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ABSTRACT

We introduce a novel graphical model, the collaborative
score topic model (CSTM), for personal recommendations of
textual documents. CSTM’s chief novelty lies in its learned
model of individual libraries, or sets of documents, associ-
ated with each user. Overall, CSTM is a joint directed prob-
abilistic model of user-item scores (ratings), and the textual
side information in the user libraries and the items. Creating
a generative description of scores and the text allows CSTM
to perform well in a wide variety of data regimes, smoothly
combining the side information with observed ratings as the
number of ratings available for a given user ranges from none
to many. Experiments on real-world datasets demonstrate
CSTM’s performance. We further demonstrate its utility
in an application for personal recommendations of posters
which we deployed at the NIPS 2013 conference.

1. INTRODUCTION
With the advent of online services and the wealth of infor-

mation made accessible through them systems with the abil-
ity to filter the relevant from the irrelevant, such as recom-
mendation systems, are becoming ubiquitous. Collaborative
filtering (CF) models have rapidly established themselves as
the de facto standard for many recommendation tasks where
user-item preferences, scores or ratings, are available. In ad-
dition to such preferences, side information about users or
items, for example other information that may be collected
by an online service, is often available. Side-information
has been particularly useful to address the cold-start prob-
lem that plagues collaborative filtering systems. Cold-start
refers to a regime where scores for a set of users or items are
unavailable or scarce. In some cases side information has
also been shown to improve on the performance of collabo-
rative filtering models in non-cold start (warm-start) data
regimes [7, 20].
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In this paper we are interested in the task of document
recommendation using both user-item preferences and side
information. The primary novelty of our work lies in lever-
aging a particular form of side information: the content
of documents associated with users, which we call user li-
braries. A typical scenario that can be modelled in this
way is scientific-paper recommendation for researchers; for
example, Google Scholar recommends papers based on an
individual’s profile. A second scenario is paper-reviewer as-
signment, where each reviewer’s previously published papers
can be used to assess the match between their expertise and
each submitted paper. Another relevant application domain
is book recommendation, as online book merchants typically
allow users to collect items in a virtual container akin to a
personal library.1 In each case a user’s library, or side in-
formation, consists of documents which are not necessarily
explicitly rated but nonetheless likely contain information
about a user’s preferences.

To model user-item scores as well as user and item con-
tent we introduce a novel directed graphical model. This
model uses twin topic models, with shared topics, to model
the side information. User and item topic proportions are
then used as features to predict user-item scores with a col-
laborative filtering model. The collaborative filtering com-
ponent allows the model to effectively make use of the side
information with varying amounts of observed scores. We
demonstrate empirically that the model outperforms sev-
eral others on three datasets in both cold and warm-start
data regimes. We further show that the model automati-
cally learns to gradually trade off the use of side information
in favor of information learned from user-item scores as the
amount of user preference-data increases.

2. MODEL
Our approach to document recommendation relies on hav-

ing: a) a set of observed user-item preferences ({rud}); b)
contents of the items ({ws

d}); and c) the content of user-
libraries ({wa

u}). The model’s aim is to utilize the content
in its user-item score predictions (which can then be used to
recommend items to users). This contrasts with standard
CF, which is not content-based.

Our content-based model is mediated by topics: we learn
a shared topic model from the words of the documents and
user libraries. We represent topic proportions with a normal

1For example., Amazon’s Kindle and Kobo’s tablets have
an option for users to populate their libraries, while Barnes
and Nobles’ Nook gives users an active shelf.



distribution and realized topics zu and zd using the logistic
normal [5]. User and item topic proportions offer a compact
representation of user and item side information. We use
these representations as covariates in a regression model to
predict user-item preferences. The regression has two sets
of parameters. The first are user-specific parameters on the
item-topics covariates (γu). The second are compatibility
parameters, which are shared across users and items, and
are based on the compatibility between the item topics and
the topics of the user library (θ).
We now introduce the complete graphical model for this

collaborative score topic model (CSTM). A graphical repre-
sentation of the model is given in Figure 1. The associated
generative model is:

• Draw compatibility parameters: θ ∼ N (0, λθI)

• Draw shared-user parameters: γ0 ∼ N (0, λγ0
I)

• For each user u = 1 . . . U :

- Draw individual-user parameters: γu ∼ N (0, λγI)
- Draw user-topic proportions: au ∼ N (0, λaI)

• For each document d = 1 . . . D:

- Draw document-topic proportions: sd ∼ N (0, λsI)

• For all of user u’s user-library words, n = 1 . . . N :2

- Draw zaun ∼ Mult(softmax(au))
- Draw wa

un ∼ Mult(βza
un

)

• Repeat the above for all of document d’s M words

• For each user-document pair (u, d), draw scores:
rud ∼ N ((au ⊗ sd)

Tθ + sTd (γ0 + γu), σ)

where N (µ, σ2) represents a normal distribution with mean
µ and variance σ2, ⊗ stands for the elementwise product,

softmax(v) = exp(v)∑
k′ exp(v

k′ )
, and I is the identity matrix.

The specific parametrization of the preference regression
is important. Our model is designed to perform well in both
cold-start and warm-start data regimes. In cold-start set-
tings the model needs the user’s side information to predict
user-item preferences. When the amount of observed pref-
erences increases the model can gradually leverage that in-
formation, smoothly combining it with information gleaned
from the side information to refine its model of missing pref-
erences. To accomplish this, the regression model is sepa-
rated in two parts: one part that exploits user side informa-
tion ((au⊗ sd)

T θ) and another that does not (sTd (γ0+γu)).
Item side information is incorporated by modulating the

user information through an element-wise product. The
weights θ then serve several purposes: 1) they can act to
amplify or reduce the effect of certain topics (for example
diminish the influence of topics bearing little preference in-
formation); 2) they allow the model to more easily calibrate
its output to the range of observed preference values; 3)
changing the magnitude of θ allows the model to control
how much it uses the side information for preference predic-
tion.
When user-item preferences are more abundant, the model

can use them to learn a user-specific model, γu, over item
features. Note that these user-specific parameters are com-
bined with a shared set of parameters, γ0, which allows for

2For simplicity, we’ll assume in the notation that all user-
libraries contain N words and all item documents contains
M words.

r MN

K

U
D

Figure 1: Graphical model for CSTM.

some transfer across users. The individual’s γu can be used
to increase that user’s reliance on user-item preferences at
the possible expense of item side information, as the joint
magnitude of the γ’s defines the weights associated with this
part of the model.

Our model learns a single set of topics to model user and
item content. Sharing topics ensures that the user and item
representations (au and sd ∀u, ∀d) are aligned and render
their element-wise product meaningful.

2.1 The relationship between CSTM and stan-
dard models

Simplifying the proposed CSTM model in various ways
produces other models that have been used for similar tasks.
First, setting γ0 and γu ∀u to zero and θ’s to a vector of
ones we obtain a version of a language model (LM) first
used by [12] for a similar task.3 [12] and [7] used the LM
in a preference prediction task and found its performance
particularly strong in low-data regimes.

Further, setting θ and γ0 to zero we obtain an individual
user regression model (LR), which was shown to outperform
purely collaborative filtering models in a similar preference
prediction task with textual side information [7].

By modelling preferences as a combination of user features
and item features, our model can also be seen as an instance
of collaborative filtering. Collaborative filtering models have
proven to be extremely powerful for missing preference pre-
diction problems [15, 14, 3].

Finally, we have opted to represent topic proportions using
a normal distribution instead of the more standard simplex
representation used in latent Dirichlet allocation (LDA) [6].
This parametrization was proposed for correlated topic mod-

3One difference with our model is that since we represent
users and items in topic space we do not have to handle nor-
malization nor smoothing issues which are typical of word-
space models.



els [5]; in our case we utilize the logistic normal due to its
representational form, and not as a means of learning topic
correlations.4 Compared to a multinomial the normal dis-
tribution adds a level of flexibility that may be useful to
better calibrate CSTM’s preference predictions; the draw-
back is additional complexity in model inference.

3. LEARNING AND INFERENCE
For learning we use a version of the EM algorithm where

we alternate between updates of the user-item specific vari-
ables (H = {{γu}, {au}, {sd}, {z

a}, {zs}}) in the E-step
and updates of the parameters or shared variables (Θ =
{γ0,θ,β}) in the M-step. The inference and learning pro-
cedures are similar to those proposed for nonconjugate LDA
models in [20]. The general EM algorithm is shown in Al-
gorithm 1.

E-Step

Inference in this model being intractable, we must rely on
approximations when manipulating the posterior over the
user-item specific varaibles. The log-posterior over user-item
variables, given the fixed model parameters and the data, is

L := −
1

2λ2
a

U∑

u

aT
uau −

1

2λ2
s

D∑

d

sTd sd −
1

2λ2
γ

U∑

u

γ
T
uγu

−
1

2σ2
r

∑

(u,d)∈O

(
rud − ((au ⊗ sd)

T
θ + (γ0 + γu)

T sd)
)2

+

U,N∑

u,n

log
exp(auza

un
)∑

j exp(auj)
+

D,M∑

d,m

log
exp(sdzs

dm
)

∑
j exp(sdj)

+

U,N∑

u,n

log βza
un

,wa
un

+

D,M∑

d,m

log βzs
dm

,ws

dm
− logZ(Θ) (1)

where O stands for the set of observed preferences and Z(Θ)
is an intractable normalizing constant of the posterior, in
part because au and sd cannot be analytically integrated
out since they are not conjugate to the distribution over
topic assignments [5].
We address this computational issue by employing varia-

tional approximate inference [11]. For the topic-proportion
and regression variables {au}, {sd}, {γu}, we use a Dirac
delta posterior parameterized by its mode {âu}, {ŝd}, {γ̂u}.
For the topic-assignment variables {za}, {zs}, we instead
utilize a mean-field posterior. The full approximate pos-
terior is thus:

q({au}, {sd}, {γu}, {z
a
u}, {z

s
d}) =

(
U∏

u

δγ̂u
(γu)

)

(
U∏

u

δâu
(au)

N∏

n

φa
unza

u

)(
D∏

d

δŝd(sd)

M∏

m

φs
dmzs

d

)

where δµ(x) is the delta function with mode µ and {φa
u},{φ

s
d}

are the mean-field parameters (e.g., φa
u is a matrix whose en-

tries φa
unj are the probabilities that the nth word in user u’s

library belongs to topic j).

4Since learning topic correlations has been found to improve
on standard LDA, it is possible that learning the topic cor-
relations could also improve our model.

Approximate inference entails finding the variational pa-
rameters {âu}, {ŝd}, {γ̂u}, {φ

a
u}, {φ

s
d} that minimize the KL-

divergence with the true posterior

KL := −Eq [L]−H(q)

=
1

2λ2
a

U∑

u

âT
u âu +

1

2λ2
s

D∑

d

ŝTd ŝd +
1

2λ2
γ

U∑

u

γ̂
T
u γ̂u

+
1

2σ2
r

∑

(u,d)∈O

(
rud − ((âu ⊗ ŝd)

T
θ + (γ0 + γ̂u)

T ŝd)
)2

−

U,N,K∑

u,n,k

φa
unk

(

log
exp(âuk)∑
j exp(âuj)

+ log βk,wa
un

− log φa
unk

)

−

D,M,K∑

d,m,k

φs
dmk

(

log
exp(ŝdk)∑
j exp(ŝdj)

+ log βk,ws

dm
− log φs

dmk

)

+ constant. (2)

Our strategy is to perform one pass of coordinate descent,
optimizing each set of variational parameters given the oth-
ers.5

For γ̂u, we obtain a closed-form update by differentiating
the above equation and setting the result to 0:

γ̂u =
1

σr

∑

d∈O(u)

(rud − (ŝd ⊗ âu)
T
θ − ŝTd γ0)ŝ

T
d




∑

d∈O(u)

ŝdŝ
T
d /σr + λγI/2




−1

whereO(u) is the set of indices for documents that user u has
rated. The {âu}, {ŝd} parameters do not have closed-form
solutions, hence we resort to optimization using conjugate
gradient descent. We report the derivatives with respect to
the posterior KL:

∂KL

∂âu

=λaau −
1

σr

∑

d∈O(u)

(rud − r̂ud)(ŝd ⊗ θ)

+N
exp(âu)∑
j exp(âuj)

−
∑

n

φ
a
un

∂KL

∂ŝd
=λssd −

1

σr

∑

u∈O(d)

(rud − r̂ud)(âu ⊗ θ + γ0 + γ̂u)

+M
exp(ŝd)∑
j exp(ŝdj)

−
∑

n

φ
s
dn

where, r̂ud = (âu ⊗ ŝd)
Tθ + ŝTd (γ0 + γ̂u).

For the mean-field parameters {φa
u},{φ

s
d}, minimizing the

KL while enforcing normalization leads to the following so-
lutions:

φa
unk =

βk,wa
un

exp(âuk)∑
j βj,wa

un
exp(âuj)

φs
dmk =

βk,ws

dm
exp(ŝdk)∑

j βj,ws

dm
exp(ŝdj)

.

We update the variational parameters of all users and sub-
sequently of all documents (see Algorithm 1).

5While we could cycle through all variational parameters
until convergence before beginning the M-step, we’ve found
a single pass of updates per E-step to work well in practice.



Algorithm 1 EM for the CSTM

Input: {wa
u}, {w

s
d}, {rud} ∈ O.

while Convergence criteria not met do
# E-Step
for all d ∈ D do

Update ŝd,φ
s
d

end for
for all u = 1 . . . U do

Update âu, γ̂u,φ
a
u

end for

# M-Step
Update θ, γ0,β

end while

M-Step

The M-step aims to maximize the expectation of the com-
plete likelihood under the variational posterior (taking into
account the prior over the parameters γ0,θ):

Eq [L] + log p(γ0) + log p(θ) =

1

2σ2
r

∑

(u,d)∈O

(
rud − ((âu ⊗ ŝd)

T
θ + (γ0 + γ̂u)

T ŝd)
)2

+

U,N,K∑

u,n,k

φa
unk log βk,wa

un
+

D,M,K∑

d,m,k

φs
dmk log βk,ws

dm

−
1

2λ2
γ0

γ
T
0 γ0 −

1

2λ2
θ

θ
T
θ + constant . (3)

Setting derivatives to zero (and satisfying the βjw param-
eters’ normalization constraint), we obtain the following up-
dates:

θ =−
1

σr

( ∑

(u,d)∈O

(rud − sTd (γ0 + γu))(−sd ⊗ au)
T
)




∑

(u,d)∈O

(sd ⊗ au)
2/σr + λθI/2




−1

γ0 =−
1

σr

( ∑

(u,d)∈O

(rud − (sd ⊗ au)
T θ − (γT

u sd))sd
)




∑

(u,d)∈O

sds
T
d /σr + λγ0

I/2




−1

βjk =

∑
u,n φa

unj1{wa
un

=k} +
∑

d,m φs
dmj1{ws

dm
=k}∑

k′,u,n φa
unj1{wa

un
=k′} +

∑
d,m φs

dmj1{ws

dm
=k′}

.

At test time, prediction of missing preferences is made
using r̂ud, which is readily available. That is we use the
expectation of the variational variables to form estimates of
r̂

4. RELATED WORK
Previous work includes a few models that have combined

item-only topic and regression models for user-item prefer-
ence prediction. We are not aware of any earlier work that
develops a text-based model of a user, nor one that combines
user and item side information as in CSTM.

In [2] the authors model several sources of side informa-
tion including item textual side information using LDA. The
topic assignment proportions of documents (

∑
m zsdm/M ∀d)

are used as item features and combined multiplicatively with
user-demographic and behavioural features. The result is
linearly combined with the other sources of side information
to generate preferences.

In [20] the authors also combine LDA with a regression
model for the task of recommending scientific articles. Here
the item topic proportions are used as a prior mean on
normally-distributed item (regression) latent variables. User
latent variables are also normally distributed from a zero-
mean prior. A specific user-item score is then generated as
the inner product of item and user latent variables: rud =
aT
u (sd + ǫd), where ǫd is drawn from a zero-mean normal.

The preference prediction model is the same as the one used
in probabilistic matrix factorization [15]. [20] also report
that on their data a modified version of their model which
is analogous to the model of [2] performed worse. [16] pro-
posed a similar model without ǫ and used CTM [5]. For
a similar application, [18] propose an approach based on
link-prediction in a user-item graph based on user and item
similarity as well as user (binary) preferences.

The fact that we model an additional type of informa-
tion (user textual side information) makes it difficult to di-
rectly compare our model to the ones above. In addition, the
parametrization we use to predict preferences is very differ-
ent from previous models. We initially experimented with a
parametrization similar to [20], albeit modified to also model
user side information, and found it did not perform as well
as CSTM (see Section 5 for an experimental comparison).

Finally, [1] propose a collaborative filtering model with
side information. Although the form of the side information
is not amenable to using topic models, the authors utilize a
combination of linear models to obtain good performance in
both cold and warm-start data regimes.

5. EXPERIMENTS
We first describe the three datasets used for experiments.

We then introduce a set of methods for empirical compar-
isons, ranging from pure CF methods to pure side informa-
tion methods. We report three separate sets of experiments.
In the first we focus on cold-start users and examine the
effect of including user libraries. In the second we study
how the methods perform on users with varying amounts of
observed scores. Finally, we design a synthetic paper rec-
ommendation experiment and simulate incoming users in
order to test the value of both the user library and the user-
provided item scores.

5.1 Datasets
We evaluate the models using these three datasets:
Conf-1: A dataset from the 2010 edition of the neural in-

formation procession systems (NIPS) conference. Users are
conference reviewers while documents are the set of papers
submitted to the conference. The dataset consists of 48 users
and 1251 documents. Each user’s library consists of his/her
own previously published papers. Users have an average of
31 documents which are concatenated into one. After some
basic preprocessing the length of the joint vocabulary was
slightly over 18,000 words. In this dataset all users have ex-
pressed scores (integers between 0 and 3) for an average of
143 papers (std. 14).
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Figure 2: Number of each rating values for the three
datasets, from left to right: Conf-1, Conf-2, Books-
1.

User side-
info.

Document
side-info.

Shared
Params

LM-I X X

LM-II X X

LR X

PMF X

CTR X X

CSTM X X X

Table 1: A comparison of the modelling capabilities
of each model. “Shared Params” stands for mod-
els that share information in-between users and/or
items (in other words those which use some form of
CF).

Conf-2: A second dataset is from the international con-
ference on machine learning (ICML 2012). This dataset
consists of 433 users (reviewers) and 861 documents (sub-
missions). Users have an average of 25 documents (std. 29)
each and the length of the joint vocabulary is 16,201 words.
In this dataset the average number of expressed scores per
user is 48 (std. 25).
Books-1: The third dataset is from a large North Amer-

ican online book retailer.6 It contains 316 users and 2601
documents (books). Users average 81 documents (std. 100).
We removed very-infrequent and very-frequent words (those
appearing in less than 1% or more than 95% of all doc-
uments). The resulting vocabulary contains 6,440 words.
Users have a minimum of 15 expressed scores (mean 22, std.
6).
For each dataset the number of available preference values

is shown in Figure 2. We note that the size of our datasets,
and not the computational cost of learning in our model,
limits our ability to scale up. In fact, learning CSTM on our
largest dataset takes on the order of 2 hours on a modern
machine using our Matlab implementation.

5.2 Competing models
We introduce several models which will serve as compar-

ison to CSTM. Each model has particular characteristics
(Table 1) which will help in understanding CSTM’s perfor-
mance.
Note that we use topic representations of documents for

all competing models that use side information. Such rep-
resentations were learned using a correlated topic model of-
fline [5]. We re-use some of our previous notation to describe
these models. NamelyAu and Sd areK-length vectors which
designate a user’s and a document’s (topic) representation
respectively.

6Kobo: http://www.kobo.com

Constant: Model predicts the average observed prefer-
ences for all missing preferences. Comparison to this base-
line is useful to evaluate the value of learning.

LM-I: This model is meant to be a supervised version
of the language model (LM[12]): r̂ud := (AT

u θA)(S
T
d θS)

T

where, the parameters, θA, θS are K × F matrices. F is a
hyper-parameter determined using a validation set (ranges
from 5 to 30).

LM-II: Uses isotonic regression (see for example [4]) to
calibrate the LM. The idea is to learn a regression model
that satisfies the implicit ranking established by the LM:

minimizer̂u,∀u

∑

(ud)∈O

(r̂ud − rud)
2

s.t. r̂ud ≤ r̂u(d+1), ∀d.

where the constraints enforce a, user-specific, document or-
dering specified by the output of the LM. Once learned {r̂}
are used as the model’s predictions. To obtain predictions
for an unobserved document we have found that using the
average score given to the two (observed) documents ranked
directly above and below the new document works well.
The performed regression is user-specific and thus cannot
be used for users with no observed preferences. For such
users we simply re-use the learned parameters of its closest
user (based on users’ topic representations). A more princi-
pled approach, for example a collaborative one, lies outside
of the scope of this paper.

LR: This is a user-specific regression model (see Section 2.1
for details) where predictions are given by: rud = γT

uSd.
PMF [15]: PMF is a state-of-the-art collaborative filter-

ing approach. PMF’s generative model postulates that users
and documents live in a low-dimensional latent space, rep-
resented respectively by Uu and Vd. A user-item preference
is generated by taking the dot product between the corre-
sponding user and item representations: rud = UT

u Vd. The
size of the latent space is determined using a validation set
(range from 1 to 30).

Collaborative topic regression (CTR-CTM): CTR, is ma-
trix factorization with document-content model introduced
in [20]. CTR was briefly reviewed in Section 4. We use a
slightly different version than the one introduced by its au-
thors. Namely, we have replaced LDA by CTM. Also, in
our application since all user-item scores are given we use a
single variance value over scores (σ).

For LM-I, LR and PMF learning is performed using MAP
by assuming a Gaussian likelihood model and zero-mean
Gaussian priors over the model’s parameters. The priors’
variance are determined using a validation set.

We investigated a few other models which we do not fully
describe here. Of note: instead of modeling user libraries
as side-information we used the documents of user libraries
as explicitly (highly-)scored items. We experimented with
various scoring schemes but none lead to consistent improve-
ments over baselines. We also experimented with replacing
directed topic models with an supervised extension of an
undirected topic model [13]. Further we experimented with
replacing both topic models by (unconstrained) probabilis-
tic matrix factorization [17]. However, in both cases, initial
experiments were not as promising.

5.3 Results
To run CSTM on the above datasets we first concatenated

user documents (for example a researcher’s previously pub-

http://www.kobo.com


lished papers) into a single document. To get user and item
topic proportions we learned a CTM topic model [5] using
the content of the items and then projected user documents
into that (learned) topic space to obtain user topic propor-
tions. We directly used these topics in LM-1,LM-II,LR. Fur-
ther we used these topics as initialization in models which
jointly learn topics and scores (CSTM,CTR). In all experi-
ments we use 30 topics.
For training we create 5 folds from the available scores.

Each fold is split into 80 percent observed and 20 percent
test. We used the first fold to determine the hyper-parameters
of the model. We report the average results over the five
folds as well as the variance of this estimator.
We want to evaluate the performance of CSTM in set-

tings where some users have no observed scores. The cold-
start setting is of particular practical importance and one
that should allow a good model to leverage the user’s side-
information. Accordingly, in our datasets we randomly se-
lected one fourth of all users and removed all of their ob-
served scores but kept their test scores. Further, for Conf-
1 and Books-1, whose users have a more uniform number
of ratings, we binned the remaining users (three quarters)
uniformly into three categories. For Conf-1, users in each
category had 15, 30 and 55 observed scores respectively. In
each of the three categories 5 ratings per user were kept for
validation. For Books-1 users in the first two categories had
8 and 10 scores while the scores of users in the last cat-
egory were left untouched (5 scores per user were kept for
validation). For Conf-2 since users are already naturally dis-
tributed into categories, we split the observed data into 25
percent validation and 75 percent train.
For the next two experiments, for each dataset, we train

each model on all of the data but we divide our discussion
into two parts. First we discuss cold-start users and after
we examine the (other) user categories.

5.3.1 Cold-Start Data Regime

We first report the results for the completely cold-start
data regime. For the cold-start users, it is difficult to cal-
ibrate the output of the model to the correct score range
since only the users’ side-information is available. The hope
is that the models can use the side-information to get a
better understanding of users preferences and discriminate
between items of interest and other items. Accordingly we
report results using NDCG. Normalized DCG (NDCG) is
a well-established ranking measure, where a value of 1 indi-
cates a perfect ranking and 0 a reverse-ordered perfect rank-
ing [10]. NDCG@T considers exclusively the top T items.
Table 2 reports results for the three datasets using NDCG@5
(note that other values of NDCG gave similar results). We
can only report results for the methods that have the ability
to predict scores for cold-start users. PMF, LR and CTR
do not use any user side-information and hence do not have
that ability.
In this challenging setting CSTM significantly outperforms

the other methods. Further we see that methods using
side-information typically outperform the constant baseline.
This demonstrates that the useful information about user
preferences can be leveraged from the user libraries. Fur-
ther, the good performance of CSTM in this setting shows
that the model is able to leverage that information.

Conf-1 Conf-2 Books-1
Constant 0.4378±2e−3 0.6386±4e−5 0.6882±5e−4

LM-I 0.4684±2e−3 0.7903±4e−5 0.6873±1e−3

LM-II 0.4696±3e−4 0.7752±1e−4 0.6926±6e−4

CSTM 0.4846±1e
−3

0.8096±1e
−4

0.7360±2e
−4

Table 2: Comparisons between CSTM and competi-
tors for cold-start users using NDCG@5.

5.3.2 Warm-start data regimes

The goal of CSTM is to perform well across different data
regimes. In the previous section we examined models’ per-
formance on cold start users, we now focus on users with ob-
served scores. For each dataset we report the performance
of the various methods for each user category. For Conf-
2 we separated users into roughly equal sized bins according
to their number of observed scores. Results for our three
datasets are provided in Figure 3. First we note that as the
number of observed scores is increased the performance of
the different methods also increases. CSTM outperforms all
other methods on lower data-regimes. On users with more
observed scores CSTM is competitive with both CTR-CTM
and LR.

We notice that overall in this task, and even when many
observed preferences are available, PMF is not competitive
with most of the methods that have access to the side infor-
mation. This highlights the value of content side-information
on both user and item sides. This is further made clear by
the relatively strong performance of both LM-I and LM-II.

Overall user libraries do not seem to help as much on the
Books-1 dataset. There are several explanations for this.
First, in Books-1 the distribution over scores is very skewed
toward high scores. Thus a constant baseline does quite
well. Further, bag-of-words representations are particularly
well suited for academic papers where the presence (absence)
of specific words are very good indications of the documents
field and hence it’s targeted audience. However, in (non-
technical) books user preferences also rely on other aspects
such as the document’s prose which is harder to capture with
a bag-of-words assumption.

5.3.3 Document Recommendations

We explore a different scenario which is meant to be closer
to what would happen when a model is deployed in a com-
plete recommendation system, for example to guide users to
posters of interest in an academic conference. Specifically,
we evaluate the performance of CTR and CSTM as new
users arrive into the system and gradually provide informa-
tion about themselves. We postulate that users first provide
the system with their library. Then users gradually express
their preferences for certain (user-chosen) items.

We trained CTR-CTM and CSTM on all but 50 randomly-
chosen Conf-2 users with enough observed preferences (min.
15). We then simulated these users entering the system one
by one. Since this experiment is about recommendations
we report the results using NDCG.7 Figure 4 presents the
performance of CSTM and CTR-CTM as a function of the
amount of data available in the system. When a user first

7In the absence of a recommendation objective and con-
straints it is reasonable to recommend the top-ranked items
to each user
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Figure 3: Test RMSE of the different methods across
Conf-1, Conf-2, Books-1. In each figure each group
of bars reports results for different subsets of users.
Each user is part of a single subset. The x-axis indi-
cates the number of training observations per users
of a given subset. The subsets correspond to users
with the least observed preferences (left) to the most
(right). Figures better seen in color (however the or-
dering in the legends corresponds to the ordering of
the bars in each group).

enters the system no data is available about her (indicated
by “0” in the figure). The methods revert to using a con-
stant predictor which predicts the mean of the previously
observed scores across all users. Once a user provides a
library (Lib.) we see that CSTM’s performance increases
very significantly. CTR cannot leverage that side informa-
tion. Then once users provide scores, the performance of
both methods increases and the performance of CTR even-
tually reaches the performance of CSTM.

Figure 4 demonstrates the advantage of having access to
user side-information, namely, the system can quickly give
good recommendations to new users. Further, in absolute
terms the system performs relatively well without having ac-
cess to any scores. It is also interesting to note that, in this
experiment, as far as NDCG goes, the performance of CSTM
only modestly improves as the number observed scores in-
creases. This may be a consequence of our fairly primitive
online learning procedure. As far as modelling goes this
experiment is also a demonstration that our model of user
libraries is effective at extracting features (au for all users)
indicative of preferences and that the regression model then
successfully combines the user and item side information.

As a practical experiment we deployed a system based on
CSTM to a subset of the attendees of the most recent NIPS
conference (NIPS-2013). NIPS is one of the most important
machine learning conferences. We had previously gathered a
dataset containing a few hundred of attendees’ libraries and
ratings. We also obtained text representations of the confer-
ence papers. Both sources of information were used to train
CSTM. We used 20% of the observed ratings as a validation
set used to determine the value of the hyper-parameters.
Using the trained model we then generated predictions for
each user using the same conditional inference procedure
as above. We used each user’s highest (predicted) ratings
as their personalized recommendations. Furthermore, since
NIPS 2013 had four daily poster sessions we allowed users
to obtain independent paper recommendations for each day.
A screen capture of the online user interface is provided in
Figure 5.

We did not have a formal method of evaluating the qual-
ity or usefulness of the system beyond using the metrics we
discussed in previous sections. Anecdotally, over 200 NIPS
attendees accessed their recommendations and user feedback
was almost unanimously positive. Furthermore we can ex-
plore the learned representations of the model as a way to as-
sess its quality. Figure 6, shows the two-dimensional embed-
dings of user representations (au) obtained using a popular
(non-linear) dimensionality reduction technique for visualiz-
ing high-dimensional data [19]. We notice that, even in this
low-dimensional representation, users cluster into different
groups according to their areas of research. The model has
discovered these groups using the similarities in user libraries
and in their rating profiles. Similar results were obtained for
paper representations.

6. CONCLUSION & FUTURE WORK
We have introduced a novel graphical model to leverage

user libraries for preference prediction tasks. We showed
experimentally that CSTM overall outperforms competing
methods and can leverage the information of other users
and of user libraries to perform particularly well in cold-
start regimes. We also explored a paper recommendation
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Figure 4: Comparison of CSTM and CTR’s
NDCG@10 performance on new users as a function
of the amount of data provided by users. With-
out any user data (0) methods revert to a constant
predictor. Then CSTM takes advantage of user li-
braries (Lib.). Finally, scores are added one by one.
Error bars indicate the variance across users.

Figure 5: User interface of the NIPS-13 poster rec-
ommendations. The menu on the top of the page al-
lows users of the system to obtain recommendations
for one of the four daily poster sessions. Below the
menu are the top-10 recommendations for a given
user. Each recommendation links to the paper and
contains the paper title and its unique conference
identifier.

Figure 6: We used t-SNE to obtain a two-
dimensional representation of users. Each user
is denoted using his or her email address. We
note that users cluster according to easily iden-
tifiable subject areas some of which we have
highlighted. A fully vectorized map is available at
http://www.cs.toronto.edu/~lcharlin/tmp/n13_tsne.pdf.

task and demonstrated the benefits of having access to user
libraries.

Future work offers several possibilities. On one side we
could refine the inference procedure used in training our
model such as by using a fully variational approach or by
leveraging the latest inference procedures of CTM [21]. Fur-
thermore, it would also be straightforward to implement
stochastic variational inference [9] for example by sampling
users and updating relevant document and global parame-
ters using a natural gradient. Stochastic inference is likely to
be especially useful as we scale CSTM to very large datasets.
On the other side we are examining extensions that enable
the modelling of other types of side-information, such as
book genres or academic-paper subject areas.

Another aspect of practical importance is that once we
move to online recommendation, models must also be able to
adapt to new data, including novel items and users, updates
to user libraries, and new user-item scores. In the poster
recommendations experiment we have seen that a simple
conditional inference method works relatively well for novel
users. However, one would also like to use the information
from novel users to learn better representations of all users.
In other words, we would need a mechanism which updates
model parameters once a sufficient amount of new data is
available. Furthermore, we could refine such a method inter
alia to allow the system to adapt to the evolving preferences
of users over time. For example, [1] propose a decaying
mechanism to emphasize more recent scores over older ones.
A similar mechanism could be use to weight the different
documents in a user’s library (for example based on date of
publication for research papers or purchase date for books).

There is also the question of other potential applications
for which CSTM could be useful. In addition to modelling
text, topic models have also been shown to model images [8].
CSTM could then be used as an image recommendation tool

http://www.cs.toronto.edu/~lcharlin/tmp/n13_tsne.pdf


(for example to photographers). In that case, much like
for the books of the Books-1 dataset, it remains to be seen
whether topic models can capture features of images which
are indicative of preferences.
Acknowledgments: We thank the NIPS’10 and ICML’12
program chairs for allowing us to use their data as well as
Kobo for providing us with a useful dataset and support.
We also acknowledge the support of CIFAR and NSERC.

7. REFERENCES
[1] D. Agarwal and B.-C. Chen. Regression-based latent

factor models. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining, KDD ’09, pages 19–28,
New York, NY, USA, 2009. ACM.

[2] D. Agarwal and B.-C. Chen. flda: matrix factorization
through latent dirichlet allocation. In Proceedings of
the third ACM international conference on Web search
and data mining, WSDM ’10, pages 91–100, New
York, NY, USA, 2010. ACM.

[3] R. M. Bell and Y. Koren. Lessons from the netflix
prize challenge. SIGKDD Explorations, 9(2):75–79,
2007.

[4] M. J. Best and N. Chakravarti. Active set algorithms
for isotonic regression; a unifying framework. Math.
Program., 47:425–439, 1990.

[5] D. M. Blei and J. D. Lafferty. A correlated topic
model of science. AAS, 1(1):17–35, 2007.

[6] D. M. Blei, A. Y. Ng, M. I. Jordan, and J. Lafferty.
Latent Dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022, 2003.

[7] L. Charlin, R. Zemel, and C. Boutilier. A framework
for optimizing paper matching. In Proceedings of the
Proceedings of the Twenty-Seventh Conference Annual
Conference on Uncertainty in Artificial Intelligence
(UAI-11), pages 86–95, Corvallis, Oregon, 2011. AUAI
Press.

[8] P. P. E. Bart, M. Welling. Unsupervised organization
of image collections: Taxonomies and beyond. IEEE
Transactions of Pattern Analysis and Machine
Intelligence, 2011.

[9] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley.
Stochastic variational inference. J. Mach. Learn. Res.,
14(1):1303–1347, May 2013.

[10] K. Järvelin and J. Kekäläinen. Ir evaluation methods
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Figure 7: Averaged norm of parameters under users
with varying number of scores (left Conf-1, right
Conf-2).

Conf-2
Constant 0.8950±5e−4

LM-I 0.9301±2e−4

LM-II 0.9308±4e−4

PMF 0.9100±3e−4

LR 0.9288±2e−4

CTR 0.9375±3e−4

CSTM 0.9409±3e
−4

Table 3: For the un-modified Conf-2 dataset, com-
parisons between CSTM and competitors for cold-
start users using NDCG@5.

APPENDIX

A. ADDITIONAL RESULTS

A.1 Model’s Tradeoff
In Section 2 we motivated the specific parametrization

of CSTM by its ability to trade off the influence of the
user library side information versus that of the user-item
scores. Here we show that learning in our model performs
as expected. Figure 7 reports the relative norm of θ versus
(γ0 + γ) as a function of the number of observed scores. As
hypothesized as the number of scores increases the relative
weight of the user library side information decreases.

A.2 Variations of CSTM
We also experimented with variations of CSTM to better

understand the roles played by the different aspects of the
model and its training.
CSTM fixed topics (CSTM-FT): This model uses the ex-

act preference regression model used by CSTM but it uses
fixed topic user and document topic representations. That is
it predicts preferences with: rud = (au⊗sd)θ

T +sd(γ0+γ)T

where A and S are previously learned offline.
CSTM no user side information (CSTM-NUSI): To eval-

uate the gain of using user side information we experimented
with a version of our model that does not model user side
information (i.e., as if a user did not have any documents).
Specifically, in this model au ≡ 0 ∀u.
We provide some results comparing CSTM with its vari-

ations in table 4.

A.3 Results on original Conf-2 dataset
In Figure 8 and Table 3 we provide comparisons of the

different methods on the original version of Conf-2.
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Figure 8: RMSE results on the un-modified Conf-
2 dataset.

Conf-1 Books-1
CSTM-NUSI 0.4941±4e−4 0.7997±8e−5

CSTM-FT 0.4984±2e−4 0.8026±8e−5

CSTM 0.5016±2e
−4

0.8037±2e
−5

Conf-2 Conf-2(un-modified)
CSTM-NUSI 0.7765±9e−5 0.8048±9e−4

CSTM-FT 0.8036±5e−5 0.8066±8e−5

CSTM 0.8217±2e
−5

0.8322±2e
−4

Table 4: Comparisons between CSTM and two vari-
ations. Results report NDCG@5 over all users.
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