Neural networks

Sparse coding - definition



UNSUPERVISED LEARNING

Topics: unsupervised learning

» Unsupervised learning: only use the inputs x) for learning

» automatically extract meaningful features for your data
» leverage the availability of unlabeled data

» add a data-dependent regularizer to trainings

* We will see 3 neural networks for unsupervised learning

» restricted Boltzmann machines

» autoencoders

» sparse coding model



SPARSE CODING

Topics: sparse coding

» For each x( find a latent representation h(*) such that:
» 1t Is sparse: the vector h® has many zeros
» we can reconstruct the original input x () as well as possible

* More formally:
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» we also constrain the columns of T) to be of norm |

- otherwise, ID could grow big while h(®) becomes small to satisfy the prior

» sometimes the columns are constrained to be no greater than |
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» D Is equivalent to the autoencoder output weight matrix

» however, h(X(t)) is now a complicated function of x (1)
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Topics: dictionary
+ Can also write X\ = D h(x (t)) — Z D. ;. h(x (t))
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» we also refer to I as the dictionary
- In certain applications, we know what dictionary matrix to use

- often however, we have to learn it
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