
Neural networks
Computer vision - discrete convolution

COMPUTER VISION
2

Topics: parameter sharing
• Each feature map forms a 2D grid of features
‣ can be computed with a discrete convolution () of a kernel matrix kij which is

the hidden weights matrix Wij with its rows and columns flipped

Filter Bank Layer - FCSG: the input of a filter bank
layer is a 3D array with n1 2D feature maps of size n2×n3.
Each component is denoted xijk, and each feature map is
denoted xi. The output is also a 3D array, y composed of
m1 feature maps of size m2 ×m3. A filter in the filter bank
kij has size l1 × l2 and connects input feature map xi to
output feature map yj . The module computes:

yj = gj tanh(
∑

i

kij ∗ xi) (1)

where tanh is the hyperbolic tangent non-linearity, ∗ is the
2D discrete convolution operator and gj is a trainable scalar
coefficient. By taking into account the borders effect, we
have m1 = n1− l1 +1, and m2 = n2− l2 +1. This layer is
denoted by FCSG because it is composed of a set of convo-
lution filters (C), a sigmoid/tanh non-linearity (S), and gain
coefficients (G). In the following, superscripts are used to
denote the size of the filters. For instance, a filter bank layer
with 64 filters of size 9x9, is denoted as: 64F 9×9

CSG.
Rectification Layer - Rabs: This module simply applies
the absolute value function to all the components of its in-
put: yijk = |xijk|. Several rectifying non-linearities were
tried, including the positive part, and produced similar re-
sults.
Local Contrast Normalization Layer - N : This module
performs local subtractive and divisive normalizations, en-
forcing a sort of local competition between adjacent fea-
tures in a feature map, and between features at the same
spatial location in different feature maps. The subtrac-
tive normalization operation for a given site xijk com-
putes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q, where wpq is

a Gaussian weighting window (of size 9x9 in our exper-
iments) normalized so that

∑
ipq wpq = 1. The divisive

normalization computes yijk = vijk/max(c,σjk) where
σjk = (

∑
ipq wpq.v2

i,j+p,k+q)
1/2. For each sample, the

constant c is set to the mean(σjk) in the experiments. The
denominator is the weighted standard deviation of all fea-
tures over a spatial neighborhood. The local contrast nor-
malization layer is inspired by computational neuroscience
models [24, 20].
Average Pooling and Subsampling Layer - PA: The pur-
pose of this layer is to build robustness to small distor-
tions, playing the same role as the complex cells in mod-
els of visual perception. Each output value is yijk =∑

pq wpq.xi,j+p,k+q, where wpq is a uniform weighting
window (“boxcar filter”). Each output feature map is then
subsampled spatially by a factor S horizontally and verti-
cally. In this work, we do not consider pooling over fea-
ture types, but only over the spatial dimensions. Therefore,
the numbers of input and output feature maps are identical,
while the spatial resolution is decreased. Disregarding the
border effects in the boxcar averaging, the spatial resolution
is decreased by the down-sampling ratio S in both direc-
tions, denoted by a superscript, so that, an average pooling

Figure 1. A example of feature extraction stage of the type FCSG−

Rabs − N − PA. An input image (or a feature map) is passed
through a non-linear filterbank, followed by rectification, local

contrast normalization and spatial pooling/sub-sampling.

layer with 4x4 down-sampling is denoted: P 4×4
A .

Max-Pooling and Subsampling Layer - PM : building lo-
cal invariance to shift can be performed with any symmetric
pooling operation. The max-pooling module is similar to
the average pooling, except that the average operation is re-
placed by a max operation. In our experiments, the pooling
windows were non-overlapping. A max-pooling layer with
4x4 down-sampling is denoted P 4×4

M .

2.1. Combining Modules into a Hierarchy
Different architectures can be produced by cascading the

above-mentioned modules in various ways. An architec-
ture is composed of one or two stages of feature extraction,
each of which is formed by cascading a filtering layer with
different combinations of rectification, normalization, and
pooling. Recognition architectures are composed of one or
two such stages, followed by a classifier, generally a multi-
nomial logistic regression.
FCSG − PA This is the basic building block of tra-
ditional convolutional networks, alternating tanh-squashed
filter banks with average down-sampling layers [14, 10].
A complete convolutional network would have several se-
quences of “FCSG - PA” followed by by a linear classifier.
FCSG − Rabs − PA The tanh-squashed filter bank is
followed by an absolute value non-linearity, and by an av-
erage down-sampling layer.
FCSG − Rabs − N − PA The tanh-squashed filter bank
is followed by an absolute value non-linearity, by a lo-
cal contrast normalization layer and by an average down-
sampling layer.
FCSG − PM This is also a typical building block of con-
volutional networks, as well as the basis of the HMAX and
other architectures [28, 25], which alternate tanh-squashed
filter banks with max-pooling layers.

3. Training Protocol
Given a particular architecture, a number of training pro-

tocols have been considered and tested. Each protocol is
identified by a letter R,U,R+, or U+. A single letter (e.g.
R) indicates an architecture with a single stage of feature
extraction, followed by a classifier, while a double letter
(e.g. RR) indicates an architecture with two stages of fea-
ture extraction followed by a classifier:
Random Features and Supervised Classifier - R and
RR: The filters in the feature extraction stages are set to
random values and kept fixed (no feature learning takes
place), and the classifier stage is trained in supervised mode.

feature maps

Jarret et al. 2009

Filter Bank Layer - FCSG: the input of a filter bank
layer is a 3D array with n1 2D feature maps of size n2×n3.
Each component is denoted xijk, and each feature map is
denoted xi. The output is also a 3D array, y composed of
m1 feature maps of size m2 ×m3. A filter in the filter bank
kij has size l1 × l2 and connects input feature map xi to
output feature map yj . The module computes:

yj = gj tanh(
∑

i

kij ∗ xi) (1)

where tanh is the hyperbolic tangent non-linearity, ∗ is the
2D discrete convolution operator and gj is a trainable scalar
coefficient. By taking into account the borders effect, we
have m1 = n1− l1 +1, and m2 = n2− l2 +1. This layer is
denoted by FCSG because it is composed of a set of convo-
lution filters (C), a sigmoid/tanh non-linearity (S), and gain
coefficients (G). In the following, superscripts are used to
denote the size of the filters. For instance, a filter bank layer
with 64 filters of size 9x9, is denoted as: 64F 9×9

CSG.
Rectification Layer - Rabs: This module simply applies
the absolute value function to all the components of its in-
put: yijk = |xijk|. Several rectifying non-linearities were
tried, including the positive part, and produced similar re-
sults.
Local Contrast Normalization Layer - N : This module
performs local subtractive and divisive normalizations, en-
forcing a sort of local competition between adjacent fea-
tures in a feature map, and between features at the same
spatial location in different feature maps. The subtrac-
tive normalization operation for a given site xijk com-
putes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q, where wpq is

a Gaussian weighting window (of size 9x9 in our exper-
iments) normalized so that

∑
ipq wpq = 1. The divisive

normalization computes yijk = vijk/max(c,σjk) where
σjk = (

∑
ipq wpq.v2

i,j+p,k+q)
1/2. For each sample, the

constant c is set to the mean(σjk) in the experiments. The
denominator is the weighted standard deviation of all fea-
tures over a spatial neighborhood. The local contrast nor-
malization layer is inspired by computational neuroscience
models [24, 20].
Average Pooling and Subsampling Layer - PA: The pur-
pose of this layer is to build robustness to small distor-
tions, playing the same role as the complex cells in mod-
els of visual perception. Each output value is yijk =∑

pq wpq.xi,j+p,k+q, where wpq is a uniform weighting
window (“boxcar filter”). Each output feature map is then
subsampled spatially by a factor S horizontally and verti-
cally. In this work, we do not consider pooling over fea-
ture types, but only over the spatial dimensions. Therefore,
the numbers of input and output feature maps are identical,
while the spatial resolution is decreased. Disregarding the
border effects in the boxcar averaging, the spatial resolution
is decreased by the down-sampling ratio S in both direc-
tions, denoted by a superscript, so that, an average pooling

Figure 1. A example of feature extraction stage of the type FCSG−

Rabs − N − PA. An input image (or a feature map) is passed
through a non-linear filterbank, followed by rectification, local

contrast normalization and spatial pooling/sub-sampling.

layer with 4x4 down-sampling is denoted: P 4×4
A .

Max-Pooling and Subsampling Layer - PM : building lo-
cal invariance to shift can be performed with any symmetric
pooling operation. The max-pooling module is similar to
the average pooling, except that the average operation is re-
placed by a max operation. In our experiments, the pooling
windows were non-overlapping. A max-pooling layer with
4x4 down-sampling is denoted P 4×4

M .

2.1. Combining Modules into a Hierarchy
Different architectures can be produced by cascading the

above-mentioned modules in various ways. An architec-
ture is composed of one or two stages of feature extraction,
each of which is formed by cascading a filtering layer with
different combinations of rectification, normalization, and
pooling. Recognition architectures are composed of one or
two such stages, followed by a classifier, generally a multi-
nomial logistic regression.
FCSG − PA This is the basic building block of tra-
ditional convolutional networks, alternating tanh-squashed
filter banks with average down-sampling layers [14, 10].
A complete convolutional network would have several se-
quences of “FCSG - PA” followed by by a linear classifier.
FCSG − Rabs − PA The tanh-squashed filter bank is
followed by an absolute value non-linearity, and by an av-
erage down-sampling layer.
FCSG − Rabs − N − PA The tanh-squashed filter bank
is followed by an absolute value non-linearity, by a lo-
cal contrast normalization layer and by an average down-
sampling layer.
FCSG − PM This is also a typical building block of con-
volutional networks, as well as the basis of the HMAX and
other architectures [28, 25], which alternate tanh-squashed
filter banks with max-pooling layers.

3. Training Protocol
Given a particular architecture, a number of training pro-

tocols have been considered and tested. Each protocol is
identified by a letter R,U,R+, or U+. A single letter (e.g.
R) indicates an architecture with a single stage of feature
extraction, followed by a classifier, while a double letter
(e.g. RR) indicates an architecture with two stages of fea-
ture extraction followed by a classifier:
Random Features and Supervised Classifier - R and
RR: The filters in the feature extraction stages are set to
random values and kept fixed (no feature learning takes
place), and the classifier stage is trained in supervised mode.

Computer vision

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 8, 2012

Abstract

Math for my slides “Computer vision”.

• H X ⇤

1

‣ xi is the ith channel of input
‣ kij is the convolution kernel
‣ gj is a learned scaling factor
‣ yj is the hidden layer

 (could have added a bias)

COMPUTER VISION
3

Topics: discrete convolution

• The convolution of an image x with a kernel k is computed
as follows:

 (x * k)ij = ∑ xi+p,j+q kr-p,r-q

• Example:
pq

0 80 40

20 40 0

0 0 40

0 0.25

0.5 1* =

x k

k~ = k with rows and columns flipped

1 0.5

0.25 0

COMPUTER VISION
4

Topics: discrete convolution

• The convolution of an image x with a kernel k is computed
as follows:

 (x * k)ij = ∑ xi+p,j+q kr-p,r-q

• Example:

0 0.25

0.5 1*
45

=
0 80 40

20 40 0

0 0 40

1 0.5

0.25 0

1	 x	 0	 +	 0.5	 x	 80	 +	 0.25	 x	 20	 +	 0	 x	 40

pq

x k

COMPUTER VISION
5

Topics: discrete convolution

• The convolution of an image x with a kernel k is computed
as follows:

 (x * k)ij = ∑ xi+p,j+q kr-p,r-q

• Example:

0 0.25

0.5 1*
45 110

=
0 80 40

20 40 0

0 0 40

1 0.5

0.25 0

1	 x	 80	 +	 0.5	 x	 40	 +	 0.25	 x	 40	 +	 0	 x	 0

pq

x k

COMPUTER VISION
6

Topics: discrete convolution

• The convolution of an image x with a kernel k is computed
as follows:

 (x * k)ij = ∑ xi+p,j+q kr-p,r-q

• Example:

0 0.25

0.5 1*
45 110

40
=

0 80 40

20 40 0

0 0 40

1 0.5

0.25 0

1	 x	 20	 +	 0.5	 x	 40	 +	 0.25	 x	 0	 +	 0	 x	 0

pq

x k

COMPUTER VISION
7

Topics: discrete convolution

• The convolution of an image x with a kernel k is computed
as follows:

 (x * k)ij = ∑ xi+p,j+q kr-p,r-q

• Example:

0 0.25

0.5 1*
45 110

40 40
=

0 80 40

20 40 0

0 0 40

1 0.5

0.25 0

1	 x	 40	 +	 0.5	 x	 0	 +	 0.25	 x	 0	 +	 0	 x	 40

pq

x k

COMPUTER VISION
8

Topics: discrete convolution
• Pre-activations from channel xi into feature map yj can be

computed by:
‣ getting the convolution kernel where kij =Wij from the connection matrix Wij

‣ applying the convolution xi * kij

• This is equivalent to computing the discrete correlation
of xi with Wij

~

COMPUTER VISION
9

Topics: discrete convolution

• Simple illustration: xi * kij where Wij =Wij

Example

●  Calcul%d’une%couche%«%simple%cell%»%
  première%étape%:%calcul%de%la%convolu7on%%

IFT%615% Hugo%Larochelle% 47%

%%%%%
%

%%%%%
%

X

W

�X W

0% 0.5%

0.5% 0%

0% 128% 128% 0%

0% 128% 128% 0%

0% 255% 0% 0%

255% 0% 0% 0%

0% 0% 255% 0% 0%

0% 0% 255% 0% 0%

0% 0% 255% 0% 0%

0% 255% 0% 0% 0%

255% 0% 0% 0% 0%

connexions%
vers%les%neurones%
cachés%

0% 0.5%

0.5% 0%

couche)d’entrée) couche)«)simple)cell)»)

Example

●  Calcul%d’une%couche%«%simple%cell%»%
  première%étape%:%calcul%de%la%convolu7on%%

IFT%615% Hugo%Larochelle% 47%

%%%%%
%

%%%%%
%

X

W

�X W

0% 0.5%

0.5% 0%

0% 128% 128% 0%

0% 128% 128% 0%

0% 255% 0% 0%

255% 0% 0% 0%

0% 0% 255% 0% 0%

0% 0% 255% 0% 0%

0% 0% 255% 0% 0%

0% 255% 0% 0% 0%

255% 0% 0% 0% 0%

connexions%
vers%les%neurones%
cachés%

0% 0.5%

0.5% 0%

couche)d’entrée) couche)«)simple)cell)»)
xi xi * kij

~

COMPUTER VISION
10

Topics: discrete convolution
•With a non-linearity, we get a detector of a feature at any

position in the image

Example

●  Calcul%d’une%couche%«%simple%cell%»%
  première%étape%:%calcul%de%la%convolu7on%%
  deuxième%étape%:%calcul%de%la%nonnlinéarité%(%ex.:%Logis6c(%(xn200)/50%)%)%

IFT%615% Hugo%Larochelle% 48%

%%%%%
%

%%%%%
%

X �X W

0% 128% 128% 0%

0% 128% 128% 0%

0% 255% 0% 0%

255% 0% 0% 0%

0% 0% 255% 0% 0%

0% 0% 255% 0% 0%

0% 0% 255% 0% 0%

0% 255% 0% 0% 0%

255% 0% 0% 0% 0%

couche)d’entrée) couche)«)simple)cell)»)

0.02% 0.19% 0.19% 0.02%

0.02% 0.19% 0.19% 0.02%

0.02% 0.75% 0.02% 0.02%

0.75% 0.02% 0.02% 0.02%

Logis6c(%(%%%%%%%%%%%%%n%200%)%/%50%)%xi sigm(0.02 xi * kij -4)

COMPUTER VISION
11

Topics: discrete convolution

• Can use ‘‘zero padding’’ to allow going over the borders (*)

xi

Example

●  Convolu7on%avec%zero,padding%%

IFT%615% Hugo%Larochelle% 48%

%%%%%
%

%%%%%
%

W

0% 0.5%

0.5% 0%

0% 0% 0% 128% 0% 0%

0% 0% 128% 128% 0% 0%

0% 0% 128% 128% 0% 0%

0% 0% 255% 0% 0% 0%

0% 255% 0% 0% 0% 0%

128% 0% 0% 0% 0% 0%

0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 255% 0% 0% 0%

0% 0% 0% 255% 0% 0% 0%

0% 0% 0% 255% 0% 0% 0%

0% 0% 255% 0% 0% 0% 0%

0% 255% 0% 0% 0% 0% 0%

0% 0% 0% 0% 0% 0% 0%

connexions%
vers%les%neurones%
cachés%

0% 0.5%

0.5% 0%

couche)d’entrée) couche)«)simple)cell)»)xi * kij

