10 epochs through the training set.
The 50 filters after training are shown in fig. 5. The test error rate was 0.6%. To our knowledge, this
is the best results ever reported with a method trained on the original MNIST set, without deskewing
nor augmenting the training set with distorted samples.
The training set was then augmented with samples obtained by elastically distorting the original
training samples, using a method similar to [14]. The error rate of the 50-50-200-10 net with random
initialization was 0.49% (to be compared to 0.40% reported in [14]). By initializing the first layer
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Figure 4: Top: A randomly selected subset of encoder filters learned by our energy-based model
when trained on the MNIST handwritten digit dataset. Bottom: An example of reconstruction of a
digit randomly extracted from the test data set. The reconstruction is made by adding “parts”: it is
the additive linear combination of few basis functions of the decoder with positive coefficients.

ingly, the encoder and decoder filter values are nearly identical up to a scale factor. After training,
inference is extremely fast, requiring only a simple matrix-vector multiplication.

4.2 Feature Extraction from Handwritten Numerals

The energy-based model was trained on 60,000 handwritten digits from the MNIST data set [13],
which contains quasi-binary images of size 28x28 (784 pixels). The model is the same as in the
previous experiment. The number of components in the code vector was 196. While 196 is less than
the 784 inputs, the representation is still overcomplete, because the effective dimension of the digit
dataset is considerably less than 784. Pre-processing consisted of dividing each pixel value by 255.
Parameters η and β in the temporal softmax were 0.01 and 1, respectively. The other parameters
of the system have been set to values similar to those of the previous experiment on natural image
patches. Each one of the filters, shown in the top part of fig. 4, contains an elementary “part” of a
digit. Straight stroke detectors are present, as in the previous experiment, but curly strokes can also
be found. Reconstruction of most single digits can be achieved by a linear additive combination of
a small number of filters since the output of the Sparsifying Logistic is sparse and positive. The
bottom part of fig. 4 illustrates this reconstruction by “parts”.

4.3 Learning Local Features for the MNIST dataset

Deep convolutional networks trained with backpropagation hold the current record for accuracy
on the MNIST dataset [14, 15]. While back-propagation produces good low-level features, it is
well known that deep networks are particularly challenging for gradient-descent learning. Hinton
et al. [16] have recently shown that initializing the weights of a deep network using unsupervised
learning before performing supervised learning with back-propagation can significantly improve the
performance of a deep network. This section describes a similar experiment in which we used the
proposed method to initialize the first layer of a large convolutional network. We used an architecture
essentially identical to LeNet-5 as described in [15]. However, because our model produces sparse
features, our network had a considerably larger number of feature maps: 50 for layer 1 and 2, 50
for layer 3 and 4, 200 for layer 5, and 10 for the output layer. The numbers for LeNet-5 were 6, 16,
100, and 10 respectively. We refer to our larger network as the 50-50-200-10 network. We trained
this networks on 55,000 samples from MNIST, keeping the remaining 5,000 training samples as a
validation set. When the error on the validation set reached its minimum, an additional five sweeps
were performed on the training set augmented with the validation set (unless this increased the
training loss). Then the learning was stopped, and the final error rate on the test set was measured.
When the weights are initialized randomly, the 50-50-200-10 achieves a test error rate of 0.7%, to
be compared with the 0.95% obtained by [15] with the 6-16-100-10 network.
In the next experiment, the proposed sparse feature learning method was trained on 5x5 image
patches extracted from the MNIST training set. The model had a 50-dimensional code. The encoder
filters were used to initialize the first layer of the 50-50-200-10 net. The network was then trained in
the usual way, except that the first layer was kept fixed for the first 10 epochs through the training set.
The 50 filters after training are shown in fig. 5. The test error rate was 0.6%. To our knowledge, this
is the best results ever reported with a method trained on the original MNIST set, without deskewing
nor augmenting the training set with distorted samples.
The training set was then augmented with samples obtained by elastically distorting the original
training samples, using a method similar to [14]. The error rate of the 50-50-200-10 net with random
initialization was 0.49% (to be compared to 0.40% reported in [14]). By initializing the first layer
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Figure 4: Top: A randomly selected subset of encoder filters learned by our energy-based model
when trained on the MNIST handwritten digit dataset. Bottom: An example of reconstruction of a
digit randomly extracted from the test data set. The reconstruction is made by adding “parts”: it is
the additive linear combination of few basis functions of the decoder with positive coefficients.

ingly, the encoder and decoder filter values are nearly identical up to a scale factor. After training,
inference is extremely fast, requiring only a simple matrix-vector multiplication.

4.2 Feature Extraction from Handwritten Numerals

The energy-based model was trained on 60,000 handwritten digits from the MNIST data set [13],
which contains quasi-binary images of size 28x28 (784 pixels). The model is the same as in the
previous experiment. The number of components in the code vector was 196. While 196 is less than
the 784 inputs, the representation is still overcomplete, because the effective dimension of the digit
dataset is considerably less than 784. Pre-processing consisted of dividing each pixel value by 255.
Parameters η and β in the temporal softmax were 0.01 and 1, respectively. The other parameters
of the system have been set to values similar to those of the previous experiment on natural image
patches. Each one of the filters, shown in the top part of fig. 4, contains an elementary “part” of a
digit. Straight stroke detectors are present, as in the previous experiment, but curly strokes can also
be found. Reconstruction of most single digits can be achieved by a linear additive combination of
a small number of filters since the output of the Sparsifying Logistic is sparse and positive. The
bottom part of fig. 4 illustrates this reconstruction by “parts”.

4.3 Learning Local Features for the MNIST dataset

Deep convolutional networks trained with backpropagation hold the current record for accuracy
on the MNIST dataset [14, 15]. While back-propagation produces good low-level features, it is
well known that deep networks are particularly challenging for gradient-descent learning. Hinton
et al. [16] have recently shown that initializing the weights of a deep network using unsupervised
learning before performing supervised learning with back-propagation can significantly improve the
performance of a deep network. This section describes a similar experiment in which we used the
proposed method to initialize the first layer of a large convolutional network. We used an architecture
essentially identical to LeNet-5 as described in [15]. However, because our model produces sparse
features, our network had a considerably larger number of feature maps: 50 for layer 1 and 2, 50
for layer 3 and 4, 200 for layer 5, and 10 for the output layer. The numbers for LeNet-5 were 6, 16,
100, and 10 respectively. We refer to our larger network as the 50-50-200-10 network. We trained
this networks on 55,000 samples from MNIST, keeping the remaining 5,000 training samples as a
validation set. When the error on the validation set reached its minimum, an additional five sweeps
were performed on the training set augmented with the validation set (unless this increased the
training loss). Then the learning was stopped, and the final error rate on the test set was measured.
When the weights are initialized randomly, the 50-50-200-10 achieves a test error rate of 0.7%, to
be compared with the 0.95% obtained by [15] with the 6-16-100-10 network.
In the next experiment, the proposed sparse feature learning method was trained on 5x5 image
patches extracted from the MNIST training set. The model had a 50-dimensional code. The encoder
filters were used to initialize the first layer of the 50-50-200-10 net. The network was then trained in
the usual way, except that the first layer was kept fixed for the first 10 epochs through the training set.
The 50 filters after training are shown in fig. 5. The test error rate was 0.6%. To our knowledge, this
is the best results ever reported with a method trained on the original MNIST set, without deskewing
nor augmenting the training set with distorted samples.
The training set was then augmented with samples obtained by elastically distorting the original
training samples, using a method similar to [14]. The error rate of the 50-50-200-10 net with random
initialization was 0.49% (to be compared to 0.40% reported in [14]). By initializing the first layer

+ 1 + 1=  1 + 1 + 1 + 1 + 1 + 0.8 + 0.8

Figure 4: Top: A randomly selected subset of encoder filters learned by our energy-based model
when trained on the MNIST handwritten digit dataset. Bottom: An example of reconstruction of a
digit randomly extracted from the test data set. The reconstruction is made by adding “parts”: it is
the additive linear combination of few basis functions of the decoder with positive coefficients.

ingly, the encoder and decoder filter values are nearly identical up to a scale factor. After training,
inference is extremely fast, requiring only a simple matrix-vector multiplication.

4.2 Feature Extraction from Handwritten Numerals

The energy-based model was trained on 60,000 handwritten digits from the MNIST data set [13],
which contains quasi-binary images of size 28x28 (784 pixels). The model is the same as in the
previous experiment. The number of components in the code vector was 196. While 196 is less than
the 784 inputs, the representation is still overcomplete, because the effective dimension of the digit
dataset is considerably less than 784. Pre-processing consisted of dividing each pixel value by 255.
Parameters η and β in the temporal softmax were 0.01 and 1, respectively. The other parameters
of the system have been set to values similar to those of the previous experiment on natural image
patches. Each one of the filters, shown in the top part of fig. 4, contains an elementary “part” of a
digit. Straight stroke detectors are present, as in the previous experiment, but curly strokes can also
be found. Reconstruction of most single digits can be achieved by a linear additive combination of
a small number of filters since the output of the Sparsifying Logistic is sparse and positive. The
bottom part of fig. 4 illustrates this reconstruction by “parts”.

4.3 Learning Local Features for the MNIST dataset

Deep convolutional networks trained with backpropagation hold the current record for accuracy
on the MNIST dataset [14, 15]. While back-propagation produces good low-level features, it is
well known that deep networks are particularly challenging for gradient-descent learning. Hinton
et al. [16] have recently shown that initializing the weights of a deep network using unsupervised
learning before performing supervised learning with back-propagation can significantly improve the
performance of a deep network. This section describes a similar experiment in which we used the
proposed method to initialize the first layer of a large convolutional network. We used an architecture
essentially identical to LeNet-5 as described in [15]. However, because our model produces sparse
features, our network had a considerably larger number of feature maps: 50 for layer 1 and 2, 50
for layer 3 and 4, 200 for layer 5, and 10 for the output layer. The numbers for LeNet-5 were 6, 16,
100, and 10 respectively. We refer to our larger network as the 50-50-200-10 network. We trained
this networks on 55,000 samples from MNIST, keeping the remaining 5,000 training samples as a
validation set. When the error on the validation set reached its minimum, an additional five sweeps
were performed on the training set augmented with the validation set (unless this increased the
training loss). Then the learning was stopped, and the final error rate on the test set was measured.
When the weights are initialized randomly, the 50-50-200-10 achieves a test error rate of 0.7%, to
be compared with the 0.95% obtained by [15] with the 6-16-100-10 network.
In the next experiment, the proposed sparse feature learning method was trained on 5x5 image
patches extracted from the MNIST training set. The model had a 50-dimensional code. The encoder
filters were used to initialize the first layer of the 50-50-200-10 net. The network was then trained in
the usual way, except that the first layer was kept fixed for the first 10 epochs through the training set.
The 50 filters after training are shown in fig. 5. The test error rate was 0.6%. To our knowledge, this
is the best results ever reported with a method trained on the original MNIST set, without deskewing
nor augmenting the training set with distorted samples.
The training set was then augmented with samples obtained by elastically distorting the original
training samples, using a method similar to [14]. The error rate of the 50-50-200-10 net with random
initialization was 0.49% (to be compared to 0.40% reported in [14]). By initializing the first layer
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Figure 4: Top: A randomly selected subset of encoder filters learned by our energy-based model
when trained on the MNIST handwritten digit dataset. Bottom: An example of reconstruction of a
digit randomly extracted from the test data set. The reconstruction is made by adding “parts”: it is
the additive linear combination of few basis functions of the decoder with positive coefficients.

ingly, the encoder and decoder filter values are nearly identical up to a scale factor. After training,
inference is extremely fast, requiring only a simple matrix-vector multiplication.

4.2 Feature Extraction from Handwritten Numerals

The energy-based model was trained on 60,000 handwritten digits from the MNIST data set [13],
which contains quasi-binary images of size 28x28 (784 pixels). The model is the same as in the
previous experiment. The number of components in the code vector was 196. While 196 is less than
the 784 inputs, the representation is still overcomplete, because the effective dimension of the digit
dataset is considerably less than 784. Pre-processing consisted of dividing each pixel value by 255.
Parameters η and β in the temporal softmax were 0.01 and 1, respectively. The other parameters
of the system have been set to values similar to those of the previous experiment on natural image
patches. Each one of the filters, shown in the top part of fig. 4, contains an elementary “part” of a
digit. Straight stroke detectors are present, as in the previous experiment, but curly strokes can also
be found. Reconstruction of most single digits can be achieved by a linear additive combination of
a small number of filters since the output of the Sparsifying Logistic is sparse and positive. The
bottom part of fig. 4 illustrates this reconstruction by “parts”.

4.3 Learning Local Features for the MNIST dataset

Deep convolutional networks trained with backpropagation hold the current record for accuracy
on the MNIST dataset [14, 15]. While back-propagation produces good low-level features, it is
well known that deep networks are particularly challenging for gradient-descent learning. Hinton
et al. [16] have recently shown that initializing the weights of a deep network using unsupervised
learning before performing supervised learning with back-propagation can significantly improve the
performance of a deep network. This section describes a similar experiment in which we used the
proposed method to initialize the first layer of a large convolutional network. We used an architecture
essentially identical to LeNet-5 as described in [15]. However, because our model produces sparse
features, our network had a considerably larger number of feature maps: 50 for layer 1 and 2, 50
for layer 3 and 4, 200 for layer 5, and 10 for the output layer. The numbers for LeNet-5 were 6, 16,
100, and 10 respectively. We refer to our larger network as the 50-50-200-10 network. We trained
this networks on 55,000 samples from MNIST, keeping the remaining 5,000 training samples as a
validation set. When the error on the validation set reached its minimum, an additional five sweeps
were performed on the training set augmented with the validation set (unless this increased the
training loss). Then the learning was stopped, and the final error rate on the test set was measured.
When the weights are initialized randomly, the 50-50-200-10 achieves a test error rate of 0.7%, to
be compared with the 0.95% obtained by [15] with the 6-16-100-10 network.
In the next experiment, the proposed sparse feature learning method was trained on 5x5 image
patches extracted from the MNIST training set. The model had a 50-dimensional code. The encoder
filters were used to initialize the first layer of the 50-50-200-10 net. The network was then trained in
the usual way, except that the first layer was kept fixed for the first 10 epochs through the training set.
The 50 filters after training are shown in fig. 5. The test error rate was 0.6%. To our knowledge, this
is the best results ever reported with a method trained on the original MNIST set, without deskewing
nor augmenting the training set with distorted samples.
The training set was then augmented with samples obtained by elastically distorting the original
training samples, using a method similar to [14]. The error rate of the 50-50-200-10 net with random
initialization was 0.49% (to be compared to 0.40% reported in [14]). By initializing the first layer
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Figure 4: Top: A randomly selected subset of encoder filters learned by our energy-based model
when trained on the MNIST handwritten digit dataset. Bottom: An example of reconstruction of a
digit randomly extracted from the test data set. The reconstruction is made by adding “parts”: it is
the additive linear combination of few basis functions of the decoder with positive coefficients.

ingly, the encoder and decoder filter values are nearly identical up to a scale factor. After training,
inference is extremely fast, requiring only a simple matrix-vector multiplication.

4.2 Feature Extraction from Handwritten Numerals

The energy-based model was trained on 60,000 handwritten digits from the MNIST data set [13],
which contains quasi-binary images of size 28x28 (784 pixels). The model is the same as in the
previous experiment. The number of components in the code vector was 196. While 196 is less than
the 784 inputs, the representation is still overcomplete, because the effective dimension of the digit
dataset is considerably less than 784. Pre-processing consisted of dividing each pixel value by 255.
Parameters η and β in the temporal softmax were 0.01 and 1, respectively. The other parameters
of the system have been set to values similar to those of the previous experiment on natural image
patches. Each one of the filters, shown in the top part of fig. 4, contains an elementary “part” of a
digit. Straight stroke detectors are present, as in the previous experiment, but curly strokes can also
be found. Reconstruction of most single digits can be achieved by a linear additive combination of
a small number of filters since the output of the Sparsifying Logistic is sparse and positive. The
bottom part of fig. 4 illustrates this reconstruction by “parts”.

4.3 Learning Local Features for the MNIST dataset

Deep convolutional networks trained with backpropagation hold the current record for accuracy
on the MNIST dataset [14, 15]. While back-propagation produces good low-level features, it is
well known that deep networks are particularly challenging for gradient-descent learning. Hinton
et al. [16] have recently shown that initializing the weights of a deep network using unsupervised
learning before performing supervised learning with back-propagation can significantly improve the
performance of a deep network. This section describes a similar experiment in which we used the
proposed method to initialize the first layer of a large convolutional network. We used an architecture
essentially identical to LeNet-5 as described in [15]. However, because our model produces sparse
features, our network had a considerably larger number of feature maps: 50 for layer 1 and 2, 50
for layer 3 and 4, 200 for layer 5, and 10 for the output layer. The numbers for LeNet-5 were 6, 16,
100, and 10 respectively. We refer to our larger network as the 50-50-200-10 network. We trained
this networks on 55,000 samples from MNIST, keeping the remaining 5,000 training samples as a
validation set. When the error on the validation set reached its minimum, an additional five sweeps
were performed on the training set augmented with the validation set (unless this increased the
training loss). Then the learning was stopped, and the final error rate on the test set was measured.
When the weights are initialized randomly, the 50-50-200-10 achieves a test error rate of 0.7%, to
be compared with the 0.95% obtained by [15] with the 6-16-100-10 network.
In the next experiment, the proposed sparse feature learning method was trained on 5x5 image
patches extracted from the MNIST training set. The model had a 50-dimensional code. The encoder
filters were used to initialize the first layer of the 50-50-200-10 net. The network was then trained in
the usual way, except that the first layer was kept fixed for the first 10 epochs through the training set.
The 50 filters after training are shown in fig. 5. The test error rate was 0.6%. To our knowledge, this
is the best results ever reported with a method trained on the original MNIST set, without deskewing
nor augmenting the training set with distorted samples.
The training set was then augmented with samples obtained by elastically distorting the original
training samples, using a method similar to [14]. The error rate of the 50-50-200-10 net with random
initialization was 0.49% (to be compared to 0.40% reported in [14]). By initializing the first layer

Sparse coding

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 1, 2012

Abstract

Math for my slides “Sparse coding”.

• x

(t)
h

(t)
D

argmin
D

1

T

TX

t=1

argmin
h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

•
h(x(t)) = argmin

h(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

1

Sparse coding

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 1, 2012

Abstract

Math for my slides “Sparse coding”.

• x

(t)
h

(t)
D

b
x

(t)

argmin
D

1

T

TX

t=1

argmin
h

(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

•
h(x(t)) = argmin

h

(t)

1

2
||x(t) �D h

(t)||22 + �||h(t)||1

•
b
x

(t) = D h(x(t)) =
X

k s.t.
h(x(t))k 6=0

D·,k h(x(t))k

1


