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Abstract

We introduce RNADE, a new model for joint density estimation of real-valued
vectors. Our model calculates the density of a datapoint as the product of one-
dimensional conditionals modeled using mixture density networks with shared
parameters. RNADE learns a distributed representation of the data, while having
a tractable expression for the calculation of densities. A tractable likelihood
allows direct comparison with other methods and training by standard gradient-
based optimizers. We compare the performance of RNADE on several datasets of
heterogeneous and perceptual data, finding it outperforms mixture models in all
but one case.

1 Introduction

Probabilistic approaches to machine learning involve modeling the probability distributions over large
collections of variables. The number of parameters required to describe a general discrete distribution
grows exponentially in its dimensionality, so some structure or regularity must be imposed, often
through graphical models [e.g. 1]. Graphical models are also used to describe probability densities
over collections of real-valued variables.

Often parts of a task-specific probabilistic model are hard to specify, and are learned from data using
generic models. For example, the natural probabilistic approach to image restoration tasks (such as
denoising, deblurring, inpainting) requires a multivariate distribution over uncorrupted patches of
pixels. It has long been appreciated that large classes of densities can be estimated consistently by
kernel density estimation [2], and a large mixture of Gaussians can closely represent any density. In
practice, a parametric mixture of Gaussians seems to fit the distribution over patches of pixels and
obtains state-of-the-art restorations [3]. It may not be possible to fit small image patches significantly
better, but alternative models could further test this claim. Moreover, competitive alternatives to
mixture models might improve performance in other applications that have insufficient training data
to fit mixture models well.

Restricted Boltzmann Machines (RBMs), which are undirected graphical models, fit samples of
binary vectors from a range of sources better than mixture models [4, 5]. One explanation is that
RBMs form a distributed representation: many hidden units are active when explaining an observation,
which is a better match to most real data than a single mixture component. Another explanation is
that RBMs are mixture models, but the number of components is exponential in the number of hidden
units. Parameter tying among components allows these more flexible models to generalize better
from small numbers of examples. There are two practical difficulties with RBMs: the likelihood of
the model must be approximated, and samples can only be drawn from the model approximately
by Gibbs sampling. The Neural Autoregressive Distribution Estimator (NADE) overcomes these
difficulties [5]. NADE is a directed graphical model, or feed-forward neural network, initially derived
as an approximation to an RBM, but then fitted as a model in its own right.
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In this work we introduce the Real-valued Autoregressive Density Estimator (RNADE), an extension
of NADE. An autoregressive model expresses the density of a vector as an ordered product of
one-dimensional distributions, each conditioned on the values of previous dimensions in the (perhaps
arbitrary) ordering. We use the parameter sharing previously introduced by NADE, combined with
mixture density networks [6], an existing flexible approach to modeling real-valued distributions with
neural networks. By construction, the density of a test point under RNADE is cheap to compute,
unlike RBM-based models. The neural network structure provides a flexible way to alter the mean
and variance of a mixture component depending on context, potentially modeling non-linear or
heteroscedastic data with fewer components than unconstrained mixture models.

2 Background: Autoregressive models

Both NADE [5] and our RNADE model are based on the chain rule (or product rule), which factorizes
any distribution over a vector of variables into a product of terms: p(x) =

∏D
d=1 p(xd | x<d),

where x<d denotes all attributes preceding xd in a fixed arbitrary ordering of the attributes. This
factorization corresponds to a Bayesian network where every variable is a parent of all variables after
it. As this model assumes no conditional independences, it says nothing about the distribution in
itself. However, the (perhaps arbitrary) ordering we choose will matter if the form of the conditionals
is constrained. If we assume tractable parametric forms for each of the conditional distributions, then
the joint distribution can be computed for any vector, and the parameters of the model can be locally
fitted to a penalized maximum likelihood objective using any gradient-based optimizer.

For binary data, each conditional distribution can be modeled with logistic regression, which is called
a fully visible sigmoid belief network (FVSBN) [7]. Neural networks can also be used for each
binary prediction task [8]. The neural autoregressive distribution estimator (NADE) also uses neural
networks for each conditional, but with parameter sharing inspired by a mean-field approximation to
Restricted Boltzmann Machines [5]. In detail, each conditional is given by a feed-forward neural
network with one hidden layer, hd ∈ RH :

p(xd = 1 |x<d) = sigm
(
v>d hd + bd

)
where hd = sigm (W ·,<dx<d + c) , (1)

where vd ∈ RH , bd ∈ R, c ∈ RH , and W ∈ RH×(D−1) are neural network parameters, and sigm
represents the logistic sigmoid function 1/(1 + e−x).

The weights between the inputs to the hidden units for each neural network are tied: W ·,<d is
the first d−1 columns of a shared weight matrix W . This parameter sharing reduces the total
number of parameters from quadratic in the number of input dimensions to linear, lessening the
need for regularisation. Computing the probability of a datapoint can also be done in time linear in
dimensionality, O(DH), by sharing the computation when calculating the hidden activation of each
neural network (ad =W ·,<dx<d + c):

a1 = c, ad+1 = ad + xdW ·,d. (2)

When approximating Restricted Boltzmann Machines, the output weights {vd} in (1) were originally
tied to the input weightsW . Untying these weights gave better statistical performance on a range of
tasks, with negligible extra computational cost [5].

NADE has recently been extended to count data [9]. The possibility of extending generic neural
autoregressive models to continuous data has been mentioned [8, 10], but has not been previously
explored to our knowledge. An autoregressive mixture of experts with scale mixture model experts has
been developed as part of a sophisticated multi-resolution model specifically for natural images [11].
In more general work, Gaussian processes have been used to model the conditional distributions of a
fully visible Bayesian network [12]. However, these ‘Gaussian process networks’ cannot deal with
multimodal conditional distributions or with large datasets (currently ' 104 points would require
further approximation). In the next section we propose a more flexible and scalable approach.

3 Real-valued neural autoregressive density estimators

The original derivation of NADE suggests deriving a real-valued version from a mean-field approxi-
mation to the conditionals of a Gaussian-RBM. However, we discarded this approach because the
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limitations of the Gaussian-RBM are well documented [13, 14]: its isotropic conditional noise model
does not give competitive density estimates. Approximating a more capable RBM model, such as the
mean-covariance RBM [15] or the spike-and-slab RBM [16], might be a fruitful future direction.

The main characteristic of NADE is the tying of its input-to-hidden weights. The output layer was
‘untied’ from the approximation to the RBM to give the model greater flexibility. Taking this idea
further, we add more parameters to NADE to represent each one-dimensional conditional distribution
with a mixture of Gaussians instead of a Bernoulli distribution. That is, the outputs are mixture
density networks [6], with a shared hidden layer, using the same parameter tying as NADE.

Thus, our Real-valued Neural Autoregressive Density-Estimator or RNADE model represents the
probability density of a vector as:

p(x) =

D∏
d=1

p(xd |x<d) with p(xd |x<d) = pM(xd |θd), (3)

where pM is a mixture of Gaussians with parameters θd. The mixture model parameters are calculated
using a neural network with all of the preceding dimensions, x<d, as inputs. We now give the details.

RNADE computes the same hidden unit activations, ad, as before using (2). As discussed by Bengio
[10], as an RNADE (or a NADE) with sigmoidal units progresses across the input dimensions
d ∈ {1 . . . D}, its hidden units will tend to become more and more saturated, due to their input
being a weighted sum of an increasing number of inputs. Bengio proposed alleviating this effect by
rescaling the hidden units’ activation by a free factor ρd at each step, making the hidden unit values

hd = sigm (ad) . (4)

Learning these extra rescaling parameters worked slightly better, and all of our experiments use them.

Previous work on neural networks with real-valued outputs has found that rectified linear units can
work better than sigmoidal non-linearities [17]. The hidden values for rectified linear units are:

hd =

{
ρdad if ρdad > 0

0 otherwise.
(5)

In preliminary experiments we found that these hidden units worked better than sigmoidal units in
RNADE, and used them throughout (except for an example result with sigmoidal units in Table 2).

Finally, the mixture of Gaussians parameters for the d-th conditional, θd = {αd,µd,σd}, are set by:

K Mixing fractions, αd = softmax
(
V α
d
>hd + b

α
d

)
(6)

K component means, µd = V
µ
d
>
hd + b

µ
d (7)

K component standard deviations, σd = exp
(
V σ
d
>hd + b

σ
d

)
, (8)

where free parameters V α
d , V µ

d , V σ
d are H×K matrices, and bαd , bµd , bσd are vectors of size K. The

softmax [18] ensures the mixing fractions are positive and sum to one, the exponential ensures the
standard deviations are positive.

Fitting an RNADE can be done using gradient ascent on the model’s likelihood given a training set of
examples. We used minibatch stochastic gradient ascent in all our experiments. In those RNADE
models with MoG conditionals, we multiplied the gradient of each component mean by its standard
deviation (for a Gaussian, Newton’s method multiplies the gradient by its variance, but empirically
multiplying by the standard deviation worked better), this makes tight components move more slowly
than broad ones, a heuristic that we found allows the use of higher learning rates.

Variants: Using a mixture of Gaussians to represent the conditional distributions in RNADE is an
arbitrary parametric choice. Given several components the mixture model can represent a rich set
of skewed and multimodal distributions with different tail behaviors. However, other choices could
be appropriate in particular circumstances. For example, work on natural images often uses scale
mixtures, where components share a common mean. Conditional distributions of perceptual data
are often assumed to be Laplacian [e.g. 19]. We call our main variant with mixtures of Gaussians
RNADE-MoG, but also experiment with mixtures of Laplacian outputs, RNADE-MoL.
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Table 1: Average test-set log-likelihood per datapoint for 4 different models on five UCI datasets.
RNADE using mixture of Gaussian conditionals obtained the best results on all datasets.

Dataset dim size Gaussian MFA RNADE-MoG RNADE-MoL

Red wine 11 1599 −13.18 −10.19 −9.36 −9.46
White wine 11 4898 −13.20 −10.73 −10.23 −10.38
Parkinsons 15 5875 −10.85 −1.99 −0.90 −2.63
Ionosphere 32 351 −41.24 −17.55 −2.50 −5.87
Boston housing 10 506 −11.37 −4.54 −0.64 −4.04

4 Experiments

We compared RNADE to mixtures of Gaussians (MoG) and factor analyzers (MFA), which are
surprisingly strong baselines in some tasks [20, 21]. Given the poor performance of discrete mix-
tures [4, 5], we limited our experiments to modeling continuous attributes. However it would be easy
to include both discrete and continuous variables in a NADE-like architecture.

4.1 Low-dimensional data

We first considered five UCI datasets [22], previously used to study the performance of other density
estimators [23, 20]. These datasets have relatively low dimensionality, with between 10 and 32
attributes, but have hard thresholds and non-linear dependencies that may make it difficult to fit
mixtures of Gaussians or factor analyzers.

Following Tang et al. [20], we eliminated discrete-valued attributes and an attribute from every pair
with a Pearson correlation coefficient greater than 0.98. Each dimension of the data was normalized
by subtracting its training subset sample mean and dividing by its standard deviation. All results are
reported on the normalized data.

As baselines we fitted full-covariance Gaussians and mixtures of factor analysers. To measure the
performance of the different models, we calculated their log-likelihood on held-out test data. Because
these datasets are small, we used 10-folds, with 90% of the data for training, and 10% for testing.

We chose the hyperparameter values for each model by doing per-fold cross-validation; using a ninth
of the training data as validation data. Once the hyperparameter values had been chosen, we trained
each model using all the training data (including the validation data) and measured its performance
on the 10% of held-out testing data. In order to avoid overfitting, we stopped the training after
reaching a training likelihood higher than the one obtained on the best validation-wise iteration of the
corresponding validation run. Early stopping is crucial to avoid overfitting the RNADE models. It
also improves the results of the MFAs, but to a lesser degree.

The MFA models were trained using the EM algorithm [24, 25], the number of components and
factors were crossvalidated. The number of factors was chosen from even numbers from 2 . . . D,
where selecting D gives a mixture of Gaussians. The number of components was chosen among all
even numbers from 2 . . . 50 (crossvalidation always selected fewer than 50 components).

RNADE-MoG and RNADE-MoL models were fitted using minibatch stochastic gradient descent,
using minibatches of size 100, for 500 epochs, each epoch comprising 10 minibatches. For each
experiment, the number of hidden units, the non-linear activation-function of the hidden units,
and the form of the conditionals were fixed. Three hyperparameters were crossvalidated using
grid-search: the number of components on each one-dimensional conditional was chosen from
the set {2, 5, 10, 20}; the weight-decay (used only to regularize the input to hidden weights) from
the set {2.0, 1.0, 0.1, 0.01, 0.001, 0}; and the learning rate from the set {0.1, 0.05, 0.025, 0.0125}.
Learning-rates were decreased linearly to reach 0 after the last epoch.

The results are shown in Table 1. An RNADE with mixture of Gaussian conditionals obtained higher
log-likelihoods than any of the other models on all datasets. Unfortunately we couldn’t reproduce the
data-folds used by previous work, however, our improvements are larger than those demonstrated by
a deep mixture of factor analyzers over standard MFA [20].
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Figure 1: Top: 15 8x8 patches from the BSDS test set. Center: 15 samples from Zoran and Weiss’s
MoG model with 200 components. Bottom: 15 samples from an RNADE with 512 hidden units and
10 output components per dimension. All data and samples were drawn randomly.

4.2 Natural image patches

We also measured the ability of RNADE to model small patches of natural images. Following the
recent work of Zoran and Weiss [3], we use 8-by-8-pixel patches of monochrome natural images,
obtained from the BSDS300 dataset [26] (Figure 1 gives examples).

Pixels in this dataset can take a finite number of brightness values ranging from 0 to 255. Modeling
discretized data using a real-valued distribution can lead to arbitrarily high density values, by locating
narrow high density spike on each of the possible discrete values. In order to avoid this ‘cheating’
solution, we added noise uniformly distributed between 0 and 1 to the value of each pixel. We then
divided by 256, making each pixel take a value in the range [0, 1].

In previous experiments, Zoran and Weiss [3] subtracted the mean pixel value from each patch,
reducing the dimensionality of the data by one: the value of any pixel could be perfectly predicted
as minus the sum of all other pixel values. However, the original study still used a mixture of full-
covariance 64-dimensional Gaussians. Such a model could obtain arbitrarily high model likelihoods,
so unfortunately the likelihoods reported in previous work on this dataset [3, 20] are difficult
to interpret. In our preliminary experiment using NADE, we observed that if we model the 64-
dimensional data, the 64th pixel is always predicted by a very thin spike centered at its true value.
The ability of RNADE to capture this spurious dependency is reassuring, but we wouldn’t want our
results to be dominated by it. Recent work by Zoran and Weiss [21], projects the data on the leading
63 eigenvectors of each component, when measuring the model likelihood [27]. For comparison
amongst a range of methods, we advocate simply discarding the 64th (bottom-right pixel).

We trained our model using patches drawn randomly from 180 images in the training subset of
BSDS300. A validation dataset containing 1,000 random patches from the remaining 20 images in the
training subset were used for early-stopping when training RNADE. We measured the performance
of each model by measuring their log-likelihood on one million patches drawn randomly from the
test subset, which is composed of 100 images not present in the training subset. Given the larger
scale of this dataset, hyperparameters of the RNADE and MoG models were chosen manually using
the performance of preliminary runs on the validation data, rather than by an extensive search.

The RNADE model had 512 rectified-linear hidden units and a mixture of 20 one-dimensional
Gaussian components per output. Training was done by minibatch gradient descent, with 25 datapoints
per minibatch, for a total of 200 epochs, each comprising 1,000 minibatches. The learning-rate was
scheduled to start at 0.001 and linearly decreased to reach 0 after the last epoch. Gradient momentum
with momentum factor 0.9 was used, but initiated at the beginning of the second epoch. A weight
decay rate of 0.001 was applied to the input-to-hidden weight matrix only. Again, we found that
multiplying the gradient of the mean output parameters by the standard deviation improves results.
RNADE training was early stopped but didn’t show signs of overfitting. We produced a further run
with 1024 hidden units for 400 epochs, with still no signs of overfitting; even larger models might
perform better.

The MoG model was trained using minibatch EM, for 1,000 iterations. At each iteration 20,000
randomly sampled datapoints were used in an EM update. A step was taken from the previous mixture
model towards the parameters resulting from the M-step: θt = (1 − η)θt−1 + ηθEM , where the
step size (η) was scheduled to start at 0.1 and linearly decreased to reach 0 after the last update. The
training of the MoG was also early-stopped and also showed no signs of overfitting.
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Table 2: Average per-example log-likelihood of several mixture of Gaussian and RNADE models,
with mixture of Gaussian (MoG) or mixture of Laplace (MoL) conditionals, on 8-by-8 patches of
natural images. These results are measured in nats and were calculated using one million patches.
Standard errors are lower than 0.1 in every case. K gives the number of one-dimensional components
for each conditional in RNADE, and the number of full-covariance components for MoG.

Model Training LogL Test LogL

MoG K=200 (Z&W) 161.9 152.8
MoG K=100 152.8 144.7
MoG K=200 159.3 150.4
MoG K=300 159.3 150.4
RNADE-MoG K=5 158.0 149.1
RNADE-MoG K=10 160.0 151.0
RNADE-MoG K=20 158.6 149.7
RNADE-MoL K=5 150.2 141.5
RNADE-MoL K=10 149.7 141.1
RNADE-MoL K=20 150.1 141.5
RNADE-MoG K=10 (sigmoid h. units) 155.1 146.4
RNADE-MoL K=10 (1024 units, 400 epochs) 161.1 152.1

The results are shown in Table 2. We compare RNADE with a mixtures of Gaussians model trained
on 63 pixels, and with a MoG trained by Zoran and Weiss (downloaded from Daniel Zoran’s website)
from which we removed the 64th row and column of each covariance matrix. The best RNADE test
log-likelihood is, on average, 0.7 nats per patch lower than Zoran and Weiss’s MoG, which had a
different training procedure than our mixture of Gaussians.

Figure 1 shows a few examples from the test set, and samples from the MoG and RNADE models.
Some of the samples from RNADE are unnaturally noisy, with pixel values outside the legal range
(see fourth sample from the right in Figure 1). If we constrain the pixels values to a unit range, by
rejection sampling or otherwise, these artifacts go away. Limiting the output range of the model
would also improve test likelihood scores slightly, but not by much: log-likelihood does not strongly
penalize models for putting a small fraction of probability mass on ‘junk’ images.

All of the results in this section were obtained by fitting the pixels in a raster-scan order. Perhaps
surprisingly, but consistent with previous results on NADE [5] and by Frey [28], randomizing
the order of the pixels made little difference to these results. The difference in performance was
comparable to the differences between multiple runs with the same pixel ordering.

4.3 Speech acoustics

We also measured the ability of RNADE to model small patches of speech spectrograms, extracted
from the TIMIT dataset [29]. The patches contained 11 frames of 20 filter-banks plus energy; totaling
231 dimensions per datapoint. These filter-bank encoding is common in speech-recognition, and
better for visualization than the more frequently used MFCC features. A good generative model of
speech could be used, for example, in denoising, or speech detection tasks.

We fitted the models using the standard TIMIT training subset, and compared RNADE with a MoG
by measuring their log-likelihood on the complete TIMIT core-test dataset.

The RNADE model has 1024 rectified-linear hidden units and a mixture of 20 one-dimensional
Gaussian components per output. Given the larger scale of this dataset hyperparameter choices were
again made manually using validation data, and the same minibatch training procedures for RNADE
and MoG were used as for natural image patches.

The results are shown in Table 3. RNADE obtained, on average, 10 nats more per test example
than a mixture of Gaussians. In Figure 2 a few examples from the test set, and samples from the
MoG and RNADE models are shown. In contrast with the log-likelihood measure, there are no
marked differences between the samples from each model. Both set of samples look like blurred
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Table 3: Log-likelihood of several MoG and RNADE models on the core-test set of TIMIT measured
in nats. RNADE obtained a higher (better) log-likelihood.

Model Training LogL Test LogL

MoG N=50 111.6 110.4 (SE: 0.3)
MoG N=100 113.4 112.0 (SE: 0.3)
MoG N=200 113.9 112.5 (SE: 0.3)
MoG N=300 114.1 112.5 (SE: 0.3)
RNADE-MoG K=10 125.9 123.9 (SE: 0.3)
RNADE-MoG K=20 126.7 124.5 (SE: 0.3)
RNADE-MoL K=10 120.3 118.0 (SE: 0.3)
RNADE-MoL K=20 122.2 119.8 (SE: 0.3)

Figure 2: Top: 15 datapoints from the TIMIT core-test set. Center: 15 samples from a MoG model
with 200 components. Bottom: 15 samples from an RNADE with 512 hidden units and output
components per dimension. On each plot, time is shown on the horizontal axis, the bottom row
displays the energy feature, while the others display the filter bank features (in ascending frequency
order from the bottom). All data and samples were drawn randomly.

spectrograms, but RNADE seems to capture sharper formant structures (peaks of energy at the lower
frequency bands characteristic of vowel sounds).

5 Discussion

Mixture Density Networks (MDNs) [6] are a flexible conditional model of probability densities,
that can capture skewed, heavy-tailed, and multi-modal distributions. In principle, MDNs can be
applied to multi-dimensional data. However, the number of parameters that the network has to output
grows quadratically with the number of targets, unless the targets are assumed independent. RNADE
exploits an autoregressive framework to apply practical, one-dimensional MDNs to unsupervised
density estimation.

To specify an RNADE we needed to set the parametric form for the output distribution of each
MDN. A sufficiently large mixture of Gaussians can closely represent any density, but it is hard to
learn the conditional densities found in some problems with this representation. The marginal for
the brightness of a pixel in natural image patches is heavy tailed, closer to a Laplace distribution
than Gaussian. Therefore, RNADE-MoG must fit predictions of the first pixel, p(x1), with several
Gaussians of different widths, that coincidentally have zero mean. This solution can be difficult to
fit, and RNADE with a mixture of Laplace outputs predicted the first pixel of image patches better
than with a mixture of Gaussians (Figure 3b and c). However, later pixels were predicted better
with Gaussian outputs (Figure 3f); the mixture of Laplace model is not suitable for predicting with
large contexts. For image patches, a scale mixture can work well [11], and could be explored within
our framework. However for general applications, scale mixtures within RNADE would be too
restrictive (e.g., p(x1) would be zero-mean and unimodal). More flexible one-dimensional forms
may aid RNADE to generalize better for different context sizes and across a range of applications.
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Figure 3: Comparison of Mixture of Gaussian (MoG) and Mixture of Laplace (MoL) conditionals.
(a) Example test patch. (b) Density of p(x1) under RNADE-MoG (dashed-red) and RNADE-MoL
(solid-blue), both with K=10. RNADE-MoL closely matches a histogram of brightness values from
patches in the test-set (green). The vertical line indicates the value in (a). (c) Log-density of the
distributions in (b). (d) Log-density of MoG and MoL conditionals of pixel 19 in (a). (e) Log-density
of MoG and MoL conditionals of pixel 37 in (a). (f) Difference in predictive log-density between
MoG and MoL conditionals for each pixel, averaged over 10,000 test patches.

One of the main drawbacks of RNADE, and of neural networks in general, is the need to decide
the value of several training hyperparameters. The gradient descent learning rate can be adjusted
automatically using, for example, the techniques developed by Schaul et al. [30]. Also, methods for
choosing hyperparameters more efficiently than grid search have been recently developed [31, 32].
These, and several other recent improvements in the neural network field, like dropouts [33], should
be directly applicable to RNADE, and possibly obtain even better performances than the ones shown
in this work. RNADE makes it relatively straight-forward to translate advances in the neural-network
field into better density estimators, or at least into new estimators with different inductive biases.

In summary, we have presented RNADE, a novel ‘black-box’ density estimator. Both likelihood
computation time and the number of parameters scale linearly with the dataset dimensionality.
Generalization across a range of tasks, representing arbitrary feature vectors, image patches, and
auditory spectrograms is excellent. Performance on image patches was close to a recently reported
state-of-the-art mixture model [3], and RNADE outperformed mixture models on all other datasets
considered.
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A Implementation details

In Algorithm 1 we detail the pseudocode for calculating the density of a datapoint under an RNADE
with mixture of Gaussian conditionals. The model has parameters: ρ ∈ RD,W ∈ RH×D−1, c ∈ RH ,
bα ∈ RD×K , V α ∈ RD×H×K , bµ ∈ RD×K , V µ ∈ RD×H×K , bσ ∈ RD×K , V σ ∈ RD×H×K

Training of an RNADE model can be done using a gradient ascent algorithm on the loglikelihood
of the training data. Gradients can be calculated using automatic differentiation libraries (e.g.
Theano [34]). However we found our manual implementation to work faster in practice, possibly
due to our recomputation of the a terms in the second for loop in Algorithm 2, which is more
cache-friendly than storing them during the first loop.

Here we show the derivation of the gradients of each paramater of a NADE model with MoG
conditionals. Following [6], we define φi(xd |x<d) as the density of xd under the i-th component of
the conditional:

φi(xd |x<d) =
1√

2πσd,i
exp

{
− (xd − µd,i)2

2σ2
d,i

}
, (9)
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Algorithm 1 Computation of p(x)
a← c
p(x)← 1
for d from 1 to D do
ψd ← ρda . Rescaling factors
hd ← ψd 1ψd>0 . Rectified linear units
zαd ← V α

d
>hd + b

α
d

zµd ← V µ
d
>
hd + b

µ
d

zσd ← V σ
d
>hd + b

σ
d

αd ← softmax(zαd ) . Enforce constraints
µd ← zµd
σd ← exp(zσd )
p(x)← p(x)pMoG(xd;αd,µd,σd) . pMoG is the density of a mixture of Gaussians
a← a+ xdW ·,d . Activations are calculated recursively, xd is a scalar

end for
return p(x)

Algorithm 2 Computation of the learning gradients for a datapoint x
a← c
for d from 1 to D do . Compute the activation of the last dimension
a← a+ xdW ·,d

end for
for d from D to 1 do . Backpropagate errors
ψ ← ρda . Rescaling factors
h← ψ 1ψ>0 . Rectified linear units
zα ← V α

d
>h+ bαd

zµ ← V µ
d
>
h+ bµd

zσ ← V σ
d
>hd + b

σ
d

α← softmax(zα) . Enforce constraints
µ← zµ

σ ← exp(zσ)

φ← 1
2
(µ−xd)

2

σ2 − logσ − 1
2 log(2π) . Calculate gradients

π ← αφ∑K
j=1 αjφj

∂zα ← π −α
∂V α

d ← ∂zαh
∂bαd ← ∂zα

∂zµ ← π(xd − µ)/σ2

∂zµ ← ∂zµ ∗ σ . Move tighter components slower, allows higher learning rates
∂V µ

d ← ∂zµh
∂bµd ← ∂zµ

∂zσ ← π{(xd − µ)2/σ2 − 1}
∂V σ

d ← ∂zσh
∂bσd ← ∂zσ

∂h← ∂zαV α
d + ∂zµV µ

d + ∂zσV σ
d

∂ψ ← ∂h1ψ>0 . Second factor: indicator function with condition ψ > 0
∂ρd ←

∑
j ∂ψjaj

∂a← ∂a+ ∂ψρ
∂W ·,d ← ∂axd
if d = 1 then

∂c← ∂a
else
a← a− xdW ·,d

end if
end for

return ∂ρ, ∂W , ∂c, ∂bα, ∂V α, ∂bµ, ∂V µ, ∂bσ , ∂V σ
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and πi(xd |x<d) as the “responsability” of the i-th component for xd:

πi(xd |x<d) =
αd,iφi(xd |x<d)∑K
j=1αd,jφj(xd |x<d)

. (10)

It is easy to find just by taking their derivatives that:
∂p(x)

∂zαd,i
= πi(xd |x<d)−αd,i (11)

∂p(x)

∂zµd,i
= πi(xd |x<d)

xd − µd,i
σ2
d,i

(12)

∂p(x)

∂zσd,i
= πi(xd |x<d)

{
(xd − µd,i)2

σ2
d,i

− 1

}
(13)

Using the chain rule we can calculate the derivative of the parameters of the output layer parameters:

∂p(x)

∂V α
d

=
∂p(x)

∂zαd,i

∂zαd,i
V α
d

=
∂p(x)

∂zαd,i
h (14)

∂p(x)

∂bαd
=
∂p(x)

∂zαd,i

∂zαd,i
bαd

=
∂p(x)

∂zαd,i
(15)

∂p(x)

∂V µ
d

=
∂p(x)

∂zµd,i

∂zαd,i
V µ
d

=
∂p(x)

∂zµd,i
h (16)

∂p(x)

∂bµd
=
∂p(x)

∂zµd,i

∂zαd,i
bµd

=
∂p(x)

∂zµd,i
(17)

∂p(x)

∂V σ
d

=
∂p(x)

∂zσd,i

∂zαd,i
V σ
d

=
∂p(x)

∂zσd,i
h (18)

∂p(x)

∂bσd
=
∂p(x)

∂zσd,i

∂zαd,i
bσd

=
∂p(x)

∂zσd,i
(19)

By “backpropagating” the we can calculate the partial derivatives with respect to the output of the
hidden units:

∂p(x)

∂hd
=
∂p(x)

∂zαd,i

∂zαd,i
∂hd

+
∂p(x)

∂zµd,i

∂zµd,i
∂hd

+
∂p(x)

∂zσd,i

∂zσd,i
∂hd

(20)

=
∂p(x)

∂zαd,i
V α
d +

∂p(x)

∂zµd,i
V µ
d +

∂p(x)

∂zσd,i
V σ
d (21)

and calculate the partial derivatives with respect to all other parameters in RNADE:
∂p(x)

∂ψd
=
∂p(x)

∂hd
1ψd>0 (22)

∂p(x)

∂ρd
=
∑
j

∂p(x)

∂ψd,j
ad,j (23)

∂p(x)

∂ad
=
∂p(x)

∂ad+1
+
∂p(x)

∂hd
ρd1ψd>0 (24)

∂p(x)

∂W ·,d
=
∂p(x)

∂ad
xd (25)

∂p(x)

∂c
=
∂p(x)

∂a1
(26)

Note that gradients are calculated recursively, due to (24), starting at d = D and progressing down to
d = 1.
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