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Topics: feature learning
• A sparse coding model can be used to extract features
‣ given a labeled training set
‣ train sparse coding dictionary only on training inputs

- this yields a dictionary       from which to infer sparse codes 

‣ train favorite classifier on transformed training set

• When classifying test input    , must infer its sparse 
representation        first, then feed it to the classifier
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Topics: feature learning
• When trained on handwritten digits:

Self-taught Learning

Figure 5. Left: Example images from the handwritten digit
dataset (top), the handwritten character dataset (middle)
and the font character dataset (bottom). Right: Example
sparse coding bases learned on handwritten digits.

Table 3. Top: Classification accuracy on 26-way handwrit-
ten English character classification, using bases trained on
handwritten digits. Bottom: Classification accuracy on
26-way English font character classification, using bases
trained on English handwritten characters. The numbers
in parentheses denote the accuracy using raw and sparse
coding features together. Here, sparse coding features
alone do not perform as well as the raw features, but per-
form significantly better when used in combination with
the raw features.

Digits → English handwritten characters
Training set size Raw PCA Sparse coding

100 39.8% 25.3% 39.7%
500 54.8% 54.8% 58.5%
1000 61.9% 64.5% 65.3%

Handwritten characters → Font characters
Training set size Raw PCA Sparse coding

100 8.2% 5.7% 7.0% (9.2%)
500 17.9% 14.5% 16.6% (20.2%)
1000 25.6% 23.7% 23.2% (28.3%)

data (as described in Section 3.3). In the PCA re-
sults presented in this paper, the number of principal
components used was always fixed at the number of
principal components used for preprocessing the raw
input before applying sparse coding. This control ex-
periment allows us to evaluate the effects of PCA pre-
processing and the later sparse coding step separately,
but should therefore not be treated as a direct evalua-
tion of PCA as a self-taught learning algorithm (where
the number of principal components could then also be
varied).

Tables 3.3-4 report the results for various domains.
Sparse coding features, possibly in combination with
raw features, significantly outperform the raw features
alone as well as PCA features on most of the domains.

On the 101-way Caltech 101 image classification task
with 15 training images per class (Table 3.3), sparse
coding features achieve a test accuracy of 46.6%. In
comparison, the first published supervised learning al-
gorithm for this dataset achieved only 16% test accu-
racy even with computer vision specific features (in-
stead of raw pixel intensities).8

8Since the time we ran our experiments, other re-
searchers have reported better results using highly spe-
cialized computer vision algorithms (Zhang et al., 2006:
59.1%; Lazebnik et al., 2006: 56.4%). We note that our
algorithm was until recently state-of-the-art for this well-

Table 4. Accuracy on 7-way music genre classification.
Training set size Raw PCA Sparse coding

100 28.3% 28.6% 44.0%
1000 34.0% 26.3% 45.5%
5000 38.1% 38.1% 44.3%

Table 5. Text bases learned on 100,000 Reuters newswire
documents. Top: Each row represents the basis most ac-
tive on average for documents with the class label at the
left. For each basis vector, the words corresponding to the
largest magnitude elements are displayed. Bottom: Each
row represents the basis that contains the largest magni-
tude element for the word at the left. The words corre-
sponding to other large magnitude elements are displayed.

Design design, company, product, work, market
Business car, sale, vehicle, motor, market, import

vaccine infect, report, virus, hiv, decline, product
movie share, disney, abc, release, office, movie, pay

Figure 5 shows example inputs from the three char-
acter datasets, and some of the learned bases. The
learned bases appear to represent “pen strokes.” In
Table 4, it is thus not surprising that sparse cod-
ing is able to use bases (“strokes”) learned on dig-
its to significantly improve performance on handwrit-
ten characters—it allows the supervised learning algo-
rithm to “see” the characters as comprising strokes,
rather than as comprising pixels.

For audio classification, our algorithm outperforms the
original (spectral) features (Table 4).9 When applied
to text, sparse coding discovers word relations that
might be useful for classification (Table 5). The per-
formance improvement over raw features is small (Ta-
ble 4).10 This might be because the bag-of-words rep-
resentation of text documents is already sparse, unlike
the raw inputs for the other applications.11

We envision self-taught learning as being most use-
ful when labeled data is scarce. Table 4 shows that
with small amounts of labeled data, classification per-
formance deteriorates significantly when the bases (in
sparse coding) or principal components (in PCA) are

known dataset, even with almost no explicit computer-
vision engineering, and indeed it significantly outperforms
many carefully hand-designed, computer-vision specific
methods published on this task (E.g., Fei-Fei et al., 2004:
16%; Serre et al., 2005: 35%; Holub et al., 2005: 40.1%).

9Details: We learned bases over songs from 10 genres,
and used these bases to construct features for a music genre
classification over songs from 7 different genres (with dif-
ferent artists, and possibly different instruments). Each
training example comprised a labeled 50ms song snippet;
each test example was a 1 second song snippet.

10Details: Learned bases were evaluated on 30 binary
webpage category classification tasks. PCA applied to text
documents is commonly referred to as latent semantic anal-
ysis. (Deerwester et al., 1990)

11The results suggest that algorithms such as LDA (Blei
et al., 2002) might also be appropriate for self-taught learn-
ing on text (though LDA is specific to a bag-of-words rep-
resentation and would not apply to the other domains).

Self-taught Learning: Transfer Learning from Unlabeled Data
Raina, Battle, Lee, Packer and Ng.
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Topics: self-taught learning
• Self-taught learning: 
‣ when features trained on different input distribution

• Example:
‣ train sparse coding dictionary on handwritten digits
‣ use codes (features) to classify handwritten characters

Self-taught Learning: Transfer Learning from Unlabeled Data
Raina, Battle, Lee, Packer and Ng.

Self-taught Learning

Figure 5. Left: Example images from the handwritten digit
dataset (top), the handwritten character dataset (middle)
and the font character dataset (bottom). Right: Example
sparse coding bases learned on handwritten digits.

Table 3. Top: Classification accuracy on 26-way handwrit-
ten English character classification, using bases trained on
handwritten digits. Bottom: Classification accuracy on
26-way English font character classification, using bases
trained on English handwritten characters. The numbers
in parentheses denote the accuracy using raw and sparse
coding features together. Here, sparse coding features
alone do not perform as well as the raw features, but per-
form significantly better when used in combination with
the raw features.

Digits → English handwritten characters
Training set size Raw PCA Sparse coding

100 39.8% 25.3% 39.7%
500 54.8% 54.8% 58.5%
1000 61.9% 64.5% 65.3%

Handwritten characters → Font characters
Training set size Raw PCA Sparse coding

100 8.2% 5.7% 7.0% (9.2%)
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data (as described in Section 3.3). In the PCA re-
sults presented in this paper, the number of principal
components used was always fixed at the number of
principal components used for preprocessing the raw
input before applying sparse coding. This control ex-
periment allows us to evaluate the effects of PCA pre-
processing and the later sparse coding step separately,
but should therefore not be treated as a direct evalua-
tion of PCA as a self-taught learning algorithm (where
the number of principal components could then also be
varied).

Tables 3.3-4 report the results for various domains.
Sparse coding features, possibly in combination with
raw features, significantly outperform the raw features
alone as well as PCA features on most of the domains.

On the 101-way Caltech 101 image classification task
with 15 training images per class (Table 3.3), sparse
coding features achieve a test accuracy of 46.6%. In
comparison, the first published supervised learning al-
gorithm for this dataset achieved only 16% test accu-
racy even with computer vision specific features (in-
stead of raw pixel intensities).8

8Since the time we ran our experiments, other re-
searchers have reported better results using highly spe-
cialized computer vision algorithms (Zhang et al., 2006:
59.1%; Lazebnik et al., 2006: 56.4%). We note that our
algorithm was until recently state-of-the-art for this well-

Table 4. Accuracy on 7-way music genre classification.
Training set size Raw PCA Sparse coding

100 28.3% 28.6% 44.0%
1000 34.0% 26.3% 45.5%
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Table 5. Text bases learned on 100,000 Reuters newswire
documents. Top: Each row represents the basis most ac-
tive on average for documents with the class label at the
left. For each basis vector, the words corresponding to the
largest magnitude elements are displayed. Bottom: Each
row represents the basis that contains the largest magni-
tude element for the word at the left. The words corre-
sponding to other large magnitude elements are displayed.
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Figure 5 shows example inputs from the three char-
acter datasets, and some of the learned bases. The
learned bases appear to represent “pen strokes.” In
Table 4, it is thus not surprising that sparse cod-
ing is able to use bases (“strokes”) learned on dig-
its to significantly improve performance on handwrit-
ten characters—it allows the supervised learning algo-
rithm to “see” the characters as comprising strokes,
rather than as comprising pixels.

For audio classification, our algorithm outperforms the
original (spectral) features (Table 4).9 When applied
to text, sparse coding discovers word relations that
might be useful for classification (Table 5). The per-
formance improvement over raw features is small (Ta-
ble 4).10 This might be because the bag-of-words rep-
resentation of text documents is already sparse, unlike
the raw inputs for the other applications.11

We envision self-taught learning as being most use-
ful when labeled data is scarce. Table 4 shows that
with small amounts of labeled data, classification per-
formance deteriorates significantly when the bases (in
sparse coding) or principal components (in PCA) are

known dataset, even with almost no explicit computer-
vision engineering, and indeed it significantly outperforms
many carefully hand-designed, computer-vision specific
methods published on this task (E.g., Fei-Fei et al., 2004:
16%; Serre et al., 2005: 35%; Holub et al., 2005: 40.1%).

9Details: We learned bases over songs from 10 genres,
and used these bases to construct features for a music genre
classification over songs from 7 different genres (with dif-
ferent artists, and possibly different instruments). Each
training example comprised a labeled 50ms song snippet;
each test example was a 1 second song snippet.

10Details: Learned bases were evaluated on 30 binary
webpage category classification tasks. PCA applied to text
documents is commonly referred to as latent semantic anal-
ysis. (Deerwester et al., 1990)

11The results suggest that algorithms such as LDA (Blei
et al., 2002) might also be appropriate for self-taught learn-
ing on text (though LDA is specific to a bag-of-words rep-
resentation and would not apply to the other domains).


