# Neural networks

Sparse coding - inference (ISTA algorithm)

#### Topics: sparse coding

- For each  $\mathbf{x}^{(t)}$  find a latent representation  $\mathbf{h}^{(t)}$  such that:
  - lacktriangleright it is sparse: the vector  $\mathbf{h}^{(t)}$  has many zeros
  - lacktriangle we can reconstruct the original input  ${f x}^{(t)}$  as much as possible
- More formally: reconstruction error sparsity penalty  $\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$  reconstruction version sparsity control
  - D is equivalent to the autoencoder output weight matrix
  - lacktriangleright however,  $\mathbf{h}(\mathbf{x}^{(t)})$  is now a complicated function of  $\mathbf{x}^{(t)}$ 
    - encoder is the minimization  $\mathbf{h}(\mathbf{x}^{(t)}) = \underset{\mathbf{h}^{(t)}}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$

#### Topics: inference of sparse codes

- Given  $\mathbf{D}$ , how do we compute  $\mathbf{h}(\mathbf{x}^{(t)})$ 
  - we want to optimize  $l(\mathbf{x}^{(t)}) = \frac{1}{2}||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$  w.r.t.  $\mathbf{h}^{(t)}$





we could use a gradient descent method:

$$\nabla_{\mathbf{h}^{(t)}} l(\mathbf{x}^{(t)}) = \mathbf{D}^{\top} (\mathbf{D} \mathbf{h}^{(t)} - \mathbf{x}^{(t)}) + \lambda \operatorname{sign}(\mathbf{h}^{(t)})$$

#### Topics: inference of sparse codes

For a single hidden unit:

$$\frac{\partial}{\partial h_k^{(t)}} l(\mathbf{x}^{(t)}) = (\mathbf{D}_{\cdot,k})^{\top} (\mathbf{D} \mathbf{h}^{(t)} - \mathbf{x}^{(t)}) + \lambda \operatorname{sign}(h_k^{(t)})$$

- issue: LI norm not differentiable at 0
  - very unlikely for gradient descent to 'land'' on  $h_k^{(t)}=0$  (even if it's the solution)
- lacktriangleright solution: if  $h_k^{(t)}$  changes sign because of L1 norm gradient, clamp to 0
- each hidden unit update would be performed as follows:
  - $h_k^{(t)} \longleftarrow h_k^{(t)} \alpha(\mathbf{D}_{\cdot,k})^{\top} (\mathbf{D} \mathbf{h}^{(t)} \mathbf{x}^{(t)})$
  - if  $\operatorname{sign}(h_k^{(t)}) \neq \operatorname{sign}(h_k^{(t)} \alpha \lambda \operatorname{sign}(h_k^{(t)}))$  then:  $h_k^{(t)} \Longleftarrow 0$
  - else:  $h_k^{(t)} \longleftarrow h_k^{(t)} \alpha \lambda \operatorname{sign}(h_k^{(t)})$

#### Topics: inference of sparse codes

For a single hidden unit:

$$\frac{\partial}{\partial h_k^{(t)}} l(\mathbf{x}^{(t)}) = (\mathbf{D}_{\cdot,k})^{\top} (\mathbf{D} \mathbf{h}^{(t)} - \mathbf{x}^{(t)}) + \lambda \operatorname{sign}(h_k^{(t)})$$

- issue: LI norm not differentiable at 0
  - very unlikely for gradient descent to 'land'' on  $\,h_k^{(t)}=0\,$  (even if it's the solution)
- lacktriangleright solution: if  $h_k^{(t)}$  changes sign because of L1 norm gradient, clamp to 0
- ▶ each hidden unit update would be performed as follows:
  - $\quad h_k^{(t)} \longleftarrow h_k^{(t)} \alpha(\mathbf{D}_{\cdot,k})^{\top} (\mathbf{D} \ \mathbf{h}^{(t)} \mathbf{x}^{(t)})$  bupdate from reconstruction
  - if  $\operatorname{sign}(h_k^{(t)}) \neq \operatorname{sign}(h_k^{(t)} \alpha \lambda \operatorname{sign}(h_k^{(t)}))$  then:  $h_k^{(t)} \longleftarrow 0$
  - else:  $h_k^{(t)} \longleftarrow h_k^{(t)} \alpha \lambda \operatorname{sign}(h_k^{(t)})$

#### Topics: inference of sparse codes

For a single hidden unit:

$$\frac{\partial}{\partial h_k^{(t)}} l(\mathbf{x}^{(t)}) = (\mathbf{D}_{\cdot,k})^{\top} (\mathbf{D} \mathbf{h}^{(t)} - \mathbf{x}^{(t)}) + \lambda \operatorname{sign}(h_k^{(t)})$$

- issue: LI norm not differentiable at 0
  - very unlikely for gradient descent to 'land'' on  $h_k^{(t)}=0$  (even if it's the solution)
- lacktriangleright solution: if  $h_k^{(t)}$  changes sign because of L1 norm gradient, clamp to 0
- ▶ each hidden unit update would be performed as follows:

$$\begin{array}{l} -h_k^{(t)} & \longleftarrow h_k^{(t)} - \alpha (\mathbf{D}_{\cdot,k})^\top (\mathbf{D} \ \mathbf{h}^{(t)} - \mathbf{x}^{(t)}) \\ - \text{ if } \operatorname{sign}(h_k^{(t)}) \neq \operatorname{sign}(h_k^{(t)} - \alpha \ \lambda \ \operatorname{sign}(h_k^{(t)})) \ \text{then: } h_k^{(t)} & \longleftarrow 0 \\ - \text{ else: } h_k^{(t)} & \longleftarrow h_k^{(t)} - \alpha \ \lambda \ \operatorname{sign}(h_k^{(t)}) \end{array} \right\} \text{ update from reconstruction}$$

Topics: ISTA (Iterative Shrinkage and Thresholding Algorithm)

- This process corresponds to the ISTA algorithm:
  - initialize  $\mathbf{h}^{(t)}$  (for instance to 0)
  - while  $\mathbf{h}^{(t)}$  has not converged
    - $\mathbf{h}^{(t)} \longleftarrow \mathbf{h}^{(t)} \alpha \mathbf{D}^{\top} (\mathbf{D} \mathbf{h}^{(t)} \mathbf{x}^{(t)})$
    - $-\mathbf{h}^{(t)} \iff \operatorname{shrink}(\mathbf{h}^{(t)}, \alpha \lambda)$
  - ightharpoonup return  $\mathbf{h}^{(t)}$

- Here  $\operatorname{shrink}(\mathbf{a}, \mathbf{b}) = [\dots, \operatorname{sign}(a_i) \, \max(|a_i| b_i, 0), \dots]$
- Will converge if  $\frac{1}{\alpha}$  is bigger than the largest eigenvalue of  $\mathbf{D}^{\mathsf{T}}\mathbf{D}$

Topics: ISTA (Iterative Shrinkage and Thresholding Algorithm)

- This process corresponds to the ISTA algorithm:
  - initialize  $\mathbf{h}^{(t)}$  (for instance to 0)
  - while  $\mathbf{h}^{(t)}$  has not converged
    - $\mathbf{h}^{(t)} \longleftarrow \mathbf{h}^{(t)} \alpha \mathbf{D}^{\top} (\mathbf{D} \mathbf{h}^{(t)} \mathbf{x}^{(t)})$
    - $-\mathbf{h}^{(t)} \iff \operatorname{shrink}(\mathbf{h}^{(t)}, \alpha \lambda)$
  - ightharpoonup return  $\mathbf{h}^{(t)}$



- Here  $\operatorname{shrink}(\mathbf{a}, \mathbf{b}) = [\dots, \operatorname{sign}(a_i) \, \max(|a_i| b_i, 0), \dots]$
- Will converge if  $\frac{1}{\alpha}$  is bigger than the largest eigenvalue of  $\mathbf{D}^{\mathsf{T}}\mathbf{D}$

Topics: ISTA (Iterative Shrinkage and Thresholding Algorithm)

- This process corresponds to the ISTA algorithm:
  - initialize  $\mathbf{h}^{(t)}$  (for instance to 0)
  - lacktriangle while  $\mathbf{h}^{(t)}$  has not converged
    - $\mathbf{h}^{(t)} \longleftarrow \mathbf{h}^{(t)} \alpha \mathbf{D}^{\top} (\mathbf{D} \mathbf{h}^{(t)} \mathbf{x}^{(t)})$
    - $-\mathbf{h}^{(t)} \iff \operatorname{shrink}(\mathbf{h}^{(t)}, \alpha \lambda)$
  - return  $\mathbf{h}^{(t)}$

this is  $\mathbf{h}(\mathbf{x}^{(t)})$ 



- Here  $\operatorname{shrink}(\mathbf{a}, \mathbf{b}) = [\dots, \operatorname{sign}(a_i) \, \max(|a_i| b_i, 0), \dots]$
- Will converge if  $\frac{1}{\alpha}$  is bigger than the largest eigenvalue of  $\mathbf{D}^{\mathsf{T}}\mathbf{D}$

Topics: coordinate descent for sparse coding inference

- ISTA updates all hidden units simultaneously
  - this is wasteful if many hidden units have already converged

- · Idea: update only the "most promising" hidden unit
  - > see coordinate descent algorithm in
    - Learning Fast Approximations of Sparse Coding. Gregor and Lecun, 2010.
  - ightharpoonup this algorithm has the advantage of not requiring a learning rate lpha