Neural networks Computer vision - discrete convolution

Topics: parameter sharing

larret et al. 2009

- Each feature map forms a 2D grid of features
 - can be computed with a discrete convolution (*) of a kernel matrix k_{ij} which is the hidden weights matrix W_{ij} with its rows and columns flipped

- x_i is the ith channel of input
- k_{ij} is the convolution kernel
- g_j is a learned scaling factor
- y_i is the hidden layer

(could have added a bias)

Topics: discrete convolution

• The convolution of an image x with a kernel k is computed as follows:

$$(x st k)_{ij} = \sum\limits_{pq} x_{i+p,j+q} \; k_{r\text{-}p,r\text{-}q}$$

Topics: discrete convolution

• The convolution of an image x with a kernel k is computed as follows:

$$(x st k)_{ij} = \sum\limits_{pq} x_{i+p,j+q} \; k_{r\text{-}p,r\text{-}q}$$

Topics: discrete convolution

• The convolution of an image x with a kernel k is computed as follows:

$$(x st k)_{ij} = \sum\limits_{pq} x_{i+p,j+q} \; k_{r\text{-}p,r\text{-}q}$$

Topics: discrete convolution

• The convolution of an image x with a kernel k is computed as follows:

$$(x st k)_{ij} = \sum\limits_{pq} x_{i+p,j+q} \; k_{r\text{-}p,r\text{-}q}$$

Topics: discrete convolution

• The convolution of an image x with a kernel k is computed as follows:

$$(x st k)_{ij} = \sum\limits_{\scriptscriptstyle pq} x_{i+p,j+q} \; k_{r\text{-}p,r\text{-}q}$$

Topics: discrete convolution

- Pre-activations from channel x_i into feature map y_i can be computed by:
 - getting the convolution kernel where $k_{ij} = W_{ij}$ from the connection matrix W_{ij}
 - applying the convolution $x_i * k_{ij}$

 This is equivalent to computing the discrete correlation of x_i with W_{ij}

Topics: discrete convolution

Topics: discrete convolution

• With a non-linearity, we get a detector of a feature at any position in the image

0.02	0.19	0.19	0.02
0.02	0.19	0.19	0.02
0.02	0.75	0.02	0.02
0.75	0.02	0.02	0.02

 $\operatorname{sigm}(0.02 \times k_{ij} - 4)$

Topics: discrete convolution

• Can use "zero padding" to allow going over the borders (*)

