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Topics: convolutional RBM
• How about designing convolutional unsupervised networks
‣ let’s consider the case of the RBM

‣ could use same convolutional connectivity between input (v) and hidden layer (h)
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(NW , NV � NH + 1); the filter weights are shared
across all the hidden units within the group. In addi-
tion, each hidden group has a bias bk and all visible
units share a single bias c.

We define the energy function E(v,h) as:
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As with standard RBMs (Section 2.1), we can perform
block Gibbs sampling using the following conditional
distributions:

P (hk
ij = 1|v) = �((W̃ k ⇤ v)ij + bk)

P (vij = 1|h) = �((
X

k

W k ⇤ hk)ij + c),

where � is the sigmoid function. Gibbs sampling forms
the basis of our inference and learning algorithms.

3.3. Probabilistic max-pooling

In order to learn high-level representations, we stack
CRBMs into a multilayer architecture analogous to
DBNs. This architecture is based on a novel opera-
tion that we call probabilistic max-pooling.

In general, higher-level feature detectors need informa-
tion from progressively larger input regions. Existing
translation-invariant representations, such as convolu-
tional networks, often involve two kinds of layers in
alternation: “detection” layers, whose responses are
computed by convolving a feature detector with the
previous layer, and “pooling” layers, which shrink the
representation of the detection layers by a constant
factor. More specifically, each unit in a pooling layer
computes the maximum activation of the units in a
small region of the detection layer. Shrinking the rep-
resentation with max-pooling allows higher-layer rep-
resentations to be invariant to small translations of the
input and reduces the computational burden.

Max-pooling was intended only for feed-forward archi-
tectures. In contrast, we are interested in a generative
model of images which supports both top-down and
bottom-up inference. Therefore, we designed our gen-
erative model so that inference involves max-pooling-
like behavior.
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Figure 1. Convolutional RBM with probabilistic max-
pooling. For simplicity, only group k of the detection layer
and the pooing layer are shown. The basic CRBM corre-
sponds to a simplified structure with only visible layer and
detection (hidden) layer. See text for details.

To simplify the notation, we consider a model with a
visible layer V , a detection layer H, and a pooling layer
P , as shown in Figure 1. The detection and pooling
layers both have K groups of units, and each group
of the pooling layer has NP ⇥ NP binary units. For
each k 2 {1, ...,K}, the pooling layer P k shrinks the
representation of the detection layer Hk by a factor
of C along each dimension, where C is a small in-
teger such as 2 or 3. I.e., the detection layer Hk is
partitioned into blocks of size C ⇥ C, and each block
↵ is connected to exactly one binary unit pk

↵ in the
pooling layer (i.e., NP = NH/C). Formally, we define
B↵ , {(i, j) : hij belongs to the block ↵.}.

The detection units in the block B↵ and the pooling
unit p↵ are connected in a single potential which en-
forces the following constraints: at most one of the
detection units may be on, and the pooling unit is on
if and only if a detection unit is on. Equivalently, we
can consider these C2+1 units as a single random vari-
able which may take on one of C2 + 1 possible values:
one value for each of the detection units being on, and
one value indicating that all units are o↵.

We formally define the energy function of this simpli-
fied probabilistic max-pooling-CRBM as follows:
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We now discuss sampling the detection layer H and
the pooling layer P given the visible layer V . Group k
receives the following bottom-up signal from layer V :

I(hk
ij) , bk + (W̃ k ⇤ v)ij . (2)

Now, we sample each block independently as a multi-
nomial function of its inputs. Suppose hk

i,j is a hid-
den unit contained in block ↵ (i.e., (i, j) 2 B↵), the
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Lee et al. 2009

‣ hkij are the hidden units of 
the kth feature map

‣ Wkrs are the weights to the 
kth feature map

‣ Wk are the weights with 
flipped rows and columns 
(convolution kernel)

~
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Topics: convolutional RBM
•We can introduce a notion of probabilistic pooling
‣ pooling unit      above is 1 only if at least one hidden unit        in neighborhood is 1

‣ within a pooling neighborhood, allow at most only a single unit        equal to 1

Lee et al. 2009
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increase in energy caused by turning on unit hk
i,j is

�I(hk
i,j), and the conditional probability is given by:

P (hk
i,j = 1|v) =

exp(I(hk
i,j))

1 +
P

(i0,j0)2B↵
exp(I(hk

i0,j0))

P (pk
↵ = 0|v) =

1
1 +

P
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exp(I(hk
i0,j0))

.

Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization

Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ⇢. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network

Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference

Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H 0.
Suppose H 0 has K 0 groups of nodes, and there is a

set of shared weights � = {�1,1, . . . ,�K,K0}, where
�k,` is a weight matrix connecting pooling unit P k to
detection unit H 0`. The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H 0:
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To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hk
ij) , bk + (W̃ k ⇤ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H 0:

I(pk
↵) ,

X

`

(�k` ⇤ h0`)↵. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) 2 B↵, the conditional probability is given by:

P (hk
i,j = 1|v,h0) =

exp(I(hk
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.

As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion

Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can e↵ectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be di�cult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations su�ced.
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Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization

Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ⇢. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network

Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference

Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H 0.
Suppose H 0 has K 0 groups of nodes, and there is a

set of shared weights � = {�1,1, . . . ,�K,K0}, where
�k,` is a weight matrix connecting pooling unit P k to
detection unit H 0`. The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H 0:
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To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hk
ij) , bk + (W̃ k ⇤ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H 0:

I(pk
↵) ,

X

`

(�k` ⇤ h0`)↵. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) 2 B↵, the conditional probability is given by:

P (hk
i,j = 1|v,h0) =
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.

As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion

Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can e↵ectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be di�cult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations su�ced.
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Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization

Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ⇢. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network

Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference

Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H 0.
Suppose H 0 has K 0 groups of nodes, and there is a

set of shared weights � = {�1,1, . . . ,�K,K0}, where
�k,` is a weight matrix connecting pooling unit P k to
detection unit H 0`. The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H 0:
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To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hk
ij) , bk + (W̃ k ⇤ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H 0:

I(pk
↵) ,

X

`

(�k` ⇤ h0`)↵. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) 2 B↵, the conditional probability is given by:

P (hk
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.

As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion

Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can e↵ectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be di�cult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations su�ced.
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.

Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization

Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ⇢. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network

Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference

Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H 0.
Suppose H 0 has K 0 groups of nodes, and there is a

set of shared weights � = {�1,1, . . . ,�K,K0}, where
�k,` is a weight matrix connecting pooling unit P k to
detection unit H 0`. The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H 0:
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To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hk
ij) , bk + (W̃ k ⇤ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H 0:

I(pk
↵) ,

X

`

(�k` ⇤ h0`)↵. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) 2 B↵, the conditional probability is given by:

P (hk
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.

As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion

Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can e↵ectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be di�cult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations su�ced.
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increase in energy caused by turning on unit hk
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.

Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization

Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ⇢. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network

Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference

Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H 0.
Suppose H 0 has K 0 groups of nodes, and there is a

set of shared weights � = {�1,1, . . . ,�K,K0}, where
�k,` is a weight matrix connecting pooling unit P k to
detection unit H 0`. The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H 0:
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To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hk
ij) , bk + (W̃ k ⇤ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H 0:

I(pk
↵) ,

X

`

(�k` ⇤ h0`)↵. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) 2 B↵, the conditional probability is given by:
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As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion

Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can e↵ectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be di�cult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations su�ced.
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Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization

Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ⇢. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network

Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference

Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H 0.
Suppose H 0 has K 0 groups of nodes, and there is a

set of shared weights � = {�1,1, . . . ,�K,K0}, where
�k,` is a weight matrix connecting pooling unit P k to
detection unit H 0`. The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H 0:
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To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hk
ij) , bk + (W̃ k ⇤ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H 0:

I(pk
↵) ,

X

`

(�k` ⇤ h0`)↵. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) 2 B↵, the conditional probability is given by:

P (hk
i,j = 1|v,h0) =

exp(I(hk
i,j) + I(pk

↵))

1 +
P

(i0,j0)2B↵
exp(I(hk

i0,j0) + I(pk
↵))

P (pk
↵ = 0|v,h0) =

1

1 +
P

(i0,j0)2B↵
exp(I(hk

i0,j0) + I(pk
↵))

.

As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion

Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can e↵ectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be di�cult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations su�ced.
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(NW , NV � NH + 1); the filter weights are shared
across all the hidden units within the group. In addi-
tion, each hidden group has a bias bk and all visible
units share a single bias c.

We define the energy function E(v,h) as:

P (v,h) =
1
Z

exp(�E(v,h))

E(v,h) = �
KX

k=1
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Using the operators defined previously,

E(v,h) = �
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k=1

hk • (W̃ k ⇤ v)�
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k=1

bk

X

i,j

hk
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X
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As with standard RBMs (Section 2.1), we can perform
block Gibbs sampling using the following conditional
distributions:

P (hk
ij = 1|v) = �((W̃ k ⇤ v)ij + bk)

P (vij = 1|h) = �((
X

k

W k ⇤ hk)ij + c),

where � is the sigmoid function. Gibbs sampling forms
the basis of our inference and learning algorithms.

3.3. Probabilistic max-pooling

In order to learn high-level representations, we stack
CRBMs into a multilayer architecture analogous to
DBNs. This architecture is based on a novel opera-
tion that we call probabilistic max-pooling.

In general, higher-level feature detectors need informa-
tion from progressively larger input regions. Existing
translation-invariant representations, such as convolu-
tional networks, often involve two kinds of layers in
alternation: “detection” layers, whose responses are
computed by convolving a feature detector with the
previous layer, and “pooling” layers, which shrink the
representation of the detection layers by a constant
factor. More specifically, each unit in a pooling layer
computes the maximum activation of the units in a
small region of the detection layer. Shrinking the rep-
resentation with max-pooling allows higher-layer rep-
resentations to be invariant to small translations of the
input and reduces the computational burden.

Max-pooling was intended only for feed-forward archi-
tectures. In contrast, we are interested in a generative
model of images which supports both top-down and
bottom-up inference. Therefore, we designed our gen-
erative model so that inference involves max-pooling-
like behavior.
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pk
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V  (visible layer)

Hk (detection layer)

Pk (pooling layer)

NH
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C
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Figure 1. Convolutional RBM with probabilistic max-
pooling. For simplicity, only group k of the detection layer
and the pooing layer are shown. The basic CRBM corre-
sponds to a simplified structure with only visible layer and
detection (hidden) layer. See text for details.

To simplify the notation, we consider a model with a
visible layer V , a detection layer H, and a pooling layer
P , as shown in Figure 1. The detection and pooling
layers both have K groups of units, and each group
of the pooling layer has NP ⇥ NP binary units. For
each k 2 {1, ...,K}, the pooling layer P k shrinks the
representation of the detection layer Hk by a factor
of C along each dimension, where C is a small in-
teger such as 2 or 3. I.e., the detection layer Hk is
partitioned into blocks of size C ⇥ C, and each block
↵ is connected to exactly one binary unit pk

↵ in the
pooling layer (i.e., NP = NH/C). Formally, we define
B↵ , {(i, j) : hij belongs to the block ↵.}.

The detection units in the block B↵ and the pooling
unit p↵ are connected in a single potential which en-
forces the following constraints: at most one of the
detection units may be on, and the pooling unit is on
if and only if a detection unit is on. Equivalently, we
can consider these C2+1 units as a single random vari-
able which may take on one of C2 + 1 possible values:
one value for each of the detection units being on, and
one value indicating that all units are o↵.

We formally define the energy function of this simpli-
fied probabilistic max-pooling-CRBM as follows:

E(v,h) = �
X

k

X

i,j

“
hk

i,j(W̃
k ⇤ v)i,j + bkhk

i,j

”
� c

X
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vi,j

subj. to
X

(i,j)2B↵

hk
i,j  1, 8k, ↵.

We now discuss sampling the detection layer H and
the pooling layer P given the visible layer V . Group k
receives the following bottom-up signal from layer V :

I(hk
ij) , bk + (W̃ k ⇤ v)ij . (2)

Now, we sample each block independently as a multi-
nomial function of its inputs. Suppose hk

i,j is a hid-
den unit contained in block ↵ (i.e., (i, j) 2 B↵), the
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(NW , NV � NH + 1); the filter weights are shared
across all the hidden units within the group. In addi-
tion, each hidden group has a bias bk and all visible
units share a single bias c.

We define the energy function E(v,h) as:
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1
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As with standard RBMs (Section 2.1), we can perform
block Gibbs sampling using the following conditional
distributions:

P (hk
ij = 1|v) = �((W̃ k ⇤ v)ij + bk)

P (vij = 1|h) = �((
X

k

W k ⇤ hk)ij + c),

where � is the sigmoid function. Gibbs sampling forms
the basis of our inference and learning algorithms.

3.3. Probabilistic max-pooling

In order to learn high-level representations, we stack
CRBMs into a multilayer architecture analogous to
DBNs. This architecture is based on a novel opera-
tion that we call probabilistic max-pooling.

In general, higher-level feature detectors need informa-
tion from progressively larger input regions. Existing
translation-invariant representations, such as convolu-
tional networks, often involve two kinds of layers in
alternation: “detection” layers, whose responses are
computed by convolving a feature detector with the
previous layer, and “pooling” layers, which shrink the
representation of the detection layers by a constant
factor. More specifically, each unit in a pooling layer
computes the maximum activation of the units in a
small region of the detection layer. Shrinking the rep-
resentation with max-pooling allows higher-layer rep-
resentations to be invariant to small translations of the
input and reduces the computational burden.

Max-pooling was intended only for feed-forward archi-
tectures. In contrast, we are interested in a generative
model of images which supports both top-down and
bottom-up inference. Therefore, we designed our gen-
erative model so that inference involves max-pooling-
like behavior.
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Figure 1. Convolutional RBM with probabilistic max-
pooling. For simplicity, only group k of the detection layer
and the pooing layer are shown. The basic CRBM corre-
sponds to a simplified structure with only visible layer and
detection (hidden) layer. See text for details.

To simplify the notation, we consider a model with a
visible layer V , a detection layer H, and a pooling layer
P , as shown in Figure 1. The detection and pooling
layers both have K groups of units, and each group
of the pooling layer has NP ⇥ NP binary units. For
each k 2 {1, ...,K}, the pooling layer P k shrinks the
representation of the detection layer Hk by a factor
of C along each dimension, where C is a small in-
teger such as 2 or 3. I.e., the detection layer Hk is
partitioned into blocks of size C ⇥ C, and each block
↵ is connected to exactly one binary unit pk

↵ in the
pooling layer (i.e., NP = NH/C). Formally, we define
B↵ , {(i, j) : hij belongs to the block ↵.}.

The detection units in the block B↵ and the pooling
unit p↵ are connected in a single potential which en-
forces the following constraints: at most one of the
detection units may be on, and the pooling unit is on
if and only if a detection unit is on. Equivalently, we
can consider these C2+1 units as a single random vari-
able which may take on one of C2 + 1 possible values:
one value for each of the detection units being on, and
one value indicating that all units are o↵.

We formally define the energy function of this simpli-
fied probabilistic max-pooling-CRBM as follows:
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We now discuss sampling the detection layer H and
the pooling layer P given the visible layer V . Group k
receives the following bottom-up signal from layer V :

I(hk
ij) , bk + (W̃ k ⇤ v)ij . (2)

Now, we sample each block independently as a multi-
nomial function of its inputs. Suppose hk

i,j is a hid-
den unit contained in block ↵ (i.e., (i, j) 2 B↵), the
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increase in energy caused by turning on unit hk
i,j is

�I(hk
i,j), and the conditional probability is given by:

P (hk
i,j = 1|v) =

exp(I(hk
i,j))

1 +
P

(i0,j0)2B↵
exp(I(hk

i0,j0))

P (pk
↵ = 0|v) =

1
1 +

P
(i0,j0)2B↵

exp(I(hk
i0,j0))

.

Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization

Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ⇢. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network

Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference

Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H 0.
Suppose H 0 has K 0 groups of nodes, and there is a

set of shared weights � = {�1,1, . . . ,�K,K0}, where
�k,` is a weight matrix connecting pooling unit P k to
detection unit H 0`. The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H 0:

E(v,h,p,h0) = �
X

k

v • (W k ⇤ hk)�
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k
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To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hk
ij) , bk + (W̃ k ⇤ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H 0:

I(pk
↵) ,

X

`

(�k` ⇤ h0`)↵. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) 2 B↵, the conditional probability is given by:

P (hk
i,j = 1|v,h0) =

exp(I(hk
i,j) + I(pk

↵))

1 +
P

(i0,j0)2B↵
exp(I(hk

i0,j0) + I(pk
↵))

P (pk
↵ = 0|v,h0) =

1

1 +
P
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exp(I(hk

i0,j0) + I(pk
↵))

.

As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion

Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can e↵ectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be di�cult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations su�ced.

implies       is 1
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increase in energy caused by turning on unit hk
i,j is

�I(hk
i,j), and the conditional probability is given by:

P (hk
i,j = 1|v) =

exp(I(hk
i,j))
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1
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.

Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization

Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ⇢. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network

Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference

Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H 0.
Suppose H 0 has K 0 groups of nodes, and there is a

set of shared weights � = {�1,1, . . . ,�K,K0}, where
�k,` is a weight matrix connecting pooling unit P k to
detection unit H 0`. The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H 0:

E(v,h,p,h0) = �
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To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hk
ij) , bk + (W̃ k ⇤ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H 0:

I(pk
↵) ,

X

`

(�k` ⇤ h0`)↵. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) 2 B↵, the conditional probability is given by:

P (hk
i,j = 1|v,h0) =

exp(I(hk
i,j) + I(pk

↵))

1 +
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.

As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion

Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can e↵ectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be di�cult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations su�ced.
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increase in energy caused by turning on unit hk
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i,j), and the conditional probability is given by:
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.

Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization

Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ⇢. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network

Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference

Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H 0.
Suppose H 0 has K 0 groups of nodes, and there is a

set of shared weights � = {�1,1, . . . ,�K,K0}, where
�k,` is a weight matrix connecting pooling unit P k to
detection unit H 0`. The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H 0:
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To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hk
ij) , bk + (W̃ k ⇤ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H 0:

I(pk
↵) ,

X

`

(�k` ⇤ h0`)↵. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) 2 B↵, the conditional probability is given by:

P (hk
i,j = 1|v,h0) =
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.

As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion

Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can e↵ectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be di�cult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations su�ced.
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increase in energy caused by turning on unit hk
i,j is

�I(hk
i,j), and the conditional probability is given by:

P (hk
i,j = 1|v) =

exp(I(hk
i,j))

1 +
P

(i0,j0)2B↵
exp(I(hk

i0,j0))

P (pk
↵ = 0|v) =

1
1 +

P
(i0,j0)2B↵

exp(I(hk
i0,j0))

.

Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization

Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ⇢. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network

Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference

Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H 0.
Suppose H 0 has K 0 groups of nodes, and there is a

set of shared weights � = {�1,1, . . . ,�K,K0}, where
�k,` is a weight matrix connecting pooling unit P k to
detection unit H 0`. The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H 0:

E(v,h,p,h0) = �
X

k

v • (W k ⇤ hk)�
X

k

bk

X

ij

hk
ij

�
X

k,`

pk • (�k` ⇤ h0`)�
X

`

b0`
X

ij

h0`
ij

To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hk
ij) , bk + (W̃ k ⇤ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H 0:

I(pk
↵) ,

X

`

(�k` ⇤ h0`)↵. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) 2 B↵, the conditional probability is given by:

P (hk
i,j = 1|v,h0) =

exp(I(hk
i,j) + I(pk

↵))

1 +
P

(i0,j0)2B↵
exp(I(hk

i0,j0) + I(pk
↵))

P (pk
↵ = 0|v,h0) =

1

1 +
P

(i0,j0)2B↵
exp(I(hk

i0,j0) + I(pk
↵))

.

As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion

Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can e↵ectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be di�cult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations su�ced.
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(NW , NV � NH + 1); the filter weights are shared
across all the hidden units within the group. In addi-
tion, each hidden group has a bias bk and all visible
units share a single bias c.

We define the energy function E(v,h) as:

P (v,h) =
1
Z

exp(�E(v,h))

E(v,h) = �
KX

k=1

NHX

i,j=1

NWX

r,s=1

hk
ijW

k
rsvi+r�1,j+s�1

�
KX

k=1

bk

NHX

i,j=1

hk
ij � c

NVX

i,j=1

vij . (1)

Using the operators defined previously,

E(v,h) = �
KX

k=1

hk • (W̃ k ⇤ v)�
KX

k=1

bk

X

i,j

hk
i,j � c

X

i,j

vij .

As with standard RBMs (Section 2.1), we can perform
block Gibbs sampling using the following conditional
distributions:

P (hk
ij = 1|v) = �((W̃ k ⇤ v)ij + bk)

P (vij = 1|h) = �((
X

k

W k ⇤ hk)ij + c),

where � is the sigmoid function. Gibbs sampling forms
the basis of our inference and learning algorithms.

3.3. Probabilistic max-pooling

In order to learn high-level representations, we stack
CRBMs into a multilayer architecture analogous to
DBNs. This architecture is based on a novel opera-
tion that we call probabilistic max-pooling.

In general, higher-level feature detectors need informa-
tion from progressively larger input regions. Existing
translation-invariant representations, such as convolu-
tional networks, often involve two kinds of layers in
alternation: “detection” layers, whose responses are
computed by convolving a feature detector with the
previous layer, and “pooling” layers, which shrink the
representation of the detection layers by a constant
factor. More specifically, each unit in a pooling layer
computes the maximum activation of the units in a
small region of the detection layer. Shrinking the rep-
resentation with max-pooling allows higher-layer rep-
resentations to be invariant to small translations of the
input and reduces the computational burden.

Max-pooling was intended only for feed-forward archi-
tectures. In contrast, we are interested in a generative
model of images which supports both top-down and
bottom-up inference. Therefore, we designed our gen-
erative model so that inference involves max-pooling-
like behavior.

v

Wk

hk
i,j

pk
α

V  (visible layer)

Hk (detection layer)

Pk (pooling layer)

NH

NV

C

NW

NP

Figure 1. Convolutional RBM with probabilistic max-
pooling. For simplicity, only group k of the detection layer
and the pooing layer are shown. The basic CRBM corre-
sponds to a simplified structure with only visible layer and
detection (hidden) layer. See text for details.

To simplify the notation, we consider a model with a
visible layer V , a detection layer H, and a pooling layer
P , as shown in Figure 1. The detection and pooling
layers both have K groups of units, and each group
of the pooling layer has NP ⇥ NP binary units. For
each k 2 {1, ...,K}, the pooling layer P k shrinks the
representation of the detection layer Hk by a factor
of C along each dimension, where C is a small in-
teger such as 2 or 3. I.e., the detection layer Hk is
partitioned into blocks of size C ⇥ C, and each block
↵ is connected to exactly one binary unit pk

↵ in the
pooling layer (i.e., NP = NH/C). Formally, we define
B↵ , {(i, j) : hij belongs to the block ↵.}.

The detection units in the block B↵ and the pooling
unit p↵ are connected in a single potential which en-
forces the following constraints: at most one of the
detection units may be on, and the pooling unit is on
if and only if a detection unit is on. Equivalently, we
can consider these C2+1 units as a single random vari-
able which may take on one of C2 + 1 possible values:
one value for each of the detection units being on, and
one value indicating that all units are o↵.

We formally define the energy function of this simpli-
fied probabilistic max-pooling-CRBM as follows:

E(v,h) = �
X

k

X

i,j

“
hk

i,j(W̃
k ⇤ v)i,j + bkhk

i,j

”
� c

X

i,j

vi,j

subj. to
X

(i,j)2B↵

hk
i,j  1, 8k, ↵.

We now discuss sampling the detection layer H and
the pooling layer P given the visible layer V . Group k
receives the following bottom-up signal from layer V :

I(hk
ij) , bk + (W̃ k ⇤ v)ij . (2)

Now, we sample each block independently as a multi-
nomial function of its inputs. Suppose hk

i,j is a hid-
den unit contained in block ↵ (i.e., (i, j) 2 B↵), the

sigmoid
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Topics: convolutional RBM
• Using these adapted conditionals, we can perform contrastive 

divergence
‣ energy gradients involve convolutions, similar to the backprop gradients in 

convolutional network

• Can stack convolutional RBMs
‣ provides a pretraining procedure which doesn’t require the extraction of patches

• See Lee et al. 2009 for more details

Lee et al. 2009


