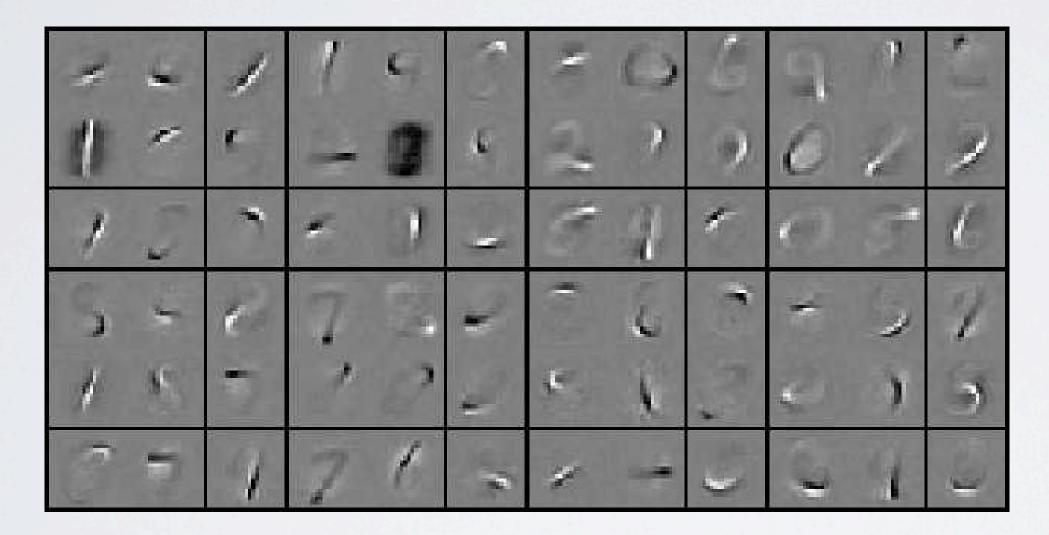
Neural networks Sparse coding - feature extraction

FEATURE EXTRACTION

Topics: feature learning

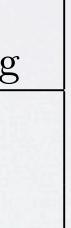

- A sparse coding model can be used to extract features
 - given a labeled training set $\{(\mathbf{x}^{(t)}, y^{(t)})\}$
 - train sparse coding dictionary only on training inputs $\{\mathbf{x}^{(t)}\}$
 - this yields a dictionary ${f D}$ from which to infer sparse codes ${f h}({f x}^{(t)})$
 - train favorite classifier on transformed training set $\{(\mathbf{h}(\mathbf{x}^{(t)}), y^{(t)})\}$

 \cdot When classifying test input ${f x}$, must infer its sparse representation h(x) first, then feed it to the classifier

FEATURE EXTRACTION

Topics: feature learning

• When trained on handwritten digits:


Self-taught Learning: Transfer Learning from Unlabeled Data Raina, Battle, Lee, Packer and Ng.

FEATURE EXTRACTION

- **Topics:** self-taught learning
- Self-taught learning:
 - when features trained on different input distribution
- Example:
 - train sparse coding dictionary on handwritten digits
 - use codes (features) to classify handwritten characters

Digits \rightarrow English handwritten characters			
Training set size	Raw	PCA	Sparse coding
100	39.8%	25.3%	39.7%
500	54.8%	54.8%	$\mathbf{58.5\%}$
1000	61.9%	64.5%	65.3%

Self-taught Learning: Transfer Learning from Unlabeled Data Raina, Battle, Lee, Packer and Ng.

