Neural networks

Sparse coding - dictionary learning algorithm

SPARSE CODING

Topics: sparse coding

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - lacktriangleright it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - lacktriangle we can reconstruct the original input ${f x}^{(t)}$ as much as possible
- More formally: reconstruction error sparsity penalty $\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$ reconstruction version sparsity control
 - D is equivalent to the autoencoder output weight matrix
 - lacktriangleright however, $\mathbf{h}(\mathbf{x}^{(t)})$ is now a complicated function of $\mathbf{x}^{(t)}$
 - encoder is the minimization $\mathbf{h}(\mathbf{x}^{(t)}) = \underset{\mathbf{h}^{(t)}}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$

SPARSE CODING

Topics: learning algorithm (putting it all together)

· Learning alternates between inference and dictionary learning

- While **D** has not converged
 - lacktriangleright find the sparse codes $\mathbf{h}(\mathbf{x}^{(t)})$ for all $\mathbf{x}^{(t)}$ in my training set with ISTA
 - update the dictionary:
 - $\mathbf{A} \longleftarrow \sum_{t=1}^{T} \mathbf{x}^{(t)} \ \mathbf{h}(\mathbf{x}^{(t)})^{\top}$
 - $\mathbf{B} \Longleftarrow \sum_{t=1}^{T} \mathbf{h}(\mathbf{x}^{(t)}) \ \mathbf{h}(\mathbf{x}^{(t)})^{\top}$
 - run block-coordinate descent algorithm to update ${f D}$
- Similar to the EM algorithm