Neural networks

Sparse coding - dictionary update with projected gradient descent

SPARSE CODING

Topics: sparse coding

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - lacktriangleright it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - lacktriangle we can reconstruct the original input ${f x}^{(t)}$ as much as possible
- More formally: reconstruction error sparsity penalty $\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$ reconstruction version sparsity control
 - D is equivalent to the autoencoder output weight matrix
 - lacktriangleright however, $\mathbf{h}(\mathbf{x}^{(t)})$ is now a complicated function of $\mathbf{x}^{(t)}$
 - encoder is the minimization $\mathbf{h}(\mathbf{x}^{(t)}) = \underset{\mathbf{h}^{(t)}}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$

SPARSE CODING

Topics: dictionary update (algorithm I)

Going back to our original problem

$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} l(\mathbf{x}^{(t)}) = \min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \frac{1}{2} ||\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}(\mathbf{x}^{(t)})||_{2}^{2} + \lambda ||\mathbf{h}(\mathbf{x}^{(t)})||_{1}$$

- Let's assume $\mathbf{h}(\mathbf{x}^{(t)})$ doesn't depend on \mathbf{D} (which is false)
 - we must minimize

$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \frac{1}{2} ||\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}(\mathbf{x}^{(t)})||_{2}^{2}$$

we must also constrain the columns of **D** to be of unit norm

SPARSE CODING

Topics: dictionary update (algorithm 1)

- · A gradient descent method could be used here too
 - > specifically, this is a projected gradient descent algorithm
- While **D** hasn't converged
 - perform gradient update of D

$$\mathbf{D} \longleftarrow \mathbf{D} + \alpha \frac{1}{T} \sum_{t=1}^{T} (\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}(\mathbf{x}^{(t)})) \mathbf{h}(\mathbf{x}^{(t)})^{\top}$$

- renormalize the columns of **D**
 - for each column $\mathbf{D}_{\cdot,j}$:

$$\mathbf{D}_{\cdot,j} \longleftarrow \frac{\mathbf{D}_{\cdot,j}}{||\mathbf{D}_{\cdot,j}||_2}$$