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Topics: convolutional network
• These operations are inserted after the convolutions and 

before the pooling

• Images should also be preprocessed by
‣ converting to grayscale (if appropriate)

‣ resizing images to 150 x 150 pixels (use zero padding for non-square images)

‣ removing (intra image) mean and dividing by standard deviation of the image 

‣ applying local contrast normalization

Filter Bank Layer - FCSG: the input of a filter bank
layer is a 3D array with n1 2D feature maps of size n2×n3.
Each component is denoted xijk, and each feature map is
denoted xi. The output is also a 3D array, y composed of
m1 feature maps of size m2 ×m3. A filter in the filter bank
kij has size l1 × l2 and connects input feature map xi to
output feature map yj . The module computes:

yj = gj tanh(
∑

i

kij ∗ xi) (1)

where tanh is the hyperbolic tangent non-linearity, ∗ is the
2D discrete convolution operator and gj is a trainable scalar
coefficient. By taking into account the borders effect, we
have m1 = n1− l1 +1, and m2 = n2− l2 +1. This layer is
denoted by FCSG because it is composed of a set of convo-
lution filters (C), a sigmoid/tanh non-linearity (S), and gain
coefficients (G). In the following, superscripts are used to
denote the size of the filters. For instance, a filter bank layer
with 64 filters of size 9x9, is denoted as: 64F 9×9

CSG.
Rectification Layer - Rabs: This module simply applies
the absolute value function to all the components of its in-
put: yijk = |xijk|. Several rectifying non-linearities were
tried, including the positive part, and produced similar re-
sults.
Local Contrast Normalization Layer - N : This module
performs local subtractive and divisive normalizations, en-
forcing a sort of local competition between adjacent fea-
tures in a feature map, and between features at the same
spatial location in different feature maps. The subtrac-
tive normalization operation for a given site xijk com-
putes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q, where wpq is

a Gaussian weighting window (of size 9x9 in our exper-
iments) normalized so that

∑
ipq wpq = 1. The divisive

normalization computes yijk = vijk/max(c,σjk) where
σjk = (

∑
ipq wpq.v2

i,j+p,k+q)
1/2. For each sample, the

constant c is set to the mean(σjk) in the experiments. The
denominator is the weighted standard deviation of all fea-
tures over a spatial neighborhood. The local contrast nor-
malization layer is inspired by computational neuroscience
models [24, 20].
Average Pooling and Subsampling Layer - PA: The pur-
pose of this layer is to build robustness to small distor-
tions, playing the same role as the complex cells in mod-
els of visual perception. Each output value is yijk =∑

pq wpq.xi,j+p,k+q, where wpq is a uniform weighting
window (“boxcar filter”). Each output feature map is then
subsampled spatially by a factor S horizontally and verti-
cally. In this work, we do not consider pooling over fea-
ture types, but only over the spatial dimensions. Therefore,
the numbers of input and output feature maps are identical,
while the spatial resolution is decreased. Disregarding the
border effects in the boxcar averaging, the spatial resolution
is decreased by the down-sampling ratio S in both direc-
tions, denoted by a superscript, so that, an average pooling

Figure 1. A example of feature extraction stage of the type FCSG−

Rabs − N − PA. An input image (or a feature map) is passed
through a non-linear filterbank, followed by rectification, local

contrast normalization and spatial pooling/sub-sampling.

layer with 4x4 down-sampling is denoted: P 4×4
A .

Max-Pooling and Subsampling Layer - PM : building lo-
cal invariance to shift can be performed with any symmetric
pooling operation. The max-pooling module is similar to
the average pooling, except that the average operation is re-
placed by a max operation. In our experiments, the pooling
windows were non-overlapping. A max-pooling layer with
4x4 down-sampling is denoted P 4×4

M .

2.1. Combining Modules into a Hierarchy
Different architectures can be produced by cascading the

above-mentioned modules in various ways. An architec-
ture is composed of one or two stages of feature extraction,
each of which is formed by cascading a filtering layer with
different combinations of rectification, normalization, and
pooling. Recognition architectures are composed of one or
two such stages, followed by a classifier, generally a multi-
nomial logistic regression.
FCSG − PA This is the basic building block of tra-
ditional convolutional networks, alternating tanh-squashed
filter banks with average down-sampling layers [14, 10].
A complete convolutional network would have several se-
quences of “FCSG - PA” followed by by a linear classifier.
FCSG − Rabs − PA The tanh-squashed filter bank is
followed by an absolute value non-linearity, and by an av-
erage down-sampling layer.
FCSG − Rabs − N − PA The tanh-squashed filter bank
is followed by an absolute value non-linearity, by a lo-
cal contrast normalization layer and by an average down-
sampling layer.
FCSG − PM This is also a typical building block of con-
volutional networks, as well as the basis of the HMAX and
other architectures [28, 25], which alternate tanh-squashed
filter banks with max-pooling layers.

3. Training Protocol
Given a particular architecture, a number of training pro-

tocols have been considered and tested. Each protocol is
identified by a letter R,U,R+, or U+. A single letter (e.g.
R) indicates an architecture with a single stage of feature
extraction, followed by a classifier, while a double letter
(e.g. RR) indicates an architecture with two stages of fea-
ture extraction followed by a classifier:
Random Features and Supervised Classifier - R and
RR: The filters in the feature extraction stages are set to
random values and kept fixed (no feature learning takes
place), and the classifier stage is trained in supervised mode.

Jarret et al. 2009
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Topics: initialization of parameters
• Initialization of parameters:
‣ can do as in regular neural network and initialize them randomly

‣ can also use unsupervised pretraining approach
- to use unsupervised neural networks we’ve seen so far, we have to convert pretraining as a 

patch-wise learning problem

✓ extract patches of the same as the receptive fields of the hidden units, at random positions

✓ train an unsupervised neural network (RBM, autoencoder, sparse coding) on those patches

✓ use weights connecting an input patch to each hidden unit to initialize each feature map parameters

✓ map images through all feature maps and repeat previous steps, for as many layers as desired

•We will compare:
‣ using random initialization (R) or unsupervised pretraining (U)
‣ using fine-tuning of whole network (+) or only training output layer (no +)

Jarret et al. 2009
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Topics: convolutional network
• Results on Caltech:

Jarret et al. 2009

Single Stage System: [64.F9×9

CSG
− R/N/P5×5] - log reg

Rabs − N − PA Rabs − PA N − PM N − PA PA

U+ 54.2% 50.0% 44.3% 18.5% 14.5%
R+ 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.2% 43.3%(±1.6) 44.0% 17.2% 13.4%
R 53.3% 31.7% 32.1% 15.3% 12.1%(±2.2)
G 52.3%

Two Stage System: [64.F9×9

CSG
− R/N/P5×5] − [256.F9×9

CSG
− R/N/P4×4] - log reg

Rabs − N − PA Rabs − PA N − PM N − PA PA

U+U+ 65.5% 60.5% 61.0% 34.0% 32.0%
R+R+ 64.7% 59.5% 60.0% 31.0% 29.7%
UU 63.7% 46.7% 56.0% 23.1% 9.1%
RR 62.9% 33.7%(±1.5) 37.6%(±1.9) 19.6% 8.8%
GT 55.8%

Single Stage: [64.F9×9

CSG
− Rabs/N/P5×5

A
] - PMK-SVM

U 64.0%

Two Stages: [64.F9×9

CSG
− Rabs/N/P5×5

A
] − [256.F9×9

CSG
− Rabs/N] - PMK-SVM

UU 52.8%

Table 1. Average recognition rates on Caltech-101 with 30 training samples per class. Each row contains results for one of the training
protocols, and each column for one type of architecture. All columns use an FCSG as the first module, followed by the modules shown in

the column label. The error bars for all experiments are within 1%, except where noted.

All results are recognition rates averaged over classes,
after training with 30 samples per class, and averaged over
5 drawings of the training set. To adjust hyperparameters,
a validation set of 5 samples per class was taken out of the
training sets. The hyper-parameters were selected to maxi-
mize the performance on the validation set. Then, the sys-
tem was trained over the entire training set. The final error
value is computed as the average error over categories to
account for differences in the number of instances per cat-
egory (as is standard protocol for Caltech-101). The back-
ground category was also included.

Using a Single Stage of Feature Extraction: The first
stage is composed of an FCSG layer with 64 filters of size
9 × 9 (64F 9×9

CSG), followed by an abs rectification (Rabs), a
local contrast normalization layer (N ) and an average pool-
ing layer with 10×10 boxcar filter and 5×5 down-sampling
(P 5×5

A ). The output of the first stage is a set of 64 features
maps of size 26 × 26. This output is then fed to a multi-
nomial logistic regression classifier that produces a 102-
dimensional output vector representing a posterior distribu-
tion over class labels. Lazebnik’s PMK-SVM classifier [13]
was also tested.

Using Two Stages of Feature Extraction: In two-stage
systems, the second-stage feature extractor is fed with the
output of the first stage. The first layer of the second stage
is an FCSG module with 256 output features maps, each of
which combines a random subset of 16 feature maps from
the previous stage using 9×9 kernels. Hence the total num-
ber of convolution kernels is 256 × 16 = 4096. The aver-
age pooling module uses a 6 × 6 boxcar filter with a 4 × 4
down-sampling step. This produces an output feature map

of size 256×4×4, which is then fed to a multinomial logis-
tic regression classifier. The PMK-SVM classifier was also
tested.

Table 1 summarizes the results for the experiments.
1. The most astonishing result is that systems with random
filters and no filter learning whatsoever achieve decent per-
formance (53.3% for R and 62.9% for RR), as long as they
include absolute value rectification and contrast normaliza-
tion (Rabs − N − PA).
2. Comparing experiments from rows R vs R+, RR vs
R+R+, U vs U+ and UU vs U+U+, we see that supervised
fine tuning consistently improves the performance, particu-
larly with weak non-linearities: 62.9% to 64.7% for RR,
63.7% to 65.5% for UU using Rabs − N − PA and 35.1%
to 59.5% for RR using Rabs − PA.
3. It appears clear that two-stage systems (UU , U+U+,
RR, R+R+) are systematically and significantly better than
their single-stage counterparts (U , U+, R, R+). For in-
stance, 54.2% obtained by U+ compared to 65.5% obtained
by U+U+ using Rabs −N −PA. However, when using PA

architecture, adding second stage without supervised refine-
ment does not seem to help. This may be due to cancellation
effects of the PA layer when rectification is not present.
4. It seems that unsupervised training (U , UU , U+, U+U+)
does not seem to significantly improve the performance
(comparing with (R, RR, R+, R+R+) if both rectification
and normalization are used (62.9% for RR versus 63.7%
for UU ). When contrast normalization is removed, the per-
formance gap becomes significant (35.1% for RR versus
47.8% for UU ). If no supervised refinement is performed, it
looks as if appropriate architectural components are a good

FCSG = convolution layer
R = rectification layer
N = local contrast normalization layer
PM = max pooling layer, PA = average pooling layer
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Topics: random filters
• Results on Caltech:
‣ random filters are surprisingly good

‣ turns out that random filters give units that are still sensitive to a particular 
frequency
- can analyze this by finding input which maximizes the activation of a given hidden unit (with 

gradient ascent applied in input space)

Jarret et al. 2009

Figure 4. Left: random stage-1 filters, and corresponding optimal inputs that maximize the response of each corresponding complex cell in
a FCSG−Rabs−N −PA architecture. The small asymmetry in the random filters is sufficient to make them orientation selective. Middle:

same for PSD filters. The optimal input patterns contain several periods since they maximize the output of a complete stage that contains
rectification, local normalization, and average pooling with down-sampling. Shifted versions of each pattern yield similar activations.

Right panel: subset of stage-2 filters obtained after PSD and supervised refinement on Caltech-101. Some structure is apparent.

4.2. Random Filter Performance
Perhaps the most astonishing result is the surprisingly

good performance obtained with random filters with few la-
beled samples. The NORB experiments show that random
filters yield sub-par performance when labeled samples are
abundant. But the experiments also show that random filters
seem to require the presence of abs and normalization. To
explore why random filters work at all, we used gradient de-
scent to find the optimal input patterns that maximize each
complex cell (after pooling) in a FCSG − Rabs − N − PA

stage. The surprising finding is that the optimal stimuli for
random filters are oriented gratings (albeit a noisy and faint
ones), similar to the optimal stimuli for trained filters. As
shown in fig 4, it appears that random weights, combined
with the abs/norm/pooling creates a spontaneous orienta-
tion selectivity.

4.3. Handwritten Digits Recognition
As a sanity check for the overall training procedures and

architectures, experiments were run on the MNIST dataset,
which contains 60,000 gray-scale 28x28 pixel digit images
for training and 10,000 images for testing. An architec-
ture with two stages of feature extraction was used: the first
stage produces 32 feature maps using 5× 5 filters, followed
by 2x2 average pooling and down-sampling. The second
stage produces 64 feature maps, each of which combines
16 feature maps from stage 1 with 5 × 5 filters (1024 filters
total), followed by 2× 2 pooling/down-sampling. The clas-
sifier is a 2-layer fully-connected neural network with 200
hidden units, and 10 outputs. The loss function is equiva-
lent to that of a 10-way multinomial logistic regression (also
known as cross-entropy loss). The two feature stages use
abs rectification and normalization.

The parameters for the two feature extraction stages are
first trained with PSD as explained in Section 3.1. The
classifier is initialized randomly. The whole system is fine-
tuned in supervised mode (the protocol could be described
as (U+U+R+R+). A validation set of size 10,000 was set
apart from the training set to tune the only hyper-parameter:
the sparsity constant λ. Nine different values were tested
between 0.1 and 1.6 and the best value was found to be 0.2.
The system was trained with a form of stochastic gradient

descent on the 50,000 non-validation training samples un-
til the best error rate on the validation set was reached (this
took 30 epochs). It was then tuned for another 3 epochs on
the whole training set. A test error rate of 0.53% was ob-
tained. To our knowledge, this is the best error rate ever
reported on the original MNIST dataset, without distortions
or preprocessing. The best previously reported error rate
was 0.60% [26].

5. Conclusions

This paper addressed the following three questions:

1. how do the non-linearities that follow the filter banks in-
fluence the recognition accuracy. The surprising answer is
that using a rectifying non-linearity is the single most im-
portant factor in improving the performance of a recogni-
tion system. This might be due to several reasons: a) the
polarity of features is often irrelevant to recognize objects,
b) the rectification eliminates cancellations between neigh-
boring filter outputs when combined with average pooling.
Without a rectification what is propagated by the average
down-sampling is just the noise in the input. Also introduc-
ing a local normalization layer improves the performance.
It appears to make supervised learning considerably faster,
perhaps because all variables have similar variances (akin
to the advantages introduced by whitening and other decor-
relation methods)

2. does learning the filter banks in an unsupervised or
supervised manner improve the performance over hard-
wired filters or even random filters: the most surprising re-
sult is that random filters used in a two-stage system with
the proper non-linearities yield 62.9% recognition rate on
Caltech-101. Experiments on NORB show that this sur-
prising performance is only seen in the limit of very small
training set sizes. We have also shown that the optimal in-
put patterns for a randomly initialized stage are very simi-
lar to the optimal inputs for a stage that use learned filters.
The second important result is that global supervised learn-
ing of the filters yields good recognition rate if the proper
non-linearities are used. It was thought that the dismal per-
formance of supervised convolutional networks on Caltech-
101 was due to overparameterization, but it seems to be due

random filters optimal input learned filters optimal input
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Topics: importance of architecture
• Results on Caltech:
‣ choice of right architecture can be more important than learning algorithm
- the use of rectification and local contrast normalization layers is important

- this is particularly true if little training data 

• Results on NORB:
‣ architecture makes less of a

difference with lots of 
training data per class

‣ random filters are also
not as good

Jarret et al. 2009

substitute for unsupervised training.
5. It is clear that abs rectification is a crucial component for
achieving good performance, as shown with the U+U+ pro-
tocol by comparing columns N − PA (31.0%), Rabs − PA

(60.0%), and Rabs − N − PA (65.5%). However, using
max pooling seems to alleviate the need for abs rectifica-
tion, confirming the hypothesis that average pooling with-
out rectification falls victim to cancellation effects between
neighboring filter outputs. This is an extremely important
fact for users of convolutional networks, in which rectifica-
tion has not been traditionally used.
6. A single-stage system with PMK-SVM reaches the same
performance as a two-stage system with logistic regression
(around 65%) as shown in the last two rows of Table 1. It
looks as if the pyramid match kernel is able to play the same
role as a second stage of feature extraction. Perhaps it is be-
cause PMK first performs a K-means based vector quantiza-
tion, which can be seen as an extreme form of sparse coding,
followed by local histogramming, which is a form of spa-
tial pooling. Hence, the PM kernel is conceptually similar
to a second stage based on sparse coding and pooling as re-
cently pointed out in [30]. Furthermore, these numbers are
similar to the performance of the original PMK-SVM sys-
tem which used dense SIFT features (64.6%) [13]. Again,
this is hardly surprising as the SIFT module is conceptually
very similar to our feature extraction stage. When using
features extracted using UU architecture, the performance
of PMK-SVM classifier drops significantly. This behaviour
might be caused by the very small spatial density (18× 18)
of features at second layer.
7. The last row of single stage system represents FCSG ker-
nels that are initialized with Gabor functions (G). The last
row of two stage system represents first layer gabor func-
tions, followed by a second layer where kernels are initial-
ized with templates from first layer outputs (GT) as in the
HMAX model [28, 22]. Suprisingly, the performance is
considerably worse than with random filters.

4.1. NORB Dataset
Caltech-101 is very peculiar in that many objects have

distinctive textures and few pose variations. More impor-
tantly, the particularly small size of the training set favors
methods that minimize the role learning and maximize the
role of clever engineering. A diametrically opposed object
dataset is NORB [15]. The “Small NORB” dataset has 5 ob-
ject categories (humans, airplanes, cars, trucks, animals) 5

Figure 2. Several examples from NORB dataset
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Figure 3. Test Error rate vs. number of training samples per class

on NORB Dataset. Although pure random features perform sur-
prisingly good when training data is very scarce, for large number

of training data learning improves the performance significantly.
Absolute value rectification (Rabs) and local normalization (N ) is
shown to improve the performance in all cases.

object instances for training, and 5 different object instances
for test. Each object instance has 972 samples (18 azimuths,
9 elevations, and 6 illuminations), for a total of 24300 train-
ing samples and 24300 test samples (4860 per class). Each
image is 96 × 96 pixels, grayscale. Experiments were con-
ducted to elucidate the importance of the non-linearity, and
the performance of random filter systems when many la-
beled samples are available.

Only the RR and R+R+ protocols were used with 8 fea-
ture maps with 5 × 5 filters at the first stage, 4 × 4 average
pooling followed by 24 feature maps with 6×6 filters, each
of which combines input from 4 randomly picked stage-1
feature maps, followed by 3 × 3 average pooling. The last
stage is a 5-way multinomial logistic regressor.

Several systems with various non-linearities were trained
on subsets of the training set with 20, 50, 100, 200, 500,
1000, 2000, and 4860 training samples per class. The re-
sults are shown in figure 3 in log-log scale. The green curve
(bottom) uses abs and normalization, while the blue curve
(middle) uses neither. Both are trained in purely supervised
mode from random initial conditions (R+R+). It appears
that the use of abs and normalization makes a big difference
when labeled samples are scarce, but the difference dimin-
ishes as the number of training samples increases. Training
seems to compensate for architectural simplicity, or con-
versely architectural sophistication seems to compensate for
lack of training. Still the error rate when trained on the full
training set is 5.6% with abs and normalization, but 6.9%
with neither ([15] reported 6.6%).

More interesting is the behavior of the system with ran-
dom filters: While its error rate is comparable to that of the
network trained in supervised mode for small training sets
(in the “Caltech-101 regime”), the error rate remains high
as samples are added. Hence, while random filters perform
well on Caltech-101, they would most likely not perform as
well as learned filters on tasks with more labeled samples.


