Neural networks

Computer vision - convolutional network

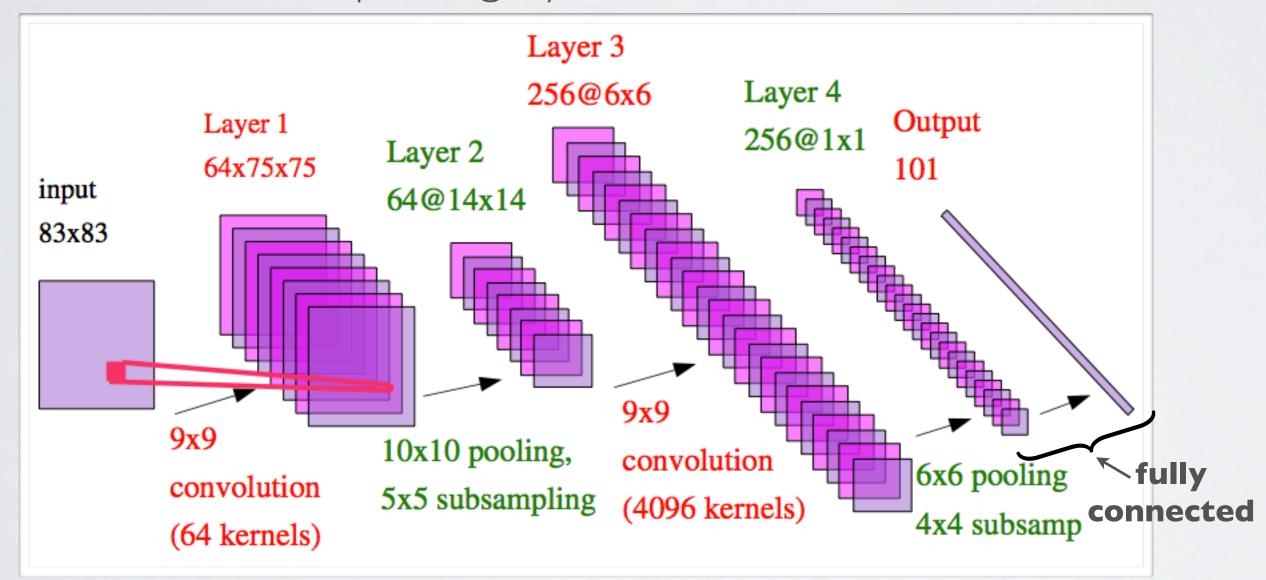
COMPUTER VISION

Topics: computer vision

- We can design neural networks that are specifically adapted for such problems
 - must deal with very high-dimensional inputs
 - 150×150 pixels = 22500 inputs, or 3×22500 if RGB pixels
 - can exploit the 2D topology of pixels (or 3D for video data)
 - can build in invariance to certain variations we can expect
 - translations, illumination, etc.
- Convolutional networks leverage these ideas
 - local connectivity
 - parameter sharing
 - pooling / subsampling hidden units

Topics: convolutional network

 Convolutional neural network alternates between the convolutional and pooling layers



(from Yann Lecun)

Topics: convolutional network

- Output layer is a regular, fully connected layer with softmax non-linearity
 - output provides an estimate of the conditional probability of each class

- The network is trained by stochastic gradient descent
 - backpropagation is used similarly as in a fully connected network
 - we have seen how to pass gradients through element-wise activation function
 - we also need to pass gradients through the convolution operation and the pooling operation

Topics: gradient of convolution layer

- Let *l* be the loss function
 - for convolution operation $y_j = x_i * k_{ij}$ the gradient for x_i is

$$oldsymbol{
abla}_{x_i} l = \sum_{j} (oldsymbol{
abla}_{y_j} l) \ {}_{-}^{*} (W_{ij})$$

and the gradient for W_{ij} is

$$\nabla_{W_{ij}} l = (\nabla_y l) * \widetilde{x}_i$$

where * is the convolution with zero padding and \widetilde{x}_i is the row/column flipped version of x_i

Topics: gradient of pooling layer

- Let *l* be the loss function
 - for max pooling operation $y_{ijk} = \max_{x_i, j+p, k+q}$ the gradient for x_{ijk} is

$$oldsymbol{
abla}_{x_{ijk}} \, l = 0$$
 except for $oldsymbol{
abla}_{x_{i,j+p',k+q'}} \, l = oldsymbol{
abla}_{y_{ijk}} l$

where p', $q' = \operatorname{argmax} x_{i,j+p,k+q}$

- in words, only the "winning" units in layer x get the gradient from the pooled layer
- for average pooling operation $y_{ijk} = \frac{1}{m^2} \sum x_{i,j+p,k+q}$ the gradient for x_{ijk} is

$$\nabla_x l = rac{1}{m^2} ext{upsample} (\nabla_y l)$$

where upsample inverts subsampling

6