Neural networks Computer vision - example

Topics: convolutional network

larret et al. 2009

 These operations are inserted after the convolutions and before the pooling

- Images should also be preprocessed by
 - converting to grayscale (if appropriate)
 - resizing images to 150 x 150 pixels (use zero padding for non-square images)
 - removing (intra image) mean and dividing by standard deviation of the image
 - applying local contrast normalization

Topics: initialization of parameters

larret et al. 2009

- Initialization of parameters:
 - can do as in regular neural network and initialize them randomly
 - can also use unsupervised pretraining approach
 - to use unsupervised neural networks we've seen so far, we have to convert pretraining as a patch-wise learning problem
 - ✓ extract patches of the same as the receptive fields of the hidden units, at random positions
 - ✓ train an unsupervised neural network (RBM, autoencoder, sparse coding) on those patches
 - ✓ use weights connecting an input patch to each hidden unit to initialize each feature map parameters
 - ✓ map images through all feature maps and repeat previous steps, for as many layers as desired
- We will compare:
 - using random initialization (R) or unsupervised pretraining (U)
 - using fine-tuning of whole network (+) or only training output layer (no +)

Topics: convolutional network

• Results on Caltech: F_{CSG} = convolution layer

R = rectification layer

N = local contrast normalization layer

 P_M = max pooling layer, P_A = average pooling layer

Single Stage System: $[64.F^{9 \times 9}_{CSG} - R/N/P^{5 \times 5}]$ - log_reg					
	$ m R_{abs}-N-P_A$	$R_{abs} - P_A$	$\mathbf{N} - \mathbf{P}_{\mathbf{M}}$	$\mathbf{N} - \mathbf{P}_{\mathbf{A}}$	$\mathbf{P}_{\mathbf{A}}$
U^+	54.2%	50.0%	44.3%	18.5%	14.5%
$ \mathbf{R}^+ $	54.8%	47.0%	38.0%	16.3%	14.3%
U	52.2%	43.3%(±1.6)	44.0%	17.2%	13.4%
R	53.3%	31.7%	32.1%	15.3%	$12.1\%(\pm 2.2)$
G	52.3%				
Two Stag	ge System: $[64.F^{9 imes}_{CS}]$	$[\mathbf{F}_{\mathbf{G}}^{\mathbf{J}}-\mathbf{R}/\mathbf{N}/\mathbf{P^{5 imes 5}}]-[256.\mathbf{F_{CSG}^{9 imes 9}}-\mathbf{R}/\mathbf{N}/\mathbf{P^{4 imes 4}}]$ - log_reg			
	$ m R_{abs}-N-P_A$	$R_{abs} - P_A$	$\mathbf{N} - \mathbf{P}_{\mathbf{M}}$	$\mathbf{N} - \mathbf{P}_{\mathbf{A}}$	$\mathbf{P}_{\mathbf{A}}$
U^+U^+	65.5%	60.5%	61.0%	34.0%	32.0%
$ \mathbf{R}^+\mathbf{R}^+ $	64.7%	59.5%	60.0%	31.0%	29.7%
UU	63.7%	46.7%	56.0%	23.1%	9.1%
RR	62.9%	$33.7\%(\pm 1.5)$	37.6%(±1.9)	19.6%	8.8%
GT	55.8%		•		

Jarret et al. 2009

Topics: random filters

- Results on Caltech:
 - random filters are surprisingly good
 - turns out that random filters give units that are still sensitive to a particular frequency
 - can analyze this by finding input which maximizes the activation of a given hidden unit (with gradient ascent applied in input space)

random filters

optimal input

learned filters

optimal input

larret et al. 2009

Topics: importance of architecture

- Results on Caltech:
 - choice of right architecture can be more important than learning algorithm
 - the use of rectification and local contrast normalization layers is important
 - this is particularly true if little training data
- Results on NORB:
 - architecture makes less of a difference with lots of training data per class
 - random filters are also not as good

Jarret et al. 2009